首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many wetland ecosystems such as peatlands and wet tundra hold large amounts of organic carbon (C) in their soils, and are thus important in the terrestrial C cycle. We have synthesized data on the carbon dioxide (CO2) exchange obtained from eddy covariance measurements from 12 wetland sites, covering 1–7 years at each site, across Europe and North America, ranging from ombrotrophic and minerotrophic peatlands to wet tundra ecosystems, spanning temperate to arctic climate zones. The average summertime net ecosystem exchange of CO2 (NEE) was highly variable between sites. However, all sites with complete annual datasets, seven in total, acted as annual net sinks for atmospheric CO2. To evaluate the influence of gross primary production (GPP) and ecosystem respiration (Reco) on NEE, we first removed the artificial correlation emanating from the method of partitioning NEE into GPP and Reco. After this correction neither Reco (P= 0.162) nor GPP (P= 0.110) correlated significantly with NEE on an annual basis. Spatial variation in annual and summertime Reco was associated with growing season period, air temperature, growing degree days, normalized difference vegetation index and vapour pressure deficit. GPP showed weaker correlations with environmental variables as compared with Reco, the exception being leaf area index (LAI), which correlated with both GPP and NEE, but not with Reco. Length of growing season period was found to be the most important variable describing the spatial variation in summertime GPP and Reco; global warming will thus cause these components to increase. Annual GPP and NEE correlated significantly with LAI and pH, thus, in order to predict wetland C exchange, differences in ecosystem structure such as leaf area and biomass as well as nutritional status must be taken into account.  相似文献   

2.
This paper presents results of 1 year (from March 25, 2003 to March 24, 2004, 366 days) of continuous measurements of net ecosystem CO2 exchange (NEE) above a steppe in Mongolia using the eddy covariance technique. The steppe, typical of central Mongolia, is dominated by C3 plants adapted to the continental climate. The following two questions are addressed: (1) how do NEE and its components: gross ecosystem production (GEP) and total ecosystem respiration (Reco) vary seasonally? (2) how do NEE, GEP, and Reco respond to biotic and abiotic factors? The hourly minimal NEE and the hourly maximal Reco were −3.6 and 1.2 μmol m−2 s−1, respectively (negative values denoting net carbon uptake by the canopy from the atmosphere). Peak daily sums of NEE, GEP, and Reco were −2.3, 3.5, and 1.5 g C m−2 day−1, respectively. The annual sums of GEP, Reco, and NEE were 179, 138, and −41 g C m−2, respectively. The carbon removal by sheep was estimated to range between 10 and 82 g C m−2 yr−1 using four different approaches. Including these estimates in the overall carbon budget yielded net ecosystem productivity of −23 to +20 g C m−2 yr−1. Thus, within the remaining experimental uncertainty the carbon budget at this steppe site can be considered to be balanced. For the growing period (from April 23 to October 21, 2003), 26% and 53% of the variation in daily NEE and GEP, respectively, could be explained by the changes in leaf area index. Seasonality of GEP, Reco, and NEE was closely associated with precipitation, especially in the peak growing season when GEP and Reco were largest. Water stress was observed in late July to early August, which switched the steppe from a carbon sink to a carbon source. For the entire growing period, the light response curves of daytime NEE showed a rather low apparent quantum yield (α=−0.0047 μmol CO2 μmol−1 photons of photosynthetically active radiation). However, the α values varied with air temperature (Ta), vapor pressure deficit, and soil water content.  相似文献   

3.
Eddy‐covariance measurements of net ecosystem carbon exchange (NEE) were carried out above a grazed Mediterranean C3/C4 grassland in southern Portugal, during two hydrological years, 2004–2005 and 2005–2006, of contrasting rainfall. Here, we examine the seasonal and interannual variation in NEE and its major components, gross primary production (GPP) and ecosystem respiration (Reco), in terms of the relevant biophysical controls. The first hydrological year was dry, with total precipitation 45% below the long‐term mean (669 mm) and the second was normal, with total precipitation only 12% above the long‐term mean. The drought conditions during the winter and early spring of the dry year limited grass production and the leaf area index (LAI) was very low. Hence, during the peak of the growth period, the maximum daily rate of NEE and the light‐use and water‐use efficiencies were approximately half of those observed in the normal year. In the summer of 2006, the warm‐season C4 grass, Cynodon dactylon L., exerted an evident positive effect on NEE by converting the ecosystem into a carbon sink after strong rain events and extending the carbon sequestration for several days, after the end of senescence of the C3 grasses. On an annual basis, the GPP and NEE were 524 and 49 g C m?2, respectively, for the dry year, and 1261 and ?190 g C m?2 for the normal year. Therefore, the grassland was a moderate net source of carbon to the atmosphere, in the dry year, and a considerable net carbon sink, in the normal year. In these 2 years of experiment the total amount of precipitation was the main factor determining the interannual variation in NEE. In terms of relevant controls, GPP and NEE were strongly related to incident photosynthetic photon flux density on short‐term time scales. Changes in LAI explained 84% and 77% of the variation found in GPP and NEE, respectively. Variations in Reco were mainly controlled by canopy photosynthesis. After each grazing event, the reduction in LAI affected negatively the NEE.  相似文献   

