首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Aims: To develop a rapid and simple system for detection of Bacillus anthracis using a loop‐mediated isothermal amplification (LAMP) method and determine the suitability of LAMP for rapid identification of B. anthracis infection. Methods and Results: A specific LAMP assay targeting unique gene sequences in the bacterial chromosome and two virulence plasmids, pXO1 and pXO2, was designed. With this assay, it was possible to detect more than 10 fg of bacterial DNA per reaction and obtain results within 30–40 min under isothermal conditions at 63°C. No cross‐reactivity was observed among Bacillus cereus group and other Bacillus species. Furthermore, in tests using blood specimens from mice inoculated intranasally with B. anthracis spores, the sensitivity of the LAMP assay following DNA extraction methods using a Qiagen DNeasy kit or boiling protocol was examined. Samples prepared by both methods showed almost equivalent sensitivities in LAMP assay. The detection limit was 3·6 CFU per test. Conclusions: The LAMP assay is a simple, rapid and sensitive method for detecting B. anthracis. Significance and Impact of the Study: The LAMP assay combined with boiling extraction could be used as a simple diagnostic method for identification of B. anthracis infection.  相似文献   

4.
Smut disease caused by Sporisorium scitamineum is one of the most destructive sugarcane diseases worldwide. The pathogen spreads primarily through infected sugarcane setts, and hence, the use of disease‐free planting materials is essential for preventing disease development in the field. In this study, a species‐specific loop‐mediated isothermal amplification (LAMP) assay was developed for rapid and accurate detection of S. scitamineum. Based on the differences in internal transcribed spacer (ITS) sequences of S. scitamineum, a set of four species‐specific primers, F3, B3, FIP and BIP, were designed by using a panel of fungal and bacterial species as controls. After optimization of the reaction conditions, the detection limit of LAMP assay was about 2 fg of the S. scitamineum genomic DNA in 25 µL reaction solution, 100‐fold lower than that of conventional polymerase chain reaction. The assay showed high specificity to discriminate all S. scitamineum isolates from nine other fungal and bacterial pathogens. The LAMP assay also detected smut infection from young sugarcane leaves with no visible smut‐disease symptoms. The findings from this study provide a simple, highly sensitive, rapid and reliable technique for early detection of S. scitamineum, which may be useful for sugarcane quarantine and production of smut‐free seedcanes. This is the first report of LAMP‐based assay for the detection of S. scitamineum in sugarcane.  相似文献   

5.
The aim of this study was to develop a method for the rapid detection of Gardnerella vaginalis, which is proposed to play a key role in the pathogenesis of bacterial vaginosis. Specific loop‐mediated isothermal amplification (LAMP) primers were designed and used to detect target DNA within 45 min under isothermal conditions. Comparative screening indicated that the LAMP assay is superior to PCR in terms of rapidity, and is equivalent in sensitivity and specificity. This LAMP assay can be used for rapid screening and detection of G. vaginalis in vaginal samples; the limit of detection is 10 fg DNA.
  相似文献   

6.
7.
Phytophthora nicotianae is a phytopathogenic oomycete with a wide host range and worldwide distribution. Rapid detection and diagnosis at the early stages of disease development are important for the effective control of P. nicotianae. In this study, we designed a simple and rapid loop‐mediated isothermal amplification (LAMP)‐based detection method for P. nicotianae. We tested three DNA extraction methods and selected the Kaneka Easy DNA Extraction Kit version 2, which is rapid and robust for LAMP‐based detection. The designed primers were tested using mycelial DNA from 35 species (81 isolates) of Phytophthora, 12 species (12 isolates) of Pythium, one isolate of Phytopythium and one isolate each from seven other soil‐borne pathogens. All of the 42 P. nicotianae isolates were detected by these primers, and no other isolates gave positive results. Three isolates were tested for the sensitivity of the reaction, and the lowest amounts of template DNA that could be detected were 10 fg for two isolates and 1 fg for the third. The target was detected within 25 min in all tested samples, including DNA extracted from both inoculated and naturally infected plants. In contrast, PCR assays with P. nicotianae‐specific primers failed or showed weakened detection in several samples. Thus, we found that the rapid DNA extraction and LAMP assay methods developed in this study can be used to detect P. nicotianae with high sensitivity, specificity and stability.  相似文献   

