首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
Dramatic changes have occurred in the Arctic Ocean over the past few decades, especially in terms of sea ice loss and ocean warming. Those environmental changes may modify the planktonic ecosystem with changes from lower to upper trophic levels. This study aimed to understand how the biogeographic distribution of a crucial endemic copepod species, Calanus glacialis, may respond to both abiotic (ocean temperature) and biotic (phytoplankton prey) drivers. A copepod individual‐based model coupled to an ice‐ocean‐biogeochemical model was utilized to simulate temperature‐ and food‐dependent life cycle development of C. glacialis annually from 1980 to 2014. Over the 35‐year study period, the northern boundaries of modeled diapausing C. glacialis expanded poleward and the annual success rates of C. glacialis individuals attaining diapause in a circumpolar transition zone increased substantially. Those patterns could be explained by a lengthening growth season (during which time food is ample) and shortening critical development time (the period from the first feeding stage N3 to the diapausing stage C4). The biogeographic changes were further linked to large‐scale oceanic processes, particularly diminishing sea ice cover, upper ocean warming, and increasing and prolonging food availability, which could have potential consequences to the entire Arctic shelf/slope marine ecosystems.  相似文献   

2.
One of the major climate‐forced global changes has been white to blue to green; losses of sea ice extent in time and space around Arctic and West Antarctic seas has increased open water and the duration (though not magnitude) of phytoplankton blooms. Blueing of the poles has increases potential for heat absorption for positive feedback but conversely the longer phytoplankton blooms have increased carbon export to storage and sequestration by shelf benthos. However, ice shelf collapses and glacier retreat can calve more icebergs, and the increased open water allows icebergs more opportunities to scour the seabed, reducing zoobenthic blue carbon capture and storage. Here the size and variability in benthic blue carbon in mega and macrobenthos was assessed in time and space at Ryder and Marguerite bays of the West Antarctic Peninsula (WAP). In particular the influence of the duration of primary productivity and ice scour are investigated from the shallows to typical shelf depths of 500 m. Ice scour frequency dominated influence on benthic blue carbon at 5 m, to comparable with phytoplankton duration by 25 m depth. At 500 m only phytoplankton duration was significant and influential. WAP zoobenthos was calculated to generate ~107, 4.5 × 106 and 1.6 × 106 tonnes per year (between 2002 and 2015) in terms of production, immobilization and sequestration of carbon respectively. Thus about 1% of annual primary productivity has sequestration potential at the end of the trophic cascade. Polar zoobenthic blue carbon capture and storage responses to sea ice losses, the largest negative feedback on climate change, has been underestimated despite some offsetting of gain by increased ice scouring with more open water. Equivalent survey of Arctic and sub‐Antarctic shelves, for which new projects have started, should reveal the true extent of this feedback and how much its variability contributes to uncertainty in climate models.  相似文献   

3.
The effects of food quality on maturation rate were followed in progeny from wild Arctic charr, caught in Lake Fattjaure, northern Sweden. The fish were reared at five different food quality levels. In the first summer, the fry were given feed of three qualities: diluted with cellulose in three proportions (0, 15 and 25%). During the second winter the impact of changed food quality level was studied by transferring half the fish from the high (control) to the low food quality level and vice versa.
Maturation rate was lower in males reared at the high and improved food quality levels than in males reared at the medium, low and reduced food quality levels. The maturation rate in females was similar at all levels, though the rate tended to increase at the reduced food quality level.
Fish reared at the high and medium levels had similar growth rates, whereas fish at the low food quality level experienced slower growth. Reduced food quality did not arrest the growth offish, whereas improved food quality enhanced their growth.  相似文献   

