首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Southampton Water, UK, the recent (c. 150 years ago) interspecific hybridisation between Spartina alterniflora (2n = 6x = 62; A-genome) and S. maritima (2n = 6x = 60; M-genome) gave rise to the homoploid hybrid (S. × townsendii, 2n = 6x = 62), and subsequently to the invasive allododecaploid species S. anglica (2n = 12x = 120–124) that has since spread worldwide. To address the question of dynamics of mixed ploidy populations involving these plants, we analysed several Spartina populations (fifty one individuals) in Southern England, UK, one of which was the presumed place of origin of the homoploid hybrid (Hythe). Using a combination of flow cytometry and ribosomal DNA (rDNA) genotyping we were able to identify the genomic composition and ploidy level of each individual analysed. The data show that the homoploid hybrid still dominates the population at Hythe (82 % of individuals collected in that locality) since its origin in the nineteenth century. We also identified S. × townsendii for the first time on Hayling Island (66 % individuals), indicating dispersal beyond its likely origin. The fertile allododecaploid S. anglica was mainly found in populations outside the initial hybridisation site, on Hayling Island and at Eling Marchwood. Quantification of the rDNA contributions from each parental genome showed that the ratios were mostly balanced in S. × townsendii. However, two (3 %) S. anglica individuals analysed have lost nearly all M-genome homeologs, indicating extensive repeat loss. Such variation indicates that despite the presumed single allopolyploid origin of S. anglica and genetic uniformity at other loci, it has undergone substantial changes at the rDNA loci following genome duplication.  相似文献   

2.
Non-native Spartina spp. have invaded many coastal saltmarshes worldwide. Introduced Spartina may cause problems like displacement of native vegetation and hybridisation with native species, leading to changes to relevant ecosystem services and saltmarsh geomorphology. Here we report the extensive and so far overlooked replacement of the native Spartina maritima by non-native S. anglica and S. townsendii along 400 km of the coast of the north-western Adriatic Sea (Mediterranean Sea). We analysed the distribution of both native and non-native Spartina spp. along the six main saltmarsh areas in the region, and produced maps of their presence by using a combination of genetic tools, morphological analysis and geotagged photographs, complemented with field observations. We also reviewed historical herbaria from the region to explore when the first non-native introductions could have occured. We found that S. anglica and S. townsendii are unexpectedly widespread, having established along the whole study region, in one lagoon totally replacing the local native species. Its introduction happened virtually unnoticed, and misidentified herbarium specimens date back as early as 1987. We discuss the ecological implications of this overlooked extensive replacement, and the need for a comprehensive assessment of the status of the saltmarshes in this region, both to protect the few remaining patches of the native S. maritima and control the spread of the non-native species across the Mediterranean Sea.  相似文献   

3.
Fusarium palustre is an endophyte/pathogen of Spartina alterniflora, a saltmarsh grass native to North America that has been associated in the USA with a saltmarsh decline known as Sudden Vegetation Dieback (SVD). Since the intentional introduction of S. alterniflora to stabilize mud flats on Chongming Island, Shanghai, China, S. alterniflora has become invasive, but shows no symptoms of dieback even though F. palustre can be isolated from the plant. When declining S. alterniflora from SVD sites in the northeastern USA were assayed for Fusarium species, an average of 8 % of tissues sampled gave rise to a species of Fusarium of these, 64 % were F. palustre and 16 % were F. incarnatum, a nonpathogenic species. To determine if low densities of F. palustre could explain the lack of dieback symptoms on S. alterniflora from Chongming Island, we assessed the incidence and distribution of Fusarium spp. on S. alterniflora from 12 sites on Chongming Island. On average, 26 % of the stem and root tissues sampled were colonized by a Fusarium species. Of 196 isolates recovered from S. alterniflora, 44 % were F. incarnatum and 41 % were F. palustre. Species determinations were confirmed for a subset of these isolates using a phylogenetic analysis of partial sequences of the translation elongation factor (tef) gene. The observation that Fusarium incidence on S. alterniflora was much greater on Chongming Island than in the USA survey raises the question as to why S. alterniflora on Chongming Island is showing no dieback. Other factors, such as predator release, enhanced nutritional, edaphic and/or other unidentified environmental constraints on Chongming Island may afford S. alterniflora protection from dieback.  相似文献   

