首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Mating causes considerable alterations in female physiology and behaviour, and immune gene expression, partly due to proteins transferred from males to females during copulation. The magnitude of these phenotypic changes could be driven by the genotypes of males and females, as well as their interaction. To test this, we carried out a series of genotype‐by‐genotype (G × G) experiments using Drosophila melanogaster populations from two distant geographical locations. We expected lines to have diverged in male reproductive traits and females to differ in their responses to these traits. We examined female physiological and behavioural post‐mating responses to male mating traits, that is behaviour and ejaculate composition, in the short to mid‐term (48 hr) following mating. We then explored whether a sexually transferred molecule, sex peptide (SP), is the mechanism behind our observed female post‐mating responses. Our results show that the genotypes of both sexes as well as the interaction between male and female genotypes affect mating and post‐mating reproductive traits. Immune gene expression of three candidate genes increased in response to mating and was genotype‐dependent but did not show a G × G signature. Males showed genotype‐dependent SP expression in the 7 days following eclosion, but female genotypes showed no differential sensitivity to the receipt of SP. The two genotypes demonstrated clear divergence in physiological traits in short‐ to mid‐term responses to mating, but the longer‐term consequences of these initial dynamics remain to be uncovered.  相似文献   

2.
Tomato (Solanum lycopersicum) fruit ripening is characterized by a massive accumulation of carotenoids (mainly lycopene) as chloroplasts change to chromoplasts. To address the question of the role of sugars in controlling carotenoid accumulation, fruit pericarp discs (mature green fruits) were cultured in vitro in the presence of various sucrose concentrations. A significant difference in soluble sugar content was achieved depending on external sucrose availability. Sucrose limitation delayed and reduced lycopene and phytoene accumulation, with no significant effect on other carotenoids. Chlorophyll degradation and starch catabolism were not affected by variations of sucrose availability. The reduction of lycopene synthesis observed in sucrose-limited conditions was mediated through metabolic changes illustrated by reduced hexose accumulation levels. In addition, variations of sucrose availability modulated PSY1 gene expression. Taken together our results suggest that the modulation of carotenoid accumulation by sucrose availability occurs at the metabolic level and involves the differential regulation of genes involved in carotenoid biosynthesis.  相似文献   

3.
4.
Fruit pathogens can contribute to the acidification or alkalinization of the host environment. This capability has been used to divide fungal pathogens into acidifying and/or alkalinizing classes. Here, we show that diverse classes of fungal pathogens—Colletotrichum gloeosporioides, Penicillium expansum, Aspergillus nidulans and Fusarium oxysporum—secrete small pH‐affecting molecules. These molecules modify the environmental pH, which dictates acidic or alkaline colonizing strategies, and induce the expression of PACC‐dependent genes. We show that, in many organisms, acidification is induced under carbon excess, i.e. 175 mm sucrose (the most abundant sugar in fruits). In contrast, alkalinization occurs under conditions of carbon deprivation, i.e. less than 15 mm sucrose. The carbon source is metabolized by glucose oxidase (gox2) to gluconic acid, contributing to medium acidification, whereas catalysed deamination of non‐preferred carbon sources, such as the amino acid glutamate, by glutamate dehydrogenase 2 (gdh2), results in the secretion of ammonia. Functional analyses of Δgdh2 mutants showed reduced alkalinization and pathogenicity during growth under carbon deprivation, but not in high‐carbon medium or on fruit rich in sugar, whereas analysis of Δgox2 mutants showed reduced acidification and pathogencity under conditions of excess carbon. The induction pattern of gdh2 was negatively correlated with the expression of the zinc finger global carbon catabolite repressor creA. The present results indicate that differential pH modulation by fruit fungal pathogens is a host‐dependent mechanism, affected by host sugar content, that modulates environmental pH to enhance fruit colonization.  相似文献   