4.
Warmer springs may cause animals to become mistimed if advances of spring timing, including available resources and of timing of breeding occur at different speed. We used thermal sums (cumulative sum of degree days) during spring to describe the thermal progression (timing) of spring and investigate its relationship to breeding phenology and demography of a long‐distant migrant bird, the northern wheatear (Oenanthe oenanthe L.). We first compare 20‐year trends in spring timing, breeding time, selection for breeding time, and annual demographic rates. We then explicitly test whether annual variation in selection for breeding time and demographic rates associates with the degree of phenological matching between breeding time and thermal progression of spring. Both thermal progression of spring and breeding time of wheatears advanced in time during the study period. But despite breeding on average 7 days earlier with respect to date, wheatears bred about 4 days later with respect to thermal spring progression. Over the same time period, selection for breeding time changed from distinct within‐season advantage of breeding early to no or very weak advantage. Furthermore, demographic rates (nest success, fledgling production, recruitment, adult survival) and nestling weight declined markedly by 16%–79%. Those temporal trends suggest that a reduced degree of phenological matching may affect within‐season fitness advantage of early breeding and population demographic rates. In contrast, when we investigate links based on annual variation, we find no significant relationship between either demographic rates or fitness advantage of early breeding with annual variation in the degree of phenological matching. Our results show that corresponding temporal trends in phenological matching, selection for breeding time and demographic rates are inconclusive evidence for demographic effects of changed phenological matching. Instead, we suggest that the trends in selection for breeding time and demographic rates are due to a general deterioration of the breeding environment.  相似文献   

5.
Animals must balance a series of costs and benefits while trying to maximize their fitness. For example, an individual may need to choose how much energy to allocate to reproduction versus growth, or how much time to spend on vigilance versus foraging. Their decisions depend on complex interactions between environmental conditions, behavioral plasticity, reproductive biology, and energetic demands. As animals respond to novel environmental conditions caused by climate change, the optimal decisions may shift. Stochastic dynamic programming provides a flexible modeling framework with which to explore these trade‐offs, but this method has not yet been used to study possible changes in optimal trade‐offs caused by climate change. We created a stochastic dynamic programming model capturing trade‐off decisions required by an individual adult female polar bear (Ursus maritimus) as well as the fitness consequences of her decisions. We predicted optimal foraging decisions throughout her lifetime as well as the energetic thresholds below which it is optimal for her to abandon a reproductive attempt. To explore the effects of climate change, we shortened the spring feeding period by up to 3 weeks, which led to predictions of riskier foraging behavior and higher reproductive thresholds. The resulting changes in fitness may be interpreted as a best‐case scenario, where bears adapt instantaneously and optimally to new environmental conditions. If the spring feeding period was reduced by 1 week, her expected fitness declined by 15%, and if reduced by 3 weeks, expected fitness declined by 68%. This demonstrates an effective way to explore a species' optimal response to a changing landscape of costs and benefits and highlights the fact that small annual effects can result in large cumulative changes in expected lifetime fitness.  相似文献   

6.
7.
The ctenophore Mnemiopsis leidyi is at the northern extreme of its geographic range in Narragansett Bay, an estuary on the northeast coast of the United States. Blooms have typically been observed in late summer and fall according to records from 1950 to 1979. We document an expansion of the seasonal range of this important planktonic predator to include springtime blooms during the 1980s and 1990s. This shift to an earlier seasonal maximum is associated with increasing water temperature in Narragansett Bay. Temperatures in spring have risen, on average, 2 °C from 1950 to 1999 with warm years being associated with the positive phase of the North Atlantic Oscillation. During 1999, M. leidyi appeared earlier in spring and was more abundant than during any previous year for which records are available. Changes in the seasonal pattern and abundance of this predator are likely to have important effects on planktonic ecosystem dynamics of Narragansett Bay. These include reduction of zooplankton abundance in spring followed by increases in size and frequency of summer phytoplankton blooms. Earlier blooms of M. leidyi may also reduce survival of eggs and larvae of fish because, as in 1999, they coincide with the period of peak spawning.  相似文献   

