首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maize, in rotation with soybean, forms the largest continuous ecosystem in temperate North America, therefore changes to the biosphere‐atmosphere exchange of water vapor and energy of these crops are likely to have an impact on the Midwestern US climate and hydrological cycle. As a C4 crop, maize photosynthesis is already CO2‐saturated at current CO2 concentrations ([CO2]) and the primary response of maize to elevated [CO2] is decreased stomatal conductance (gs). If maize photosynthesis is not stimulated in elevated [CO2], then reduced gs is not offset by greater canopy leaf area, which could potentially result in a greater ET reduction relative to that previously reported in soybean, a C3 species. The objective of this study is to quantify the impact of elevated [CO2] on canopy energy and water fluxes of maize (Zea mays). Maize was grown under ambient and elevated [CO2] (550 μmol mol?1 during 2004 and 2006 and 585 μmol mol?1 during 2010) using Free Air Concentration Enrichment (FACE) technology at the SoyFACE facility in Urbana, Illinois. Maize ET was determined using a residual energy balance approach based on measurements of sensible (H) and soil heat fluxes, and net radiation. Relative to control, elevated [CO2] decreased maize ET (7–11%; P < 0.01) along with lesser soil moisture depletion, while H increased (25–30 W m?2; P < 0.01) along with higher canopy temperature (0.5–0.6 °C). This reduction in maize ET in elevated [CO2] is approximately half that previously reported for soybean. A partitioning analysis showed that transpiration contributed less to total ET for maize compared to soybean, indicating a smaller role of stomata in dictating the ET response to elevated [CO2]. Nonetheless, both maize and soybean had significantly decreased ET and increased H, highlighting the critical role of elevated [CO2] in altering future hydrology and climate of the region that is extensively cropped with these species.  相似文献   

2.
刘燕飞  张羽  赖金美  林威  黄幸然  方熊  易志刚 《生态学报》2020,40(16):5729-5738
羰基硫(COS)和CO_2化学结构相似,且植物对COS和CO_2具有共吸收特性,因此可利用COS作为示踪物来估算生态系统总初级生产力,而不同植物吸收COS和CO_2对环境因子变化的响应差异较大。以南亚热带典型树种马尾松(Pinus massoniana)和杉木(Cunninghamia lanceolata)为研究对象,设置2个氮水平及3个土壤水分梯度处理。采取顶空套袋法采集气体样品,用预浓缩—气质联用仪分析样品COS浓度,同时测量植物光合参数。结果表明:马尾松和杉木吸收COS,吸收速率均值分别为39.58—127.27 pmol m~(-2) s~(-1)和0.81—66.92 pmol m~(-2) s~(-1)。整体而言,施氮可促进植物吸收COS,但除施氮对马尾松COS通量有显著影响外(P0.05),施氮、土壤水分和两者交互作用对马尾松和杉木的COS和CO_2通量及其比值均无显著性影响。施氮情况下,高土壤水分处理促进马尾松COS吸收而低土壤水分处理促进杉木COS吸收。中等土壤水分和高土壤水分条件下马尾松和杉木COS通量与气孔导度呈正相关关系。线性拟合结果表明,植物COS通量(F_(COS))与CO_2通量(F_(CO_2))呈极显著正相关(P0.01),马尾松和杉木F_(COS)/F_(CO_2)值分别为1.48×10~(-6)和1.01×10~(-6)。中等土壤水分条件均可提高马尾松F_(COS)/F_(CO_2)比值,而低土壤水分条件下施氮增加杉木F_(COS)/F_(CO_2)比值,高土壤水分条件下施氮降低杉木F_(COS)/F_(CO_2)比值。低土壤水分和高土壤水分使马尾松蒸汽压亏缺增大,促使气孔导度减小从而降低净光合速率。低土壤水分和高土壤水分下施氮导致杉木气孔导度增加从而增强净光合速率。研究结果不仅对进一步了解区域氮沉降和降水对树木COS通量及F_(COS)/F_(CO_2)的影响有重要意义,而且可为模型估算总初级生产力提供区域性数据支持。  相似文献   