5.
6.
7.
Phenotypic plasticity, the ability of one genotype to express different phenotypes in response to changing environmental conditions, is one of the most common phenomena characterizing the living world and is not only relevant for the ecology but also for the evolution of species. Daphnia, the water flea, is a textbook example for predator‐induced phenotypic plastic defences; however, the analysis of molecular mechanisms underlying these inducible defences is still in its early stages. We exposed Daphnia magna to chemical cues of the predator Triops cancriformis to identify key processes underlying plastic defensive trait formation. To get a more comprehensive idea of this phenomenon, we studied four genotypes with five biological replicates each, originating from habitats characterized by different predator composition, ranging from predator‐free habitats to habitats containing T. cancriformis. We analysed the morphologies as well as proteomes of predator‐exposed and control animals. Three genotypes showed morphological changes when the predator was present. Using a high‐throughput proteomics approach, we found 294 proteins which were significantly altered in their abundance after predator exposure in a general or genotype‐dependent manner. Proteins connected to genotype‐dependent responses were related to the cuticle, protein synthesis and calcium binding, whereas the yolk protein vitellogenin increased in abundance in all genotypes, indicating their involvement in a more general response. Furthermore, genotype‐dependent responses at the proteome level were most distinct for the only genotype that shares its habitat with Triops. Altogether, our study provides new insights concerning genotype‐dependent and general molecular processes involved in predator‐induced phenotypic plasticity in D. magna.  相似文献   

8.
9.
10.
11.
The regulation of carbon allocation between photosynthetic source leaves and sink tissues in response to stress is an important factor controlling plant yield. Ascorbate oxidase is an apoplastic enzyme, which controls the redox state of the apoplastic ascorbate pool. RNA interference was used to decrease ascorbate oxidase activity in tomato (Solanum lycopersicum L.). Fruit yield was increased in these lines under three conditions where assimilate became limiting for wild‐type plants: when fruit trusses were left unpruned, when leaves were removed or when water supply was limited. Several alterations in the transgenic lines could contribute to the improved yield and favour transport of assimilate from leaves to fruits in the ascorbate oxidase lines. Ascorbate oxidase plants showed increases in stomatal conductance and leaf and fruit sugar content, as well as an altered apoplastic hexose : sucrose ratio. Modifications in gene expression, enzyme activity and the fruit metabolome were coherent with the notion of the ascorbate oxidase RNAi lines showing altered sink strength. Ascorbate oxidase may therefore be a target for strategies aimed at improving water productivity in crop species.  相似文献   

12.
13.
Highly variable phenotypic responses in mycorrhizal plants challenge our functional understanding of plant‐fungal mutualisms. Using non‐invasive high‐throughput phenotyping, we observed that arbuscular mycorrhizal (AM) fungi relieved phosphorus (P) limitation and enhanced growth of Brachypodium distachyon under P‐limited conditions, while photosynthetic limitation under low nitrogen (N) was exacerbated by the fungus. However, these responses were strongly dependent on host genotype: only the faster growing genotype (Bd3‐1) utilised P transferred from the fungus to achieve improved growth under P‐limited conditions. Under low N, the slower growing genotype (Bd21) had a carbon and N surplus that was linked to a less negative growth response compared with the faster growing genotype. These responses were linked to the regulation of N : P stoichiometry, couples resource allocation to growth or luxury consumption in diverse plant lineages. Our results attest strongly to a mechanism in plants by which plant genotype‐specific resource economics drive phenotypic outcomes during AM symbioses.  相似文献   

14.
The metabolic consequences of long‐term carbohydrate depletion have been well documented in many sink organs but not extensively in fruit. Therefore, in the present study the response to sugar limitation in tomato fruit (Lycopersicon esculentum Mill.) was investigated at two developmental stages; during the cell division and cell expansion phases. First, the response in excised fruit cultured in vitro was characterized. Sugar depletion caused an arrest of growth and an exhaustion of carbon reserves. The proteins that were degraded and the nitrogen released was transiently stored as asparagine and glutamine in both developmental stages and also as γ ‐aminobutyric acid (GABA) in expanding fruit. Fruit at the cell division stage appeared to be more sensitive to sugar limitation. The response to sugar depletion was then characterized in fruit from plants submitted to extended darkness. In planta, the effects of sugar‐limitation were similar to those described in vitro but much more attenuated, especially in expanding fruit, which still accumulated dry matter. The expression of cell cycle genes, sugar‐ and nitrogen‐related genes was reduced by darkness. Only asparagine synthetase gene expression was induced in both dark‐treated fruit. Together the present data revealed that the effects of the carbon limitation are more pronounced in the youngest fruits as it is probably controlled by the relative sink strength of the fruit.  相似文献   

15.