8.
We investigated how the relative availability of solar radiation in the presence or absence of grazing alters the ability of benthic algae to respond to nutrient enrichment in an Alaskan marsh. We used a factorial mesocosm experiment that included nutrient enrichment (enriched or control), grazing (grazed or ungrazed), and light (unshaded or shaded) to simulate shading by macrophytes early and late in the growing season, respectively. We found stronger effects of grazers and nutrients compared to light on benthic algal biomass and taxonomic composition. Algal biomass increased in nutrient‐enriched treatments and was reduced by grazing. Shading did not have an effect on algal biomass or taxonomic composition, but the concentration of chl a per algal biovolume increased with shading, demonstrating the ability of algae to compensate for changes in light availability. Algal taxonomic composition was more affected by grazer presence than nutrients or light. Grazer‐resistant taxa (basal filaments of Stigeoclonium) were replaced by diatoms (Nitzschia) and filamentous green algae (Ulothrix) when herbivores were removed. The interacting and opposing influences of nutrients and grazing indicate that the algal community is under dual control from the bottom‐up (nutrient limitation) and from the top‐down (consumption by herbivores), although grazers had a stronger influence on algal biomass and taxonomic composition than nutrient enrichment. Our results suggest that low light availability will not inhibit the algal response to elevated nutrient concentrations expected with ongoing climate change, but grazers rapidly consume algae following enrichment, masking the effects of elevated nutrients on algal production.  相似文献   

9.
How the abundant pelagic life of the Southern Ocean survives winter darkness, when the sea is covered by pack ice and phytoplankton production is nearly zero, is poorly understood. Ice‐associated (“sympagic”) microalgae could serve as a high‐quality carbon source during winter, but their significance in the food web is so far unquantified. To better understand the importance of ice algae‐produced carbon for the overwintering of Antarctic organisms, we investigated fatty acid (FA) and stable isotope compositions of 10 zooplankton species, and their potential sympagic and pelagic carbon sources. FA‐specific carbon stable isotope compositions were used in stable isotope mixing models to quantify the contribution of ice algae‐produced carbon (αIce) to the body carbon of each species. Mean αIce estimates ranged from 4% to 67%, with large variations between species and depending on the FA used for the modelling. Integrating the αIce estimates from all models, the sympagic amphipod Eusirus laticarpus was the most dependent on ice algal carbon (αIce: 54%–67%), and the salp Salpa thompsoni showed the least dependency on ice algal carbon (αIce: 8%–40%). Differences in αIce estimates between FAs associated with short‐term vs. long‐term lipid pools suggested an increasing importance of ice algal carbon for many species as the winter season progressed. In the abundant winter‐active copepod Calanus propinquus, mean αIce reached more than 50% in late winter. The trophic carbon flux from ice algae into this copepod was between 3 and 5 mg C m?2 day?1. This indicates that copepods and other ice‐dependent zooplankton species transfer significant amounts of carbon from ice algae into the pelagic system, where it fuels the food web, the biological carbon pump and elemental cycling. Understanding the role of ice algae‐produced carbon in these processes will be the key to predictions of the impact of future sea ice decline on Antarctic ecosystem functioning.  相似文献   

10.
1. Bird ringing schemes have collected immense amounts of data on timing of breeding for over 100 years. These data provide an unexploited source of information on temporal change in breeding date. 2. We investigated changes in breeding date of the Arctic tern Sterna paradisaea Pont. in Denmark during 1929-98, using information on ringing date of young. 3. Mean ringing date advanced by over 18 days during 70 years, while there was no temporal change in variance in date. 4. Advanced mean ringing date was explained by an increase in mean temperature during April and May and an increase in North Atlantic Oscillation (NAO) index for May. 5. Variance in ringing date increased in years with high temperatures in April and high NAO index values in April. 6. There was changing temporal patterns of selection for early breeding as reflected by analyses of the difference in mean ringing date for Arctic tern young that were subsequently recorded as survivors and mean ringing date for all young. The intensity of selection on breeding date changed from favouring late breeding in the 1930s to favouring early breeding during the 1990s. 7. Analyses of bird ringing information for millions of offspring of hundreds of bird species deposited in national ringing schemes may provide unlimited access to long-term time series of reproductive variables.  相似文献   

11.
Climate change may influence the phenology of organisms unequally across trophic levels and thus lead to phenological mismatches between predators and prey. In cases where prey availability peaks before reproducing predators reach maximal prey demand, any negative fitness consequences would selectively favor resynchronization by earlier starts of the reproductive activities of the predators. At a study site in northeast Greenland, over a period of 17 years, the median emergence of the invertebrate prey of Sanderling Calidris alba advanced with 1.27 days per year. Yet, over the same period Sanderling did not advance hatching date. Thus, Sanderlings increasingly hatched after their prey was maximally abundant. Surprisingly, the phenological mismatches did not affect chick growth, but the interaction of the annual width and height of the peak in food abundance did. Chicks grew especially better in years when the food peak was broad. Sanderling clutches were most likely to be depredated early in the season, which should delay reproduction. We propose that high early clutch predation may favor a later reproductive timing. Additionally, our data suggest that in most years food was still abundant after the median date of emergence, which may explain why Sanderlings did not advance breeding along with the advances in arthropod phenology.  相似文献   