3.
Terrestrial ecosystems and the carbon cycle   总被引:43,自引:0,他引:43  
The terrestrial biosphere plays an important role in the global carbon cycle. In the 1994 Intergovernmental Panel Assessment on Climate Change (IPCC), an effort was made to improve the quantification of terrestrial exchanges and potential feedbacks from climate, changing CO2, and other factors; this paper presents the key results from that assessment, together with expanded discussion. The carbon cycle is the fluxes of carbon among four main reservoirs: fossil carbon, the atmosphere, the oceans, and the terrestrial biosphere. Emissions of fossil carbon during the 1980s averaged 5.5 Gt y?1. During the same period, the atmosphere gained 3.2 Gt C y?1 and the oceans are believed to have absorbed 2.0 Gt C y?1. The regrowing forests of the Northern Hemisphere may have absorbed 0.5 Gt C y?1 during this period. Meanwhile, tropical deforestation is thought to have released an average 1.6 Gt C y?1 over the 1980s. While the fluxes among the four pools should balance, the average 198Ds values lead to a ‘missing sink’ of 1.4 Gt C y?1 Several processes, including forest regrowth, CO2 fertilization of plant growth (c. 1.0 Gt C y?1), N deposition (c. 0.6 Gt C y?1), and their interactions, may account for the budget imbalance. However, it remains difficult to quantify the influences of these separate but interactive processes. Uncertainties in the individual numbers are large, and are themselves poorly quantified. This paper presents detail beyond the IPCC assessment on procedures used to approximate the flux uncertainties. Lack of knowledge about positive and negative feedbacks from the biosphere is a major limiting factor to credible simulations of future atmospheric CO2 concentrations. Analyses of the atmospheric gradients of CO2 and 13 CO2 concentrations provide increasingly strong evidence for terrestrial sinks, potentially distributed between Northern Hemisphere and tropical regions, but conclusive detection in direct biomass and soil measurements remains elusive. Current regional-to-global terrestrial ecosystem models with coupled carbon and nitrogen cycles represent the effects of CO2 fertilization differently, but all suggest longterm responses to CO2 that are substantially smaller than potential leaf- or laboratory whole plant-level responses. Analyses of emissions and biogeochemical fluxes consistent with eventual stabilization of atmospheric CO2 concentrations are sensitive to the way in which biospheric feedbacks are modeled by c. 15%. Decisions about land use can have effects of 100s of Gt C over the next few centuries, with similarly significant effects on the atmosphere. Critical areas for future research are continued measurements and analyses of atmospheric data (CO2 and 13CO2) to serve as large-scale constraints, process studies of the scaling from the photosynthetic response to CO2 to whole-ecosystem carbon storage, and rigorous quantification of the effects of changing land use on carbon storage.  相似文献   

4.
Net grassland carbon flux over a subambient to superambient CO2 gradient   总被引:2,自引:0,他引:2  
Increasing atmospheric CO2 concentrations may have a profound effect on the structure and function of plant communities. A previously grazed, central Texas grassland was exposed to a 200‐µmol mol?1 to 550 µmol mol?1 CO2 gradient from March to mid‐December in 1998 and 1999 using two, 60‐m long, polyethylene‐ covered chambers built directly onto the site. One chamber was operated at subambient CO2 concentrations (200–360 µmol mol?1 daytime) and the other was regulated at superambient concentrations (360–550 µmol mol?1). Continuous CO2 gradients were maintained in each chamber by photosynthesis during the day and respiration at night. Net ecosystem CO2 flux and end‐of‐year biomass were measured in each of 10, 5‐m long sections in each chamber. Net CO2 fluxes were maximal in late May (c. day 150) in 1998 and in late August in 1999 (c. day 240). In both years, fluxes were near zero and similar in both chambers at the beginning and end of the growing season. Average daily CO2 flux in 1998 was 13 g CO2 m?2 day?1 in the subambient chamber and 20 g CO2 m?2 day?1 in the superambient chamber; comparable averages were 15 and 26 g CO2 m?2 day?1 in 1999. Flux was positively and linearly correlated with end‐of‐year above‐ground biomass but flux was not linearly correlated with CO2 concentration; a finding likely to be explained by inherent differences in vegetation. Because C3 plants were the dominant functional group, we adjusted average daily flux in each section by dividing the flux by the average percentage C3 cover. Adjusted fluxes were better correlated with CO2 concentration, although scatter remained. Our results indicate that after accounting for vegetation differences, CO2 flux increased linearly with CO2 concentration. This trend was more evident at subambient than superambient CO2 concentrations.  相似文献   