4.
Regional, ecosystem-level conservation projects with significant vegetation management components require planning, coordination, and responsive management strategies to minimize negative impacts and maximize ecological benefits over time. The California State Coastal Conservancy’s Invasive Spartina Project (ISP) offers an example of a complex, ecosystem-scale weed eradication effort guided by regional conservation goals. We review the management framework developed by the ISP, describe decision thresholds used for site-specific management transitions over the project’s 15 years, and present strategies being used to address major challenges to project completion. These strategies include developing genetics and weed mapping approaches to aid with identification of hybrids between the introduced Spartina alterniflora and the native Spartina foliosa. The ISP also developed a tidal marsh restoration project to enhance habitat for an endangered bird, the California Ridgway’s rail (Rallus obsoletus obsoletus), that uses tall, dense forms of hybrid Spartina as high tide refugia and nesting substrate. By 2014, the ISP had installed over 300,000 native plants and recorded a greater than 96 % estuary-wide reduction in hybrid Spartina (from 323 ha to 12 net ha) despite treatment restrictions imposed at 11 sites since 2011 to protect the rail. Approximately 80 % of the remaining hybrid Spartina occurs in areas currently restricted from treatment, delaying project completion. The successes and setbacks of the ISP illustrate the complexities of achieving ecosystem-level conservation goals dependent on large-scale vegetation management.  相似文献   

5.
Maritime Spartina spp. are powerful ecosystem engineers that accrete sediment, define shorelines, create habitat, and generate prodigious primary productivity both where they are native and where they have been introduced. Invasive Spartina spp. can compete vigorously with native species, diminish biota, change hydrology, and confound human uses of estuaries. Herbicides have been effective in controlling several Spartina spp. invasions. One of the most recent successes is a 15-year campaign that has virtually eliminated S. alterniflora from the large, century-old invasion in Willapa Bay, WA, USA. Hybridization between native and introduced Spartina spp. has created new species and hybrid swarms. In San Francisco Bay, CA, USA (SF Bay) a complicated situation continues to play out from the purposeful introduction of S. alterniflora, which hybridized with native California cordgrass, S. foliosa. The hybrids spread rapidly and led to a long list of environmental problems, which led to an herbicide program that was successful in greatly diminishing the hybrid and saving the open mud habitat of migratory shorebirds. However, it was belatedly realized that the non-migratory, endangered Ridgeway’s rail uses the tall, dense hybrid Spartina as a surrogate for habitat that was lost during the twentieth century to urbanization and agricultural transformation of marshes around SF Bay. This realization has made difficult the simultaneous management of hybrid Spartina, wildlife conservation, and marsh restoration in San Francisco Bay. Restoration of native vegetation could satisfy the multiple goals of preserving open mud and conserving Ridgeway’s rail.  相似文献   

6.
Spartina alterniflora was recorded in 2004 in the Great Brak Estuary, a system along the southern coast of South Africa that closes to the sea. This is alarming as this is a species with a known history as an aggressive invasive plant which has now been found 8000 km from its nearest known location and furthermore it is spreading under atypical conditions of submergence. This first recorded population in Africa indicates the adaptive potential of this invasive grass which survives inundation and non-tidal conditions for months at a time. Spartina alterniflora spread from 2566 m2 in 2006 to a maximum area covered of 10,221 m2 in 2011. There was an increase in silt, sediment organic matter and a significant reduction in sediment redox potential at sites invaded by S. alterniflora. When the estuary closes to the sea the water level rises and S. alterniflora is flooded, limiting opportunities for mechanical and chemical control. Application of a glyphosate-based herbicide in 2012 showed that chemical control was more effective in reducing the stands than mechanical removal. The additional use of imazapyr in 2014 significantly reduced stem density and the proportion of live stems. Spread of this invasive plant to the intertidal marshes in adjacent estuaries is a potential biodiversity threat although, fortunately, this population does not seem to produce viable seed. There is also the concern that hybridization with the resident S. maritima may occur. Important research and management questions remain i.e. how quickly will the natural marsh re-establish following eradication and how can we prevent movement of the grass to other estuaries?  相似文献   