12.
The fatty acid compositions of phytoplankton and major primary consumers were analyzed during the development of seasonal algal blooms in the Bahía Blanca estuary, situated on the southern coast of the province of Buenos Aires (Argentina), and Trinity Bay, at Sunnyside, on the eastern coast of Newfoundland (Canada). Primary consumers in the Bahía Blanca estuary were zooplankton dominated by the calanoid copepod Acartia tonsa. At Sunnyside, the primary consumers were the sea scallop Placopecten magellanicus, an ecological and economical important benthic bivalve. The study shows that in spite of obvious differences between the two environments and the analytical approaches employed in each case, the analyses of fatty acid biomarkers can provide relevant ecological information. The fatty acid composition of the lipids of Bahía Blanca phytoplankton (high concentrations of the fatty acids 14:0, 16:4ω1, and 20:5ω3) reflected the presence of diatoms as a major component throughout the bloom. Fatty acid markers of the post-bloom phytoplankton in Bahía Blanca indicated a decline of phytoplankton biomass, and a relatively high input of detritus and terrestrial plant materials to the particulate organic matter of the estuary. Linoleic acid (18:2ω6), a typical “terrestrial” fatty acid, was conspicuous in the lipids of the post-bloom particulate matter of the Bahía Blanca estuary; 18:2ω2 was subsequently incorporated into zooplankton lipids diatom markers were also prominent in the lipids of pre-bloom and bloom phytoplankton at Sunnyside; post-bloom phytoplankton showed higher proportions of 18:0, 18:1ω9, and 18:4ω3, characteristic and often major fatty acids of dinoflagellates. The fatty acids of the digestive gland of P. magellanicus reflected the fatty acid composition of the phytoplankton, whereas those of the adductor muscle were practically unaffected by the composition of the food. This organ-specific response of an animal to the fatty acid composition of the diet is examined in terms of different applications of the fatty acid marker concept.  相似文献   

13.
Food waste from fish and fruit shops was used as an alternative to the grain in grower-finisher pig diets. Two diets were formulated on an iso-nutrient basis (14 MJ digestible energy per kg, 160 g crude protein per kg on a dry-matter basis) to contain 0 g of food waste per kg in the control diet and 50 g of fish-shop waste per kg and 120 g of fruit-shop waste per kg in the experimental diet. In the study, 28 pigs per diet (seven pigs per pen) were fed ad libitum from 20 kg to 100 kg, then, they were slaughtered and the carcass characteristics determined. The inclusion of food waste in the diet had no significant effect (P>0.05) on average daily feed intake (2.12 v. 2.20 kg/day), average daily gain (0.74 v. 0.78 kg/day), or gain/feed (0.35 v. 0.35 kg per kg). In the case of the experimental diet, backfat thickness was significantly lower (18.0 v. 21.3 mm, P < 0.01). The results of the taste test indicated that the meat from food waste-fed pigs had acceptable organoleptic quality although a very light aroma to fish was observed in the bacon (P < 0.01).It was concluded that food waste from the fish and fruit shops could be included in grower-finisher pig diets without any detrimental effect on growth performance and only minor effects on carcass characteristics and meat quality.  相似文献   