4.
Thus far, grassland ecosystem research has mainly been focused on low‐lying grassland areas, whereas research on high‐altitude grassland areas, especially on the carbon budget of remote areas like the Qinghai‐Tibetan plateau is insufficient. To address this issue, flux of CO2 were measured over an alpine shrubland ecosystem (37°36′N, 101°18′E; 325 above sea level [a. s. l.]) on the Qinghai‐Tibetan Plateau, China, for 2 years (2003 and 2004) with the eddy covariance method. The vegetation is dominated by formation Potentilla fruticosa L. The soil is Mol–Cryic Cambisols. To interpret the biotic and abiotic factors that modulate CO2 flux over the course of a year we decomposed net ecosystem CO2 exchange (NEE) into its constituent components, and ecosystem respiration (Reco). Results showed that seasonal trends of annual total biomass and NEE followed closely the change in leaf area index. Integrated NEE were ?58.5 and ?75.5 g C m?2, respectively, for the 2003 and 2004 years. Carbon uptake was mainly attributed from June, July, August, and September of the growing season. In July, NEE reached seasonal peaks of similar magnitude (4–5 g C m?2 day?1) each of the 2 years. Also, the integrated night‐time NEE reached comparable peak values (1.5–2 g C m?2 day?1) in the 2 years of study. Despite the large difference in time between carbon uptake and release (carbon uptake time < release time), the alpine shrubland was carbon sink. This is probably because the ecosystem respiration at our site was confined significantly by low temperature and small biomass and large day/night temperature difference and usually soil moisture was not limiting factor for carbon uptake. In general, Reco was an exponential function of soil temperature, but with season‐dependent values of Q10. The temperature‐dependent respiration model failed immediately after rain events, when large pulses of Reco were observed. Thus, for this alpine shrubland in Qinghai‐Tibetan plateau, the timing of rain events had more impact than the total amount of precipitation on ecosystem Reco and NEE.  相似文献   

5.
Rapid Arctic warming is expected to increase global greenhouse gas concentrations as permafrost thaw exposes immense stores of frozen carbon (C) to microbial decomposition. Permafrost thaw also stimulates plant growth, which could offset C loss. Using data from 7 years of experimental Air and Soil warming in moist acidic tundra, we show that Soil warming had a much stronger effect on CO2 flux than Air warming. Soil warming caused rapid permafrost thaw and increased ecosystem respiration (Reco), gross primary productivity (GPP), and net summer CO2 storage (NEE). Over 7 years Reco, GPP, and NEE also increased in Control (i.e., ambient plots), but this change could be explained by slow thaw in Control areas. In the initial stages of thaw, Reco, GPP, and NEE increased linearly with thaw across all treatments, despite different rates of thaw. As thaw in Soil warming continued to increase linearly, ground surface subsidence created saturated microsites and suppressed Reco, GPP, and NEE. However Reco and GPP remained high in areas with large Eriophorum vaginatum biomass. In general NEE increased with thaw, but was more strongly correlated with plant biomass than thaw, indicating that higher Reco in deeply thawed areas during summer months was balanced by GPP. Summer CO2 flux across treatments fit a single quadratic relationship that captured the functional response of CO2 flux to thaw, water table depth, and plant biomass. These results demonstrate the importance of indirect thaw effects on CO2 flux: plant growth and water table dynamics. Nonsummer Reco models estimated that the area was an annual CO2 source during all years of observation. Nonsummer CO2 loss in warmer, more deeply thawed soils exceeded the increases in summer GPP, and thawed tundra was a net annual CO2 source.  相似文献   