5.
This study used an environmentally controlled plant growth facility, EcoCELLs, to measure canopy gas exchanges directly and to examine the effects of elevated [CO2] on canopy radiation‐ and water‐use efficiencies. Sunflowers (Helianthus annus var. Mammoth) were grown at ambient (399 μmol mol?1) and elevated [CO2] (746 μmol mol?1) for 53 days in EcoCELLs. Whole canopy carbon‐ and water‐fluxes were measured continuously during the period of the experiment. The results indicated that elevated [CO2] enhanced daily total canopy carbon‐ and water‐fluxes by 53% and 11%, respectively, on a ground‐area basis, resulting in a 54% increase in radiation‐use efficiency (RUE) based on intercepted photosynthetic active radiation and a 26% increase in water‐use efficiency (WUE) by the end of the experiment. Canopy carbon‐ and water‐fluxes at both CO2 treatments varied with canopy development. They were small at 22 days after planting (DAP) and gradually increased to the maxima at 46 DAP. When canopy carbon‐ and water‐fluxes were expressed on a leaf‐area basis, no effect of CO2 was found for canopy water‐flux while elevated [CO2] still enhanced canopy carbon‐flux by 29%, on average. Night‐time canopy carbon‐flux was 32% higher at elevated than at ambient [CO2]. In addition, RUE and WUE displayed strong diurnal variations, high at noon and low in the morning or afternoon for WUE but opposite for RUE. This study provided direct evidence that plant canopy may consume more, instead of less, water but utilize both water and radiation more efficiently at elevated than at ambient [CO2], at least during the exponential growth period as illustrated in this experiment.  相似文献   

6.
Biogenic volatile organic compounds (BVOCs) are major precursors of both ozone and secondary organic aerosols (SOA) in the troposphere and represent a non‐negligible portion of the carbon fixed by primary producers, but long‐term ecosystem‐scale measurements of their exchanges with the atmosphere are lacking. In this study, the fluxes of 46 ions corresponding to 36 BVOCs were continuously monitored along with the exchanges of mass (carbon dioxide and water vapor) and energy (sensible and latent heat) for an entire year in a poplar (Populus) short‐rotation crop (SRC), using the eddy covariance methodology. BVOC emissions mainly consisted of isoprene, acetic acid, and methanol. Total net BVOC emissions were 19.20 kg C ha?1 yr?1, which represented 0.63% of the net ecosystem exchange (NEE), resulting from ?23.59 Mg C ha?1 yr?1 fixed as CO2 and 20.55 Mg C ha?1 yr?1 respired as CO2 from the ecosystem. Isoprene emissions represented 0.293% of NEE, being emitted at a ratio of 1 : 1709 mol isoprene per mol of CO2 fixed. Based on annual ecosystem‐scale measurements, this study quantified for the first time that BVOC carbon emissions were lower than previously estimated in other studies (0.5–2% of NEE) on poplar trees. Furthermore, the seasonal and diurnal emission patterns of isoprene, methanol, and other BVOCs provided a better interpretation of the relationships with ecosystem CO2 and water vapor fluxes, with air temperature, vapor pressure deficit, and photosynthetic photon flux density.  相似文献   