7.
Invasive plants affect soil food webs through various resource inputs including shoot litter, root litter and living root input. The net impact of invasive plants on soil biota has been recognized; however, the relative contributions of different resource input pathways have not been quantified. Through a 2 × 2 × 2 factorial field experiment, a pair of invasive and native plant species (Spartina alterniflora vs. Phragmites australis) was compared to determine the relative impacts of their living roots or shoots and root litter on soil microbial and nematode communities. Living root identity affected bacteria-to-fungi PLFA ratios, abundance of total nematodes, plant-feeding nematodes and omnivorous nematodes. Specifically, the plant-feeding nematodes were 627% less abundant when living roots of invasive S. alterniflora were present than those of native P. australis. Likewise, shoot and root biomass (within soil at 0–10 cm depth) of S. alterniflora was, respectively, 300 and 100% greater than those of P. australis. These findings support the enemy release hypothesis of plant invasion. Root litter identity affected other components of soil microbiota (that is, bacterial-feeding nematodes), which were 34% more abundant in the presence of root litter of P. australis than S. alterniflora. Overall, more variation associated with nematode community structure and function was explained by differences in living roots than root or shoot litter for this pair of plant species sharing a common habitat but contrasting invasion degrees. We conclude that belowground resource input is an important mechanism used by invasive plants to affect ecosystem structure and function.  相似文献   

8.
Plant invasions can alter the trophic interactions of invaded ecosystems because of phenological differences between native and invasive plants that may affect the population dynamics and diets of indigenous arthropod herbivores. This issue, however, has seldom been studied. We here report on how abundance and diet of a local tussock moth (Laelia coenosa) are affected by the invasive plant Spartina alterniflora in a Chinese salt marsh previously dominated by the moth’s native host plant, Phragmites australis. We monitored the population dynamics of L. coenosa from four types of hosts: (1) Phragmites in its monoculture, (2) Spartina in its monoculture, and either (3) Phragmites, or (4) Spartina in PhragmitesSpartina mixtures. Additionally, we tested the diet of L. coenosa from the mixtures with isotope analysis. We found that the larval densities of L. coenosa were similar on Spartina and Phragmites in their respective monocultures and mixtures in summer but were greater on Spartina than on Phragmites in autumn. Stable isotope analysis showed that Spartina was a food resource for L. coenosa. The change in the insect’s population dynamics associated with Spartina invasion might be caused by phenological differences between Spartina and Phragmites in that Spartina has a longer growing season than Phragmites. Our study indicates that the extended phenology of Spartina invasion has altered the abundance and diet of the indigenous herbivorous insect (L. coenosa) previously feeding on native Phragmites. We predict such alternation may increase the consuming pressure to native plants via apparent competition, and thereby may facilitate the further invasion of the exotic plants in the salt marsh.  相似文献   

9.
10.
Recent salt marsh and barrier island restoration efforts in the northern Gulf of Mexico have focused on optimizing self-sustaining attributes of restored marshes to provide maximum habitat value and storm protection to vulnerable coastal communities. Salt marshes in this region are dominated by Spartina alterniflora and Avicennia germinans, two species that are valued for their ability to stabilize soils in intertidal salt marshes. We conducted a controlled greenhouse study to investigate the influences of substrate type, nutrient level, and marsh elevation on the growth and biomass allocation of S. alterniflora and A. germinans, and the consequent effects on soil development and stability. S. alterniflora exhibited optimal growth and survival at the lowest elevation (? 15 cm below the water surface) and was sensitive to high soil salinities at higher elevations (+ 15 cm above the water surface). A. germinans performed best at intermediate elevations but was negatively affected by prolonged inundation at lower elevations. We found that although there was not a strong effect of substrate type on plant growth, the development of stressful conditions due to the use of suboptimal materials would likely be exacerbated by placing the soil at extreme elevations. Soil shear strength was significantly higher in experimental units containing either S. alterniflora or A. germinans compared to unvegetated soils, suggesting that plants effectively contribute to soil strength in newly placed soils of restored marshes. As marsh vegetation plays a critical role in stabilizing shorelines, salt marsh restoration efforts in the northern Gulf of Mexico and other storm impacted coasts should be designed at optimal elevations to facilitate the establishment and growth of key marsh species.  相似文献   