6.
One of the most important changes in high‐latitude ecosystems in response to climatic warming may be the thawing of permafrost soil. In upland tundra, the thawing of ice‐rich permafrost can create localized surface subsidence called thermokarst, which may change the soil environment and influence ecosystem carbon release and uptake. We established an intermediate scale (a scale in between point chamber measurements and eddy covariance footprint) ecosystem carbon flux study in Alaskan tundra where permafrost thaw and thermokarst development had been occurring for several decades. The main goal of our study was to examine how dynamic ecosystem carbon fluxes [gross primary production (GPP), ecosystem respiration (Reco), and net ecosystem exchange (NEE)] relate to ecosystem variables that incorporate the structural and edaphic changes that co‐occur with permafrost thaw and thermokarst development. We then examined how these measured ecosystem carbon fluxes responded to upscaling. For both spatially extensive measurements made intermittently during the peak growing season and intensive measurements made over the entire growing season, ecosystem variables including degree of surface subsidence, thaw depth, and aboveground biomass were selected in a mixed model selection procedure as the ‘best’ predictors of GPP, Reco, and NEE. Variables left out of the model (often as a result of autocorrelation) included soil temperature, moisture, and normalized difference vegetation index. These results suggest that the structural changes (surface subsidence, thaw depth, aboveground biomass) that integrate multiple effects of permafrost thaw can be useful components of models used to estimate ecosystem carbon exchange across thermokarst affected landscapes.  相似文献   

7.
The measured net ecosystem exchange (NEE) of CO2 between the ecosystem and the atmosphere reflects the balance between gross CO2 assimilation [gross primary production (GPP)] and ecosystem respiration (Reco). For understanding the mechanistic responses of ecosystem processes to environmental change it is important to separate these two flux components. Two approaches are conventionally used: (1) respiration measurements made at night are extrapolated to the daytime or (2) light–response curves are fit to daytime NEE measurements and respiration is estimated from the intercept of the ordinate, which avoids the use of potentially problematic nighttime data. We demonstrate that this approach is subject to biases if the effect of vapor pressure deficit (VPD) modifying the light response is not included. We introduce an algorithm for NEE partitioning that uses a hyperbolic light response curve fit to daytime NEE, modified to account for the temperature sensitivity of respiration and the VPD limitation of photosynthesis. Including the VPD dependency strongly improved the model's ability to reproduce the asymmetric diurnal cycle during periods with high VPD, and enhances the reliability of Reco estimates given that the reduction of GPP by VPD may be otherwise incorrectly attributed to higher Reco. Results from this improved algorithm are compared against estimates based on the conventional nighttime approach. The comparison demonstrates that the uncertainty arising from systematic errors dominates the overall uncertainty of annual sums (median absolute deviation of GPP: 47 g C m?2 yr?1), while errors arising from the random error (median absolute deviation: ~2 g C m?2 yr?1) are negligible. Despite site‐specific differences between the methods, overall patterns remain robust, adding confidence to statistical studies based on the FLUXNET database. In particular, we show that the strong correlation between GPP and Reco is not spurious but holds true when quasi‐independent, i.e. daytime and nighttime based estimates are compared.  相似文献   

8.
Climate change may alter ecosystem functioning, as assessed via the net carbon (C) exchange (NEE) with the atmosphere, composed of the biological processes photosynthesis (GPP) and respiration (R eco). In addition, in semi-arid Mediterranean ecosystems, a significant fraction of respired CO2 is stored in the vadose zone and emitted afterwards by subsoil ventilation (VE), contributing also to NEE. Such conditions complicate the prediction of NEE for future change scenarios. To evaluate the possible effects of climate change on annual NEE and its underlying processes (GPP, R eco and VE) we present, over a climate/altitude range, the annual and interannual variability of NEE, GPP, R eco and VE in three Mediterranean sites. We found that annual NEE varied from a net source of around 130 gC m?2 in hot and arid lowlands to a net sink of similar magnitude for alpine meadows (above 2,000 m a.s.l) that are less water stressed. Annual net C fixation increased because of increased GPP during intermittent and several growth periods occurring even during winter, as well as due to decreased VE. In terms of interannual variability, the studied subalpine site behaved as a neutral C sink (from emission of 49 to fixation of 30 gC m?2 year?1), with precipitation as the main factor controlling annual GPP and R eco. Finally, the importance of VE as 0–23 % of annual NEE is highlighted, indicating that this process could shift some Mediterranean ecosystems from annual C sinks to sources.  相似文献   