7.
In this paper we describe measurements and modeling of 18O in CO2 and H2O pools and fluxes at a tallgrass prairie site in Oklahoma. We present measurements of the δ18O value of leaf water, depth‐resolved soil water, atmospheric water vapor, and Keeling plot δ18O intercepts for net soil‐surface CO2 and ecosystem CO2 and H2O fluxes during three periods of the 2000 growing season. Daytime discrimination against C18OO, as calculated from measured above‐canopy CO2 and δ18O gradients, is also presented. To interpret the isotope measurements, we applied an integrated land‐surface and isotope model (ISOLSM) that simulates ecosystem H218O and C18OO stocks and fluxes. ISOLSM accurately predicted the measured isotopic composition of ecosystem water pools and the δ18O value of net ecosystem CO2 and H2O fluxes. Simulations indicate that incomplete equilibration between CO2 and H2O within C4 plant leaves can have a substantial impact on ecosystem discrimination. Diurnal variations in the δ18O value of above‐canopy vapor had a small impact on the predicted δ18O value of ecosystem water pools, although sustained differences had a large impact. Diurnal variations in the δ18O value of above‐canopy CO2 substantially affected the predicted ecosystem discrimination. Leaves dominate the ecosystem 18O‐isoflux in CO2 during the growing season, while the soil contribution is relatively small and less variable. However, interpreting daytime measurements of ecosystem C18OO fluxes requires accurate predictions of both soil and leaf 18O‐isofluxes.  相似文献   

8.
The oxygen stable isotope composition (δ18O) of CO2 is a valuable tool for studying the gas exchange between terrestrial ecosystems and the atmosphere. In the soil, it records the isotopic signal of water pools subjected to precipitation and evaporation events. The δ18O of the surface soil net CO2 flux is dominated by the physical processes of diffusion of CO2 into and out of the soil and the chemical reactions during CO2–H2O equilibration. Catalytic reactions by the enzyme carbonic anhydrase, reducing CO2 hydration times, have been proposed recently to explain field observations of the δ18O signatures of net soil CO2 fluxes. How important these catalytic reactions are for accurately predicting large‐scale biosphere fluxes and partitioning net ecosystem fluxes is currently uncertain because of the lack of field data. In this study, we determined the δ18O signatures of net soil CO2 fluxes from soil chamber measurements in a Mediterranean forest. Over the 3 days of measurements, the observed δ18O signatures of net soil CO2 fluxes became progressively enriched with a well‐characterized diurnal cycle. Model simulations indicated that the δ18O signatures recorded the interplay of two effects: (1) progressive enrichment of water in the upper soil by evaporation, and (2) catalytic acceleration of the isotopic exchange between CO2 and soil water, amplifying the contributions of ‘atmospheric invasion’ to net signatures. We conclude that there is a need for better understanding of the role of enzymatic reactions, and hence soil biology, in determining the contributions of soil fluxes to oxygen isotope signals in atmospheric CO2.  相似文献   

9.
We present a novel approach to estimating the transpiration flux and gross primary productivity (GPP) from Normalized Difference Vegetation Index, leaf functional types, and readily available climate data. We use this approach to explore the impact of variations in the concentration of carbon dioxide in the atmosphere ([CO2]) and consequent predicted changes in vegetation cover, on the transpiration flux and GPP. There was a near 1 : 1 relationship between GPP estimated with this transpiration flux approach and that estimated using a radiation‐use efficiency (RUE) approach. Model estimates are presented for the Australian continent under three vegetation–[CO2] scenarios: the present vegetation and hypothetical ‘natural’ vegetation cover with atmospheric CO2 concentration ([CO2]) of 350 μmol mol?1 (pveg350 and nveg350), and for the ‘natural’ vegetation with [CO2] 280 μmol mol?1 (nveg280). Estimated continental GPP is 6.5, 6.3 and 4.3 Gt C yr?1 for pveg350, nveg350 and nveg280, respectively. The corresponding transpiration fluxes are 232, 224 and 190 mm H2O yr?1. The contribution of the raingreen and evergreen components of the canopy to these fluxes are also estimated.  相似文献   