8.
9.
Potatoes are an important agroeconomic crop worldwide and maceration diseases caused by pectolytic bacterial pathogens result in significant pre‐ and post‐harvest losses. Pectobacterium carotovorum shares a common host range with other Pectobacterium spp. and other members of the Enterobacteriaceae, such as Dickeya spp. As these pathogens cannot be clearly differentiated on the basis of the symptoms they cause, improved methods of identification are critical for the determination of sources of contamination. Current standardized methods for the differentiation of pectolytic species are time consuming and require trained personnel, as they rely on traditional bacteriological practices that do not always produce conclusive results. In this growing world market, there is a need for rapid diagnostic tests that can differentiate between pectolytic pathogens, as well as separate them from non‐pectolytic enteric bacteria associated with soft rots of potato. An assay has been designed previously to detect the temperate pathogen Pectobacterium atrosepticum, but there is currently no recognized rapid assay for the detection of the tropical/subtropical counterpart, Pectobacterium carotovorum. This report describes the development of a loop‐mediated isothermal amplification (LAMP) assay that detects P. carotovorum with high specificity. The assay was evaluated using all known species of Pectobacterium and only showed positive reactions for P. carotovorum. This assay was also tested against 15 non‐target genera of plant‐associated bacteria and did not produce any false positives. The LAMP assay described here can be used as a rapid test for the differentiation of P. carotovorum from other pectolytic pathogens, and its gene target can be the basis for the development of other molecular‐based detection assays.  相似文献   

10.
A rapid, sensitive and visual loop‐mediated isothermal amplification (LAMP) method for detecting Acidovorax citrulli in cucurbit seed was developed in this study. The LAMP primers were designed to recognize the non‐ribosomal peptide synthetase (NRPS) gene (locus tag: Aave_4658) from A. citrulli. The LAMP assay was conducted at 64°C in 1 hr with calcein as an indicator. The sensitivity and specificity of the LAMP assay were further compared with those of a conventional polymerase chain reaction (PCR). The LAMP assay is highly specific to A. citrulli, and no cross‐reaction was observed with other bacterial pathogen. The sensitivity of the LAMP assay was 100‐fold higher than that of conventional PCR with a detection limit of 1 pg of genomic DNA. Using the LAMP assay, 7 of 12 cantaloupe seedlots collected from Xinjiang province were determined to be positive for A. citrulli. In contrast, only 2 of 12 seedlots showed positive for the pathogen with conventional PCR. Moreover, A. citrulli was detected in 100% of artificially infested seedlots with 0.01% infestation or greater. Our results demonstrated that the LAMP assay was simple, visual and sensitive for detecting A. citrulli, especially in seed health testing. Hence, this method has great potential application in routine detecting seed‐borne pathogens and reducing the risk of epidemics.  相似文献   

11.
The one‐step real‐time turbidity loop‐mediated isothermal amplification assay (RealAmp) was developed to detect Hosta virus X (HVX), the most devastating threat to hosta industry. The reaction was performed in a single tube at 63°C for 15 min, and real‐time turbidimetry was used to monitor the amplification results. Specificity and sensitivity analyses demonstrated that this RealAmp method was sensitive as real‐time TaqMan RT‐PCR and about 100‐fold higher than conventional RT‐PCR with no cross‐reaction with other viral pathogens. Field samples detection showed that HVX could be identified effectively with this method. Overall, this RealAmp assay for HVX detection was simple, specific, sensitive, convenient and time‐saving and could assist in the quarantine measures for prevention and control of the disease caused by HVX.  相似文献   

12.
13.
Aims: The purpose of this study was to develop a loop‐mediated isothermal amplification (LAMP) method for the rapid, sensitive and simple detection of Vibrio alginolyticus in mariculture fish. Methods and Results: LAMP primers were designed by targeting the gyrB gene. With Bst DNA polymerase, the target DNA can be clearly amplified for 60 min at 64°C in a simple water bath. The detection sensitivity of the LAMP assay for the detection of V. alginolyticus is about 3·7 × 102 CFU ml?1 (3·7 CFU per reaction). LAMP products could be judged with agar gel or naked eye after the addition of SYBR Green I. There were no cross‐reactions with other bacterial strains indicating a high specificity of the LAMP. The LAMP method was applied to detect V. alginolyticus‐infected fish tissues effectively. Conclusions: The LAMP established in this study is a simple, sensitive, specific, inexpensive and rapid protocol for the detection of V. alginolyticus. Significance and Impact of the Study: This LAMP method provides an important diagnostic tool for the detection of V. alginolyticus infection both in the laboratory and field.  相似文献   