9.
Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2 exchange (NEE; Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2-C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4-C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.  相似文献   

10.
This paper discusses the advantages and disadvantages of the different methods that separate net ecosystem exchange (NEE) into its major components, gross ecosystem carbon uptake (GEP) and ecosystem respiration (Reco). In particular, we analyse the effect of the extrapolation of night‐time values of ecosystem respiration into the daytime; this is usually done with a temperature response function that is derived from long‐term data sets. For this analysis, we used 16 one‐year‐long data sets of carbon dioxide exchange measurements from European and US‐American eddy covariance networks. These sites span from the boreal to Mediterranean climates, and include deciduous and evergreen forest, scrubland and crop ecosystems. We show that the temperature sensitivity of Reco, derived from long‐term (annual) data sets, does not reflect the short‐term temperature sensitivity that is effective when extrapolating from night‐ to daytime. Specifically, in summer active ecosystems the long‐term temperature sensitivity exceeds the short‐term sensitivity. Thus, in those ecosystems, the application of a long‐term temperature sensitivity to the extrapolation of respiration from night to day leads to a systematic overestimation of ecosystem respiration from half‐hourly to annual time‐scales, which can reach >25% for an annual budget and which consequently affects estimates of GEP. Conversely, in summer passive (Mediterranean) ecosystems, the long‐term temperature sensitivity is lower than the short‐term temperature sensitivity resulting in underestimation of annual sums of respiration. We introduce a new generic algorithm that derives a short‐term temperature sensitivity of Reco from eddy covariance data that applies this to the extrapolation from night‐ to daytime, and that further performs a filling of data gaps that exploits both, the covariance between fluxes and meteorological drivers and the temporal structure of the fluxes. While this algorithm should give less biased estimates of GEP and Reco, we discuss the remaining biases and recommend that eddy covariance measurements are still backed by ancillary flux measurements that can reduce the uncertainties inherent in the eddy covariance data.  相似文献   

11.
近年来,随着全球气候变化和人为影响加剧,半干旱草地生态系统的碳循环受到剧烈影响。半干旱草原区域CO_2模拟研究主要集中于已有观测资料的地区,然而,观测资料缺乏的草原区CO_2通量模拟却鲜少有人研究。因此选择缺通量资料的呼伦贝尔草原地区为主要研究对象,并将VPRM模型应用于缺资料地区,模拟了该区域内2016年的NEE时空分布。结果表明:(1)在特旱年的气候条件下2016年全年都表现为微弱的碳源(全年NEE值为47.27 gC/m~2),且其变化趋势与降水和气温在年内变化趋势相近。(2)空间上,根据趋势来看NEE在空间分布由草原区向草甸区、森林区逐渐降低。基于植被分布情况,不同植被类型的区域碳排放顺序为:克氏针茅草原和大针茅草原羊草草原杂草草甸草原(以线叶菊等为主)。(3)干旱胁迫是该地区表现为碳源的主要原因之一,而且降水与NEE表现出极显著的二次函数关系(R~2=0.938,P0.001),说明了干旱气候条件下,随着月降水量的增加,草原生态系统出现碳源向碳汇转移的趋势。(4)地上生物量(AGB)与GPP和Reco表现出了极显著的正相关关系(R~2分别为0.89和0.9,P0.01),与NEE表现出了极显著的负相关关系(R~2=0.68,P0.01),说明了草原的地上生物量增加能有效地降低二氧化碳排放。  相似文献   

12.

Peatlands are characterized by their large carbon (C) storage capacity and represent important C sinks globally. In southern Chile, young peatlands (few centuries old) have originated due to clearcutting or fire at forest sites with high precipitation on poorly drained soils. These novel ecosystems are called anthropogenic peatlands here. Their role in the regional C cycle remains largely unknown. Here, we present 18 months of eddy covariance measurements of net ecosystem exchange (NEE) of carbon dioxide (CO2) in an anthropogenic peatland in northern Chiloé Island, part of which is kept undisturbed for 30–40 years, by excluding human uses, and another section of the same peatland that has been disturbed by cattle grazing and Sphagnum moss extraction. Gross primary productivity (GPP) and ecosystem respiration (Reco) were modeled from NEE, based on measured photosynthetically active radiation and air temperature, separately for each section of the peatland. Uncertainties of the annual flux estimates were assessed from the variability of modelled fluxes induced by applying different time-windows for model development between 10 and 20 days. The undisturbed area of the peatland was on average (±?SD) a larger net CO2 sink (NEE?=???135?±?267 g?CO2?m?2?year?1) than the disturbed area (NEE?=???33?±?111 g?CO2?m?2?year?1). These NEE CO2 balances are small even though GPP and Reco were larger compared with other peatlands. Reco had a direct relationship with water table depth (from soil surface) and a negative relationship with soil water fraction. Our results show that the disturbance by moss extraction and cattle grazing is likely to reduce the CO2 sink function of many anthropogenic and natural peatlands on Chiloé Island, which are subjected to the same impacts.