10.
In order to separate the net effect of growth at elevated [CO2] on stomatal conductance (gs) into direct and acclimatory responses, mid‐day values of gs were measured for plants grown in field plots in open‐topped chambers at the current ambient [CO2], which averaged 350 μmol mol?1 in the daytime, and at ambient + 350 μmol mol?1[CO2] for winter wheat, winter barley, potato and sorghum. The acclimatory response was determined by comparing gs measured at 700 μmol mol?1[CO2] for plants grown at the two [CO2]. The direct effect of increasing [CO2] from 350 to 700 μmol mol?1 was determined for plants grown at the lower concentration. Photosynthetic rates were measured concurrently with gs. For all species, growth at the higher [CO2] significantly reduced gs measured at 700 μmol mol?1[CO2]. The reduction in gs caused by growth at the higher [CO2] was larger for all species on days with low leaf to air water vapour pressure difference for a given temperature, which coincided with highest conductances and also the smallest direct effects of increased [CO2] on conductance. For barley, there was no other evidence for stomatal acclimation, despite consistent down‐regulation of photosynthetic rate in plants grown at the higher [CO2]. In wheat and potato, in addition to the vapour pressure difference interaction, the magnitude of stomatal acclimation varied directly in proportion to the magnitude of down‐regulation of photosynthetic rate through the season. In sorghum, gs consistently exhibited acclimation, but there was no down‐regulation of photosynthetic rate. In none of the species except barley was the direct effect the larger component of the net reduction in gs when averaged over measurement dates. The net effect of growth at elevated [CO2] on mid‐day gs resulted from unique combinations of direct and acclimatory responses in the various species.  相似文献   

11.
The potential impact of an increase in methane emissions from natural wetlands on climate change models could be very large. We report a profound increase in methane emissions from cores of mire peat and vegetation as a direct result of increasing the CO2 concentration from 355 to 550 μol mol?1 (a 60% increase). Increased CH4 fluxes were observed throughout the four month period of study. Seasonal variation in CH4 flux, consistent with that seen in the field, was observed under both ambient and elevated CO2. Under ambient CO2, methane fluxes rose from 0.02 μol m-2 s?1 in May to 0.11 μol m?2 s?3 in July before declining again in August. Under elevated CO2 methane fluxes were at least 100% greater throughout the experiment, rising from 0.05 μol m-2 s?1 in May to a peak of 0.27 μol m?2 s?1 in July. The stimulation of CO4 emissions was accompanied by a 100% increase in rates of photosynthesis from 4.6 (± 0.3) under ambient CO2 to 9.3 (± 0.7) μol m?2 s?1. Root and shoot biomass were unaffected.  相似文献   

12.
Above forest canopies, eddy covariance (EC) measurements of mass (CO2, H2O vapor) and energy exchange, assumed to represent ecosystem fluxes, are commonly made at one point in the roughness sublayer (RSL). A spatial variability experiment, in which EC measurements were made from six towers within the RSL in a uniform pine plantation, quantified large and dynamic spatial variation in fluxes. The spatial coefficient of variation (CV) of the scalar fluxes decreased with increasing integration time, stabilizing at a minimum that was independent of further lengthening the averaging period (hereafter a ‘stable minimum’). For all three fluxes, the stable minimum (CV=9–11%) was reached at averaging times (τp) of 6–7 h during daytime, but higher stable minima (CV=46–158%) were reached at longer τp (>12 h) during nighttime. To the extent that decreasing CV of EC fluxes reflects reduction in micrometeorological sampling errors, half of the observed variability at τp=30 min is attributed to sampling errors. The remaining half (indicated by the stable minimum CV) is attributed to underlying variability in ecosystem structural properties, as determined by leaf area index, and perhaps associated ecosystem activity attributes. We further assessed the spatial variability estimates in the context of uncertainty in annual net ecosystem exchange (NEE). First, we adjusted annual NEE values obtained at our long‐term observation tower to account for the difference between this tower and the mean of all towers from this experiment; this increased NEE by up to 55 g C m?2 yr?1. Second, we combined uncertainty from gap filling and instrument error with uncertainty because of spatial variability, producing an estimate of variability in annual NEE ranging from 79 to 127 g C m?2 yr?1. This analysis demonstrated that even in such a uniform pine plantation, in some years spatial variability can contribute ~50% of the uncertainty in annual NEE estimates.  相似文献   