11.
Spread of smooth cordgrass (Spartina alterniflora) in China is an exceptional example of unanticipated outcomes arising from intentional introductions. It has been proposed that in China, management strategies used to establish S. alterniflora inadvertently promoted evolutionary outcomes that have contributed to other Spartina invasions. In this study, we assessed whether S. alterniflora in China exhibits genetic signatures of mechanisms known to promote invasion success, including large founding populations, evolved self-fertility, ‘superior source ecotypes’, and post-introduction admixture. This involved comparing microsatellite genotype and chloroplast haplotype variation among Chinese populations to other invasive S. alterniflora populations as well as native range populations, inclusive of samples from all reported source areas. We found distinct signatures of source population contributions to Chinese populations, as well as evidence of post-introduction admixture, and no evidence of limitations from a genetic bottleneck. Measures of inbreeding were well below what has been found in other non-native populations that have evolved self-fertility. Differences in genetic diversity among sites were similar to latitudinal patterns in the native range, but could be attributable to introduction history. Comparisons to other invasive populations indicate that a combination of common and idiosyncratic processes have contributed to the success of S. alterniflora in China and elsewhere, with intentional introductions promoting mechanisms that accelerate rates of spread and widespread invasion.  相似文献   

12.
The genome of Candida versatilis was sequenced to understand its characteristics in soy sauce fermentation. The genome size of C. versatilis was 9.7 Mb, the content of G + C was 39.74 %, scaffolds of N50 were 1,229,640 bp in length, containing 4711 gene. There were predicted 269 tRNA genes and 2201 proteins with clear function. Moreover, the genome information of C. versatilis was compared with another salt-tolerant yeast Zygosaccharomyces rouxii and the model organism Saccharomyces cerevisiae. C. versatilis and Z. rouxii genome size was close and both smaller than 12.1 for the Mb of S. cerevisiae. Using the OrthoMCL protein, three genomes were divided into 4663 groups. There were about 3326 homologous proteins in C. versatilis, Z. rouxii and S. cerevisiae.  相似文献   

13.
14.
Polyploidization has long been recognized as one of the most important driving forces of plant evolution. Aconitum subgenus Lycoctonum (Ranunculaceae) has a wide distribution range and well-known background of polyploidy, thereby providing a potentially valuable model to explore polyploid origin and evolutionary history. However, the phylogeny of subg. Lycoctonum has not yet been completely resolved. In the current study, 29 species including diploid, tetraploid and hexaploid species were sampled in subg. Lycoctonum. Using four cpDNA regions (ndhF-trnL, psbA-trnH, psbD-trnT and trnT-L) and two nrDNA regions (internal transcribed spacer, ITS, and external transcribed spacer, ETS), phylogenetic relationship was first reconstructed for the polyploid species within subg. Lycoctonum. In combination with nuclear diversification rate estimation, cpDNA haplotype network, ancestral area reconstruction as well as morphological and karyotypic evidence, potential origin and divergence time were further assessed among the polyploid species. Hybridization was inferred for A. angustius and A. finetianum was suggested to be the potential maternal progenitor, due to their close phylogenetic relationship, highly similar morphologies and overlapping distribution range. Local origin was inferred for tetraploids in the Hengduan Mountains (HDM) with eight groups of chromosomes of four homeologous, which diverged approximately 3.00 Ma in the same period of the orogeny of the HDM. The hexaploid A. apetalum was inferred to suffer from geographical isolation due to the formation of the Qinghai–Tibetan Plateau (QTP) and the HDM. Hybridization and heterogeneous habitats in the HDM were suggested to play an important role in the polyploidization in subg. Lycoctonum.  相似文献   