  相似文献   

13.
We present 9 years of eddy covariance measurements made over an evergreen Mediterranean forest in southern France. The goal of this study was to quantify the different components of the carbon (C) cycle, gross primary production (GPP) and ecosystem respiration (Reco), and to assess the effects of climatic variables on these fluxes and on the net ecosystem exchange of carbon dioxide. The Puéchabon forest acted as a net C sink of ?254 g C m?2 yr?1, with a GPP of 1275 g C m?2 yr?1 and a Reco of 1021 g C m?2 yr?1. On average, 83% of the net annual C sink occurred between March and June. The effects of exceptional events such the insect‐induced partial canopy defoliation that occurred in spring 2005, and the spring droughts of 2005 and 2006 are discussed. A high interannual variability of ecosystem C fluxes during summer and autumn was observed but the resulting effect on the annual net C budget was moderate. Increased severity and/or duration of summer drought under climate change do not appear to have the potential to negatively impact the average C budget of this ecosystem. On the contrary, factors affecting ecosystem functioning (drought and/or defoliation) during March–June period may reduce dramatically the annual C balance of evergreen Mediterranean forests.  相似文献   

14.
Aim Winter snow has been suggested to regulate terrestrial carbon (C) cycling by modifying microclimate, but the impacts of change in snow cover on the annual C budget at a large scale are poorly understood. Our aim is to quantify the C balance under changing snow depth. Location Non‐permafrost region of the northern forest area. Methods Here, we used site‐based eddy covariance flux data to investigate the relationship between depth of snow cover and ecosystem respiration (Reco) during winter. We then used the Biome‐BGC model to estimate the effect of reductions in winter snow cover on the C balance of northern forests in the non‐permafrost region. Results According to site observations, winter net ecosystem C exchange (NEE) ranged from 0.028 to 1.53 gC·m?2·day?1, accounting for 44 ± 123% of the annual C budget. Model simulation showed that over the past 30 years, snow‐driven change in winter C fluxes reduced non‐growing season CO2 emissions, enhancing the annual C sink of northern forests. Over the entire study area, simulated winter Reco significantly decreased by 0.33 gC·m?2·day?1·year?1 in response to decreasing depth of snow cover, which accounts for approximately 25% of the simulated annual C sink trend from 1982 to 2009. Main conclusion Soil temperature is primarily controlled by snow cover rather than by air temperature as snow serves as an insulator to prevent chilling impacts. A shallow snow cover has less insulation potential, causing colder soil temperatures and potentially lower respiration rates. Both eddy covariance analysis and model‐simulated results show that both Reco and NEE are significantly and positively correlated with variation in soil temperature controlled by variation in snow depth. Overall, our results highlight that a decrease in winter snow cover restrains global warming as less C is emitted to the atmosphere.  相似文献   

15.
Ozone (O3) and nitrogen (N) deposition affect plant carbon (C) dynamics and may change ecosystem C‐sink/‐source properties. We studied effects of increased background [O3] (up to [ambient] × 2) and increased N deposition (up to +50 kg ha?1 a?1) on mature, subalpine grassland during the third treatment year. During 10 days and 13 nights, distributed evenly over the growth period of 2006, we measured ecosystem‐level CO2 exchange using a static cuvette. Light dependency of gross primary production (GPP) and temperature dependency of ecosystem respiration rates (Reco) were established. Soil temperature, soil water content, and solar radiation were monitored. Using Reco and GPP values, we calculated seasonal net ecosystem production (NEP), based on hourly averages of global radiation and soil temperature. Differences in NEP were compared with differences in soil organic C after 5 years of treatment. The high [O3] had no effect on aboveground dry matter productivity (DM), but seasonal mean rates of both Reco and GPP decreased ca. 8%. NEP indicated an unaltered growing season CO2–C balance. High N treatment, with a +31% increase in DM, mean Reco increased ca. 3%, but GPP decreased ca. 4%. Consequently, seasonal NEP yielded a 53.9 g C m?2 (±22.05) C loss compared with control. Independent of treatment, we observed a negative NEP of 146.4 g C m?2 (±15.3). Carbon loss was likely due to a transient management effect, equivalent to a shift from pasture to hay meadow and a drought effect, specific to the 2006 summer climate. We argue that this resulted from strongly intensified soil microbial respiration, following mitigation of nutrient limitation. There was no interaction between O3 and N treatments. Thus, during the 2006 growing season, the subalpine grassland lost >2% of total topsoil organic C as respired CO2, with increased N deposition responsible for one‐third of that loss.  相似文献   