13.
Plant carbon‐use‐efficiency (CUE), a key parameter in carbon cycle and plant growth models, quantifies the fraction of fixed carbon that is converted into net primary production rather than respired. CUE has not been directly measured, partly because of the difficulty of measuring respiration in light. Here, we explore if CUE is affected by atmospheric CO2. Sunflower stands were grown at low (200 μmol mol?1) or high CO2 (1000 μmol mol?1) in controlled environment mesocosms. CUE of stands was measured by dynamic stand‐scale 13C labelling and partitioning of photosynthesis and respiration. At the same plant age, growth at high CO2 (compared with low CO2) led to 91% higher rates of apparent photosynthesis, 97% higher respiration in the dark, yet 143% higher respiration in light. Thus, CUE was significantly lower at high (0.65) than at low CO2 (0.71). Compartmental analysis of isotopic tracer kinetics demonstrated a greater commitment of carbon reserves in stand‐scale respiratory metabolism at high CO2. Two main processes contributed to the reduction of CUE at high CO2: a reduced inhibition of leaf respiration by light and a diminished leaf mass ratio. This work highlights the relevance of measuring respiration in light and assessment of the CUE response to environment conditions.  相似文献   

14.
Branches of 22-year-old loblolly pine (Pinus taeda, L.) trees growing in a plantation were exposed to ambient CO2, ambient + 165 μmol mol?1 CO2 or ambient + 330 μmol mol?1 CO2 concentrations in combination with ambient or ambient + 2°C air temperatures for 3 years. Field measurements in the third year indicated that net carbon assimilation was enhanced in the elevated CO2 treatments in all seasons. On the basis of A/Ci, curves, there was no indication of photosynthetic down-regulation. Branch growth and leaf area also increased significantly in the elevated CO2 treatments. The imposed 2°C increase in air temperature only had slight effects on net assimilation and growth. Compared with the ambient CO2 treatment, rates of net assimilation were ~1·6 times greater in the ambient + 165 μmol mol?1 CO2 treatment and 2·2 times greater in the ambient + 330 μmol mol?1 CO2 treatment. These ratios did not change appreciably in measurements made in all four seasons even though mean ambient air temperatures during the measurement periods ranged from 12·6 to 28·2°C. This indicated that the effect of elevated CO2 concentrations on net assimilation under field conditions was primarily additive. The results also indicated that the effect of elevated CO2 (+ 165 or + 330 μmol mol?1) was much greater than the effect of a 2°C increase in air temperature on net assimilation and growth in this species.  相似文献   

15.
The study of in situ gas explosion to lyse the triglyceride‐rich cells involves the solubilization of gas (e.g., carbon dioxide, CO2) in lipid‐rich cells under pressure followed by a rapid decompression, which allows the gas inside the cell to rapidly expand and rupture the cell from inside out. The aim of this study was to perform the cell disruption using pressurized CO2 as well as to determine the solubility of CO2 in Rhodotorula glutinis cell suspension, sugar broth media, and spent media. Cell disruption of R. glutinis was performed at two pressures of 2,000 and 3,500 kPa, respectively, at 295.2 K, and it was found from both scanning electron microscopy (SEM) and plate count that a substantial amount of R. glutinis was disrupted due to the pressurized CO2. We also found a considerable portion of lipid present in the aqueous phase after the disruption at P = 3,500 kPa compared to control (no pressure) and P = 2,000 kPa, which implied that more intracellular lipid was released due to the pressurized CO2. Solubility of CO2 in R. glutinis cell suspension was found to be higher than the solubility of CO2 in both sugar broth media and spent media. Experimental solubility was correlated using the extended Henry's law, which showed a good agreement with the experimental data. Enthalpy and entropy of dissolution of CO2 were found to be ?14.22 kJ mol?1 and 48.10 kJ mol?1 K?1, 9.64 kJ mol?1 and 32.52 kJ mol?1 K?1, and 7.50 kJ mol?1 and 25.22 kJ mol?1 K?1 in R. glutinis, spent media, and sugar broth media, respectively. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:737–748, 2017  相似文献   