Nutrient management is one of the most important agricultural practices to ensure yield and fruit quality. The aim of this study was to examine the effect of N and P availability in the yield and quality of tomato fruits (Solanum lycopersicum var. Meyity), and the hormonal mechanisms underlying these effects. Fruit yield and quality (in terms of sugar accumulation and titratable acidity) at harvest, together with the hormonal profiling of developing fruits were evaluated. While low N caused a reduction of sugars, reduced P availability increased sugars and reduced acidity in fruits. These changes were not accompanied by significant reductions in yield. Enhanced trans-zeatin content at early stages of fruit development and during color break might be associated with an increased sink activity. Furthermore, jasmonic acid, salicylic acid and 1-aminocyclopropane-1-carboxylic acid (the ethylene precursor) concentrations increased at early stages of fruit development, thus suggesting a complex hormonal crosstalk induced by low P availability. In conclusion, a reduction of P availability increased tomato sugar contents, while yield was not negatively impacted. These results have implications to alleviate the depletion of natural P reserves to arrive at a more sustainable horticulture.

  相似文献   

16.
17.
18.
One of the most intriguing phenomena of fleshy fruit is the ability to maintain high water content at maturity, even following harvest. This is accomplished by a fruit cuticle that is highly impermeable to water diffusion. In this paper, we report on a novel genotype of tomato, developed via introgression from the wild species Solanum habrochaites, which is characterized by microfissuring of the fruit cuticle and dehydration of the mature fruit. The microfissure/dehydration phenotype is inherited as a single gene, termed Cwp1 (cuticular water permeability). The gene was fine mapped, and its identity was determined by map-based cloning and differential expression analysis in near-isogenic lines. Causality of the Cwp1 gene was shown by the heterologous transgenic expression of the gene in the cultivated tomato, which caused a microfissured fruit cuticle leading to dehydrated fruit. Cwp1 encodes for a protein of unidentified function in the DUF833 domain family. The gene is expressed in the fruit epidermis of the dehydrating genotype harbouring the wild-species introgression, but not in the cultivated tomato. It is expressed only in the primitive green-fruited wild tomato species, but is not expressed in the cultivated Solanum lycopersicum and the closely related Solanum cheesmaniae and Solanum pimpinellifolium, indicating a pre-adaptive role for Cwp1 silencing in the evolution and domestication of the cultivated tomato.  相似文献   

19.
The extreme sensitivity of the microsporogenesis process to moderately high or low temperatures is a major hindrance for tomato (Solanum lycopersicum) sexual reproduction and hence year‐round cropping. Consequently, breeding for parthenocarpy, namely, fertilization‐independent fruit set, is considered a valuable goal especially for maintaining sustainable agriculture in the face of global warming. A mutant capable of setting high‐quality seedless (parthenocarpic) fruit was found following a screen of EMS‐mutagenized tomato population for yielding under heat stress. Next‐generation sequencing followed by marker‐assisted mapping and CRISPR/Cas9 gene knockout confirmed that a mutation in SlAGAMOUS‐LIKE 6 (SlAGL6) was responsible for the parthenocarpic phenotype. The mutant is capable of fruit production under heat stress conditions that severely hamper fertilization‐dependent fruit set. Different from other tomato recessive monogenic mutants for parthenocarpy, Slagl6 mutations impose no homeotic changes, the seedless fruits are of normal weight and shape, pollen viability is unaffected, and sexual reproduction capacity is maintained, thus making Slagl6 an attractive gene for facultative parthenocarpy. The characteristics of the analysed mutant combined with the gene's mode of expression imply SlAGL6 as a key regulator of the transition between the state of ‘ovary arrest’ imposed towards anthesis and the fertilization‐triggered fruit set.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号