14.
15.
16.
Beijing genotype strains of Mycobacterium tuberculosis are geographically widespread and pose a notorious public health problem, these strains causing outbreaks of multidrug‐resistant tuberculosis (TB); some studies have reported an association with drug resistance. Because the prevalence of Beijing strain has a substantial impact on TB control programs, the availability of a rapid and reliable method for detecting these strains is important for epidemiological monitoring of their circulation. The main methods currently used to identify Beijing genotype strains are IS6110 DNA fingerprinting, spoligotyping and PCR to detect specific deletions such as region of difference (RD)207. More recently, multiplex PCR assay using a Beijing‐specific single nucleotide polymorphism (SNP) has been developed for detecting Beijing lineage strains. However, these methods are time‐consuming and technically demanding. In the present study, a loop‐mediated isothermal amplification (LAMP) assay that allows specific identification of Beijing genotype strain was developed. This Beijing genotype strain‐identifying LAMP assay was performed 214 clinical isolates and the results compared with those of conventional PCR that targeted RD207 and Rv0679c‐targreting multiplex PCR for Beijing lineage identification. LAMP assay showed 100% sensitivity and specificity compared with RD207‐PCR. Furthermore, the sensitivity and specificity were 99.3% and 100%, respectively, compared with Rv0679c‐multiplex PCR. This LAMP assay could be used routinely in local laboratories to monitor the prevalence of the Beijing genotype strain and thereby used to help control the spread of these potentially highly virulent and drug resistant strains.  相似文献   

17.
Aims: To develop a specific and highly sensitive loop-mediated isothermal amplification (LAMP) technique for the rapid detection of canine parvovirus (CPV) DNA directly in suspected faecal samples of dogs by employing a simple method of template preparation. Methods and Results: LAMP reaction was developed by designing two sets of outer and inner primers, which target a total of six distinct regions on VP2 gene of CPV. The template DNA was prepared by a simple boiling and chilling method. Of the 140 faecal samples screened by the developed LAMP and the conventional PCR assays, 104 samples (74·28%) were found positive by LAMP, whereas 81 samples (57·85%) were found positive by PCR. The specificity of the LAMP assay was tested by cross-examination of common pathogens of dogs and further confirmed by sequencing. The detection limit of the LAMP was 0·0001 TCID(50) ml(-1) , whereas the detection limit of the PCR was 1000 TCID(50) ml(-1) . Conclusions: The developed LAMP assay detects CPV DNA in faecal specimens directly within an hour by following a simple and rapid boiling and chilling method of template preparation. The result also shows that the developed LAMP assay is specific and highly sensitive in detecting CPV. Significance and Impact of the Study: The result indicates the potential usefulness of LAMP which is a simple, rapid, specific, highly sensitive and cost-effective field-based method for direct detection of CPV from the suspected faecal samples of dogs.  相似文献   

18.
PCR is a universal tool for the multiplication of specific DNA sequences. For example, PCR‐based sex determination is widely used, and a diversity of primer sets is available. However, this protocol requires thermal cycling and electrophoresis, so results are typically obtained in laboratories and several days after sampling. Loop‐mediated isothermal amplification (LAMP) is an alternative to PCR that can take molecular ecology outside the laboratory. Although its application has been successfully probed for sex determination in three species of a single avian Family (raptors, Accipitridae), its generality remains untested and suitable primers across taxa are lacking. We designed and tested the first LAMP‐based primer set for sex determination across the modern birds (NEO‐W) based on a fragment of the gene chromo‐helicase‐DNA‐binding protein located on the female‐specific W chromosome. As nucleotide identity is expected to increase among more related taxa, taxonomically targeted primers were also developed for the Order Falconiformes and Families Psittacidae, Ciconiidae, Estrildidae and Icteridae as examples. NEO‐W successfully determined sex in a subset of 21 species within 17 Families and 10 Orders and is therefore a candidate primer for all modern birds. Primer sets designed specifically for the selected taxa correctly assigned sex to the evaluated species. A short troubleshooting guide for new LAMP users is provided to identify false negatives and optimize LAMP reactions. This study represents the crucial next step towards the use of LAMP for molecular sex determination in birds and other applications in molecular ecology.  相似文献   

19.
Campylobacter fetus is divided into CFV and CFF. Because CFV causes bovine genital campylobacteriosis, differentiation of the two subspecies is essential to the implementation of efficient CFV control and eradication programs. We have developed LAMP and duplex PCR assays for rapid and simple detection of CFV. The LAMP assay correctly detected 7 CFV strains and did not detect 53 CFF, 35 non‐fetus Campylobacter and 25 non‐Campylobacter strains. The PCR assay successfully differentiated the two subspecies. The LAMP and PCR assays were faster than conventional biochemical assays, requiring for detection less than 50 min and less than 4 hr, respectively, from the beginning of DNA extraction from a single colony on blood agar to final determination. Our LAMP and PCR assays are rapid and practical tools for detection of CFV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号