16.
Current quantification of climate warming mitigation potential (CWMP) of biomass‐derived energy has focused primarily on its biogeochemical effects. This study used site‐level observations of carbon, water, and energy fluxes of biofuel crops to parameterize and evaluate the community land model (CLM) and estimate CO2 fluxes, surface energy balance, soil carbon dynamics of corn (Zea mays), switchgrass (Panicum virgatum), and miscanthus (Miscanthus × giganteus) ecosystems across the conterminous United States considering different agricultural management practices and land‐use scenarios. We find that neglecting biophysical effects underestimates the CWMP of transitioning from croplands and marginal lands to energy crops. Biogeochemical effects alone result in changes in carbon storage of ?1.9, 49.1, and 69.3 g C m?2 y?1 compared to 20.5, 78.5, and 96.2 g C m?2 y?1 when considering both biophysical and biogeochemical effects for corn, switchgrass, and miscanthus, respectively. The biophysical contribution to CWMP is dominated by changes in latent heat fluxes. Using the model to optimize growth conditions through fertilization and irrigation increases the CWMP further to 79.6, 98.3, and 118.8 g C m?2 y?1, respectively, representing the upper threshold for CWMP. Results also show that the CWMP over marginal lands is lower than that over croplands. This study highlights that neglecting the biophysical effects of altered surface energy and water balance underestimates the CWMP of transitioning to bioenergy crops at regional scales.  相似文献   

17.
Tropical peatlands are vital ecosystems that play an important role in global carbon storage and cycles. Current estimates of greenhouse gases from these peatlands are uncertain as emissions vary with environmental conditions. This study provides the first comprehensive analysis of managed and natural tropical peatland GHG fluxes: heterotrophic (i.e. soil respiration without roots), total CO2 respiration rates, CH4 and N2O fluxes. The study documents studies that measure GHG fluxes from the soil (n = 372) from various land uses, groundwater levels and environmental conditions. We found that total soil respiration was larger in managed peat ecosystems (median = 52.3 Mg CO2 ha?1 year?1) than in natural forest (median = 35.9 Mg CO2 ha?1 year?1). Groundwater level had a stronger effect on soil CO2 emission than land use. Every 100 mm drop of groundwater level caused an increase of 5.1 and 3.7 Mg CO2 ha?1 year?1 for plantation and cropping land use, respectively. Where groundwater is deep (≥0.5 m), heterotrophic respiration constituted 84% of the total emissions. N2O emissions were significantly larger at deeper groundwater levels, where every drop in 100 mm of groundwater level resulted in an exponential emission increase (exp(0.7) kg N ha?1 year?1). Deeper groundwater levels induced high N2O emissions, which constitute about 15% of total GHG emissions. CH4 emissions were large where groundwater is shallow; however, they were substantially smaller than other GHG emissions. When compared to temperate and boreal peatland soils, tropical peatlands had, on average, double the CO2 emissions. Surprisingly, the CO2 emission rates in tropical peatlands were in the same magnitude as tropical mineral soils. This comprehensive analysis provides a great understanding of the GHG dynamics within tropical peat soils that can be used as a guide for policymakers to create suitable programmes to manage the sustainability of peatlands effectively.  相似文献   

18.
The focus of this study is the relationship between water table depth (WTD) and water vapor [evapotranspiration (ET)] and carbon dioxide [CO2; net ecosystem exchange (NEE)] fluxes in a fen in western Canada. We analyzed hydrological and eddy covariance measurements from four snow‐free periods (2003–2006) with contrasting meteorological conditions to establish the link between daily WTD and ET and gross ecosystem CO2 exchange (GEE) and ecosystem respiration (Reco; NEE=Reco?GEE), respectively: 2003 was warm and dry, 2004 was cool and wet, and 2005 and 2006 were both wet. In 2003, the water table (WT) was below the ground surface. In 2004, the WT rose above the ground surface, and in 2005 and 2006, the WT stayed well above the ground surface. There were no significant differences in total ET (~316 mm period?1), but total NEE was significantly different (2003: 8 g C m?2 period?1; 2004: ?139 g C m?2 period?1; 2005: ?163 g C m?2 period?1; 2006: ?195 g C m?2 period?1), mostly due to differences in total GEE (2003: 327 g C m?2 period?1; 2004: 513 g C m?2 period?1; 2005: 411 g C m?2 period?1; 2006: 556 g C m?2 period?1). Variation in ET is mostly explained by radiation (67%), and the contribution of WTD is only minor (33%). WTD controls the compensating contributions of different land surface components, resulting in similar total ET regardless of the hydrological conditions. WTD and temperature each contribute about half to the explained variation in GEE up to a threshold ponding depth, below which temperature alone is the key explanatory variable. WTD is only of minor importance for the variation in Reco, which is mainly controlled by temperature. Our study implies that future peatland modeling efforts explicitly consider topographic and hydrogeological influences on WTD.  相似文献   