16.
Tower‐based eddy covariance measurements of forest‐atmosphere carbon dioxide (CO2) exchange from many sites around the world indicate that there is considerable year‐to‐year variation in net ecosystem exchange (NEE). Here, we use a statistical modeling approach to partition the interannual variability in NEE (and its component fluxes, ecosystem respiration, Reco, and gross photosynthesis, Pgross) into two main effects: variation in environmental drivers (air and soil temperature, solar radiation, vapor pressure deficit, and soil water content) and variation in the biotic response to this environmental forcing (as characterized by the model parameters). The model is applied to a 9‐year data set from the Howland AmeriFlux site, a spruce‐dominated forest in Maine, USA. Gap‐filled flux measurements at this site indicate that the forest has been sequestering, on average, 190 g C m−2 yr−1, with a range from 130 to 270 g C m−2 yr−1. Our fitted model predicts somewhat more uptake (mean 270 g C m−2 yr−1), but interannual variation is similar, and wavelet variance analyses indicate good agreement between tower measurements and model predictions across a wide range of timescales (hours to years). Associated with the interannual variation in NEE are clear differences among years in model parameters for both Reco and Pgross. Analysis of model predictions suggests that, at the annual time step, about 40% of the variance in modeled NEE can be attributed to variation in environmental drivers, and 55% to variation in the biotic response to this forcing. As model predictions are aggregated at longer timescales (from individual days to months to calendar year), variation in environmental drivers becomes progressively less important, and variation in the biotic response becomes progressively more important, in determining the modeled flux. There is a strong negative correlation between modeled annual Pgross and Reco (r=−0.93, P≤0.001); two possible explanations for this correlation are discussed. The correlation promotes homeostasis of NEE: the interannual variation in modeled NEE is substantially less than that for either Pgross or Reco  相似文献   

17.
Tea plantations are widely distributed and continuously expanding across subtropical China in recent years. However, carbon flux exchanges from tea plantation ecosystems are poorly understood at the ecosystem level. In this study, we use the eddy covariance technique to quantify the magnitude and temporal variations of the net ecosystem exchange (NEE) in tea plantation in Southeast China over four years (2014–2017). The result showed that the tea plantation was a net carbon sink, with an annual NEE that ranged from ?182.40 to ?301.51 g C/m2, which was a much lower carbon sequestration potential than other ecosystems in subtropical China. Photosynthetic photon flux density (PPFD) explained the highest proportion of the variation in NEE and gross primary productivity (GPP) (for NEE: F = 389.89, p < .01; for GPP: F = 1,018.04, p < .01), and air temperature (Ta) explained the highest proportion of the variation in ecosystem respiration (RE) (F = 13,141.81, p < .01). The strong pruning activity in April not only reduced the carbon absorption capacity but also provided many plant residues for respiration, which switched the tea plantation to a carbon source from April to June. Suppression of NEE at higher air temperatures was due to the decrease in GPP more than the decrease in RE, which indicated that future global warming may transform this subtropical tea plantation from a carbon sink to carbon source.  相似文献   