15.
Intercontinental introductions are widespread in the genus Spartina, with important ecological and evolutionary consequences. The native or introduced status of Spartina species is then critical with regard to biodiversity assessment, especially for vulnerable Mediterranean coastline ecosystems. Spartina versicolor was first recorded in southern France in 1849, then successively in various places on the European and North-African Mediterranean and Atlantic coasts. This species is considered to be either a European native or an invasive species introduced from North America which has a high morphological similarity to the Atlantic American species Spartina patens. We performed extensive sampling of S. versicolor in Europe and North Africa (from natural populations and herbarium collections) and compared these samples to other European and American Spartina species (including S. patens). Chromosome counts were reported for the first time and revealed that S. versicolor is tetraploid (2n = 4x = 40). Phylogenetic analyses based on chloroplast and nuclear ribosomal DNA sequences did not reveal any molecular variation within S. versicolor. In this species, a single haplotype, that is identical to one haplotype of S. patens, was found in the four chloroplast and the nuclear ribosomal ITS regions investigated. In addition, simple sequence repeat markers were used and revealed a low level of genetic diversity within S. versicolor, suggesting that the introduction of S. versicolor occurred from a narrow genetic pool of S. patens from North America.  相似文献   

16.
The grass shrimp Palaemonetes pugio, a species common to Spartina alterniflora-dominated marshes, may be sensitive to the invasion of the common reed Phragmites australis in northeastern US salt marshes. We examined two questions: (1) Do grass shrimp have a preference for the native plant over the non-native plant? (2) Are grass shrimp more effective foragers on P. australis? We tested the first hypothesis by comparing the amount of time shrimp spend in physical contact with the plant types over a 1-h period. Shrimp were observed under different arrangements of vegetation to control for differences in conspicuous structural features. Additionally, the amount of time shrimp spent foraging on S. alterniflora and P. australis shoots was compared to determine if shrimp graze more often on S. alterniflora. Shrimp spent significantly more time in contact with S. alterniflora only when plant types were grouped at opposite ends of aquaria, but did not exhibit a foraging preference for this plant type. To address our second question, we investigated the effects of shrimp foraging on stem epifauna, an assemblage of semi-aquatic invertebrates associated with macrophyte shoots. Previous research showed that P. australis supports a lower density of stem-dwelling epifauna relative to S. alterniflora. We hypothesized that the primary grazer of this community, P. pugio, can forage on P. australis stems more effectively due to structural differences between the two plants, causing the lower abundance of epifauna through top-down effects. We exposed individual shoots inhabited by epifauna to shrimp and compared faunal densities on exposed shoots to densities on control shoots after 18 h. The reduction of epifauna by predation was proportional on the two plant types. Therefore, top-down effects can be ruled out as an explanation for the patchy distribution of epifauna observed in P. australis–S. alterniflora marshes.  相似文献   

17.
Prairie cordgrass (Spartina pectinata Link) is a polyploid Chloridoid grass with tetraploid (2n = 40), hexaploid (2n = 60), and octoploid (2n = 80) cytotypes and is a potential dedicated energy crop with promising yields in marginal environments. Efforts to breed prairie cordgrass are currently hampered by the lack of a linkage map, the lack of a Chloridoid reference genome, and the lack of information on inheritance patterns (disomic versus polysomic). Genotyping-by-sequencing (GBS) was applied to a population of 85 progenies from a reciprocal cross of heterozygous tetraploid parents. A total of 26,418 SNPs were discovered, with a distribution of allele frequencies suggesting disomic inheritance. A filtered set of 3034 single-dose, high-coverage SNPs was used for pseudo-testcross mapping with 63 progenies, resulting in two parental maps of 20 linkage groups containing 1522 and 1016 SNPs and a nearly 1:1 ratio of coupling to repulsion phase linkages, again suggesting disomic inheritance. Genomic contigs from tef, another Chloridoid grass, were used as a bridge to associate genetic markers in prairie cordgrass with unique positions in the sorghum genome, providing a glimpse into synteny between Chloridoids and other grasses. GBS enabled rapid generation of a linkage map that will aid in future breeding and genomics efforts in prairie cordgrass.  相似文献   

18.