19.
Wheat production will be impacted by increasing concentration of atmospheric CO2 [CO2], which is expected to rise from about 400 μmol mol?1 in 2015 to 550 μmol mol?1 by 2050. Changes to plant physiology and crop responses from elevated [CO2] (e[CO2]) are well documented for some environments, but field‐level responses in dryland Mediterranean environments with terminal drought and heat waves are scarce. The Australian Grains Free Air CO2 Enrichment facility was established to compare wheat (Triticum aestivum) growth and yield under ambient (~370 μmol?1 in 2007) and e[CO2] (550 μmol?1) in semi‐arid environments. Experiments were undertaken at two dryland sites (Horsham and Walpeup) across three years with two cultivars, two sowing times and two irrigation treatments. Mean yield stimulation due to e[CO2] was 24% at Horsham and 53% at Walpeup, with some treatment responses greater than 70%, depending on environment. Under supplemental irrigation, e[CO2] stimulated yields at Horsham by 37% compared to 13% under rainfed conditions, showing that water limited growth and yield response to e[CO2]. Heat wave effects were ameliorated under e[CO2] as shown by reductions of 31% and 54% in screenings and 10% and 12% larger kernels (Horsham and Walpeup). Greatest yield stimulations occurred in the e[CO2] late sowing and heat stressed treatments, when supplied with more water. There were no clear differences in cultivar response due to e[CO2]. Multiple regression showed that yield response to e[CO2] depended on temperatures and water availability before and after anthesis. Thus, timing of temperature and water and the crop's ability to translocate carbohydrates to the grain postanthesis were all important in determining the e[CO2] response. The large responses to e[CO2] under dryland conditions have not been previously reported and underscore the need for field level research to provide mechanistic understanding for adapting crops to a changing climate.  相似文献   

20.
Around 4.4 million ha of land in USDA Conservation Reserve Program (CRP) contracts will expire between 2013 and 2018 and some will likely return to crop production. No‐till (NT) management offers the potential to reduce the global warming costs of CO2, CH4, and N2O emissions during CRP conversion, but to date there have been no CRP conversion tillage comparisons. In 2009, we converted portions of three 9–21 ha CRP fields in Michigan to conventional tillage (CT) or NT soybean production and reserved a fourth field for reference. Both CO2 and N2O fluxes increased following herbicide application in all converted fields, but in the CT treatment substantial and immediate N2O and CO2 fluxes occurred after tillage. For the initial 201‐day conversion period, average daily N2O fluxes (g N2O‐N ha?1 d?1) were significantly different in the order: CT (47.5 ± 6.31, n = 6) ? NT (16.7 ± 2.45, n = 6) ? reference (2.51 ± 0.73, n = 4). Similarly, soil CO2 fluxes in CT were 1.2 times those in NT and 3.1 times those in the unconverted CRP reference field. All treatments were minor sinks for CH4 (?0.69 ± 0.42 to ?1.86 ± 0.37 g CH4–C ha?1 d?1) with no significant differences among treatments. The positive global warming impact (GWI) of converted soybean fields under both CT (11.5 Mg CO2e ha?1) and NT (2.87 Mg CO2e ha?1) was in contrast to the negative GWI of the unconverted reference field (?3.5 Mg CO2e ha?1) with on‐going greenhouse gas (GHG) mitigation. N2O contributed 39.3% and 55.0% of the GWI under CT and NT systems with the remainder contributed by CO2 (60.7% and 45.0%, respectively). Including foregone mitigation, we conclude that NT management can reduce GHG costs by ~60% compared to CT during initial CRP conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号