18.
Arid grassland ecosystems have significant interannual variation in carbon exchange; however, it is unclear how environmental factors influence carbon exchange in different hydrological years. In this study, the eddy covariance technique was used to investigate the seasonal and interannual variability of CO2 flux over a temperate desert steppe in Inner Mongolia, China from 2008 to 2010. The amounts and times of precipitation varied significantly throughout the study period. The precipitation in 2009 (186.4 mm) was close to the long-term average (183.9±47.6 mm), while the precipitation in 2008 (136.3 mm) and 2010 (141.3 mm) was approximately a quarter below the long-term average. The temperate desert steppe showed carbon neutrality for atmospheric CO2 throughout the study period, with a net ecosystem carbon dioxide exchange (NEE) of −7.2, −22.9, and 26.0 g C m−2 yr−1 in 2008, 2009, and 2010, not significantly different from zero. The ecosystem gained more carbon in 2009 compared to other two relatively dry years, while there was significant difference in carbon uptake between 2008 and 2010, although both years recorded similar annual precipitation. The results suggest that summer precipitation is a key factor determining annual NEE. The apparent quantum yield and saturation value of NEE (NEEsat) and the temperature sensitivity coefficient of ecosystem respiration (Reco) exhibited significant variations. The values of NEEsat were −2.6, −2.9, and −1.4 µmol CO2 m−2 s−1 in 2008, 2009, and 2010, respectively. Drought suppressed both the gross primary production (GPP) and Reco, and the drought sensitivity of GPP was greater than that of Reco. The soil water content sensitivity of GPP was high during the dry year of 2008 with limited soil moisture availability. Our results suggest the carbon balance of this temperate desert steppe was not only sensitive to total annual precipitation, but also to its seasonal distribution.  相似文献   

19.
The net ecosystem exchange (NEE) of forests represents the balance of gross primary productivity (GPP) and respiration (R). Methods to estimate these two components from eddy covariance flux measurements are usually based on a functional relationship between respiration and temperature that is calibrated for night‐time (respiration) fluxes and subsequently extrapolated using daytime temperature measurements. However, respiration fluxes originate from different parts of the ecosystem, each of which experiences its own course of temperature. Moreover, if the temperature–respiration function is fitted to combined data from different stages of biological development or seasons, a spurious temperature effect may be included that will lead to overestimation of the direct effect of temperature and therefore to overestimates of daytime respiration. We used the EUROFLUX eddy covariance data set for 15 European forests and pooled data per site, month and for conditions of low and sufficient soil moisture, respectively. We found that using air temperature (measured above the canopy) rather than soil temperature (measured 5 cm below the surface) yielded the most reliable and consistent exponential (Q10) temperature–respiration relationship. A fundamental difference in air temperature‐based Q10 values for different sites, times of year or soil moisture conditions could not be established; all were in the range 1.6–2.5. However, base respiration (R0, i.e. respiration rate scaled to 0°C) did vary significantly among sites and over the course of the year, with increased base respiration rates during the growing season. We used the overall mean Q10 of 2.0 to estimate annual GPP and R. Testing suggested that the uncertainty in total GPP and R associated with the method of separation was generally well within 15%. For the sites investigated, we found a positive relationship between GPP and R, indicating that there is a latitudinal trend in NEE because the absolute decrease in GPP towards the pole is greater than in R.  相似文献   

20.
Wang C L  Zhou G Y  Tang X L  Wang X  Zhou C Y  Yu G R  Tang L S  Meng Z 《农业工程》2007,27(7):2659-2668
Accurate estimation of ecosystem respiration (Reco) in forest ecosysteMs is critical for validating terrestrial carbon models. Continuous eddy covariance measuremenTs of Reco were conducted in a coniferous and broad-leaved mixed forest located in Dinghushan Nature Reserve of southern China. Reco was estimated and the controlling environmental factors were analyzed based on two years' data from 2003 to 2004. Major resulTs included that: (1) Reco was affected by soil temperature, soil moisture, canopy air temperature and humidity, where soil temperature at 5 cm depth was the dominant factor. (2) The exponential equation, Van't Hoff equation, Arrhenius equation and Lyold-Talor equation can be used to describe the relationship between Reco and temperature factors with similar statistical significance, while Lyold-Talor equation was the most sensitive to the temperature index (Q10). (3) The multiplicative model driven by soil temperature (Ts) and soil moisture (Ms) was more corresponsive to Reco, which explained that there were more Reco variations than Lyold-Talor equation, both for higher and lower Ms. However, there was no statistical difference between the two models. (4) Annually accumulated Reco of the mixed forest in 2003 was estimated as 1100–1135.6 gC m?2 a?1 by using daytime data, which was 12%–25% higher than Reco (921–975 gC m?2 a?1) estimated by using nighttime data. The resulTs suggested that using daytime data to estimate Reco can avoid the common underestimation problem caused by using eddy covariance methods. The study provides a basic method for further study on accurate estimation of net ecosystem CO2 exchange (NEE) in the coniferous and broad-leaved mixed forest in southern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号