Background

The genus Spartina exhibits extensive hybridization and includes classic examples of recent speciation by allopolyploidy. In the UK there are two hexaploid species, S. maritima and S. alterniflora, as well as the homoploid hybrid S. × townsendii (2n = 60) and a derived allododecaploid S. anglica (2n = 120, 122, 124); the latter two are considered to have originated in Hythe, southern England at the end of the 19th century.

Methods

Genomic in situ hybridization (GISH) and flow cytometry were used to characterize the genomic composition and distribution of these species and their ploidy levels at Eling Marchwood and Hythe, both near Southampton, southern England.

Key Results

GISH identified approx. 60 chromosomes each of S. maritima and S. alterniflora origin in S. anglica and 62 chromosomes from S. alterniflora and 30 chromosomes from S. maritima in a nonaploid individual from Eling Marchwood, UK. GISH and flow cytometry also revealed that most (94 %) individuals examined at Hythe were hexaploid (the remaining two individuals (6 %) were dodedcaploid; n = 34), whereas hexaploid (approx. 36 % of plants), nonaploid (approx. 27 %) and dodecaploid (approx. 36 %) individuals were found at Eling Marchwood (n = 22).

Conclusions

Nonaploid individuals indicate the potential for introgression between hexaploid and dodecaploid species, complicating the picture of polyploid-induced speciation within the genus. Despite the aggressive ecological habit of S. anglica, it has not out-competed S. × townsendii at Hythe (homoploid hybrids at a frequency of 94 %, n = 34), despite >100 years of coexistence. The success of GISH opens up the potential for future studies of polyploid-induced genome restructuring in this genus.  相似文献   

19.
Mangroves are essential for maintaining local biodiversity and human well-being, and mangrove structure and functioning depend on the macrobenthos. Although exotic cordgrass, Spartina alterniflora, is an increasing threat to the mangrove wetlands (including the associated unvegetated shoals) of China, its effects on the macrobenthic fauna in such wetlands is poorly understood. The macrobenthic faunal communities were compared in (1) an Avicennia marina monoculture vs. an S. alterniflora-invaded A. marina stand (a mixture of A. marina and S. alterniflora) and in (2) an unvegetated shoal vs. an S. alterniflora-invaded shoal that had rapidly become an S. alterniflora monoculture in Zhanjiang, China. S. alterniflora invasion significantly increased plant density regardless of invaded habitat but significantly increased the contents of total carbon, organic matter, and total sulfur in the sediment only in the unvegetated shoal. The presence of S. alterniflora had little influence on indices of the macrobenthic faunal community in the A. marina monoculture, but significantly decreased the density and biomass of macrobenthic faunal community in the unvegetated shoal. These results indicate that the effects of S. alterniflora on the macrobenthic faunal community depend on which type of mangrove habitat is invaded. The composition of the macrobenthic faunal community was more similar between the invaded and non-invaded A. marina stand than between the invaded and non-invaded unvegetated shoal. Overall, the differences in the macrobenthic faunal community between invaded and non-invaded habitats were associated with increases in the sediment organic matter content and plant density.  相似文献   

20.
Variability of 31 somatic hybrids of Solanum pinnatisectum Dun. with Solanum tuberosum L. for leaf morphology, plant vigor, resistance to Phytophthora infestans, ploidy level, and cytoplasm type was evaluated in vitro. The composition of these somatic hybrids was as follows: [S. pinnatisectum Dun. (2n = 2x = 24; cytoplasmic type Wγ) + S. tuberosum L. (2n = 4x = 48; cytoplasmic type Tß)]. Based on leaf morphology and plant growth vigor, plants were divided into three groups, including plants close to tbr parent with unlobed leaves, small plants with scarcely dissected leaves, and vigorous plants with asymmetrically and pinnately lobed leaves. Nine of the somatic hybrids were found to be highly resistant to P. infestans. Somatic hybrids were either tetraploid or hexaploid, with hexaploids being predominant. The cytoplasm of somatic hybrids was either Tßγ or Wßγ, with Tßγ being more common. Overall, in contrast to leaf morphology and growth vigor, level of resistance to P. infestans was not related to either ploidy level or type of cytoplasm. These findings demonstrate that early in vitro selection of promising hybrids can be useful in breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号