14.
There are more than 50000 known edible plants in the world, yet two‐thirds of global plant‐derived food is provided by only three major cereals – maize (Zea mays), wheat (Triticum aestivum) and rice (Oryza sativa). The dominance of this triad, now considered truly global food commodities, has led to a decline in the number of crop species contributing to global food supplies. Our dependence on only a few crop species limits our capability to deal with challenges posed by the adverse effects of climate change and the consequences of dietary imbalance. Emerging evidence suggests that climate change will cause shifts in crop production and yield loss due to more unpredictable and hostile weather patterns. One solution to this problem is through the wider use of underutilised (also called orphan or minor) crops to diversify agricultural systems and food sources. In addition to being highly nutritious, underutilised crops are resilient in natural and agricultural conditions, making them a suitable surrogate to the major crops. One such crop is teff [Eragrostis tef (Zucc.) Trotter], a warm‐season annual cereal with the tiniest grain in the world. Native to Ethiopia and often the sustenance for local small farmers, teff thrives in both moisture‐stressed and waterlogged soil conditions, making it a dependable staple within and beyond its current centre of origin. Today, teff is deemed a healthy wheat alternative in the West and is sought‐after by health aficionados and those with coeliac disease or gluten sensitivity. The blooming market for healthy food is breathing new life into this underutilised crop, which has received relatively limited attention from mainstream research perhaps due to its ‘orphan crop’ status. This review presents the past, present and future of an ancient grain with a potential beyond its size.  相似文献   

15.
Previous experiments with a factorial design have revealed the effects of several environmental factors on species performance and their interactions, which indicate synergistic or antagonistic effects. Temperature, nutrient availability, and irradiance are well‐known environmental factors that affect the growth and chemical composition of brown algae. However, relatively few studies have tested their combined effect on brown algal growth and chemical composition using a three‐way factorial design. We conducted a culture experiment to test the combined effects of elevated summer temperatures (23 and 26°C), irradiance (180 and 30 μmol photon m?2 s?1), and nutrient availability (enriched and non‐enriched seawater) on four relative growth rates (RGRs; based on wet weight, blade width, length, and area) and three chemical compositions (including carbon, nitrogen, and phlorotannin content) in juvenile sporophytes of the kelp Eisenia bicyclis. RGR based on blade width was the most sensitive to abiotic factors among all RGRs. A significant interaction between temperature and nutrient availability on this RGR suggested that the negative effect of elevated temperature was antagonized by a reduction in nutrient availability. Similarly, the positive effect of elevated irradiance on carbon content was synergized by reduced nutrient availability. Moreover, the negative effect of increased irradiance on nitrogen content was antagonized by elevated temperature in nutrient‐enriched treatments, but not in non‐enriched treatments. The content of carbon‐based phlorotannins increased with reduced nutrient availability but not with elevated irradiance. These results suggest that these abiotic factors have complex interactions on the growth and chemical composition of this species.  相似文献   

16.
The objective of this study was to determine the upper thermal limits of Arctic cod Boreogadus saida by measuring the response of maximum heart rate (fHmax) to acute warming. One set of fish were tested in a field laboratory in Cambridge Bay (CB), Nunavut (north of the Arctic Circle), and a second set were tested after air transport to and 6 month temperature acclimation at the Vancouver Aquarium (VA) laboratory. In both sets of tests, with B. saida acclimated to 0° C, fHmax increased during acute warming up to temperatures considerably higher than the acclimation temperature and the near‐freezing Arctic temperatures in which they are routinely found. Indeed, fHmax increased steadily between 0·5 and 5·5° C, with no significant difference between the CB and VA tests (P > 0·05) and with an overall mean ± s.e. Q10 of 2·4 ± 0·5. The first Arrhenius breakpoint temperature (TAB) for fHmax was also statistically indistinguishable for the two sets of tests (mean ± s.e. 3·2 ± 0·3 and 3·6 ± 0·3° C), suggesting that the temperature optimum for B. saida could be reliably measured after live transport to a more southerly laboratory location. Continued warming above 5·5° C revealed a large variability among individuals in the upper thermal limits that triggered cardiac arrhythmia (Tarr), ranging from 10·2 to 15·2° C with mean ± s.e. 12·4 ± 0·4° C (n = 11) for the field study. A difference did exist between the CB and VA breakpoint temperatures when the Q10 value decreased below 2 (the Q10 breakpoint temperature; TQB) at 8·0 and 5·5° C, respectively. These results suggest that factors, other than thermal tolerance and associated cardiac performance, may influence the realized distribution of B. saida within the Arctic Circle.  相似文献   

17.
As global warming has lengthened the active seasons of many species, we need a framework for predicting how advances in phenology shape the life history and the resulting fitness of organisms. Using an individual‐based model, we show how warming differently affects annual cycles of development, growth, reproduction and activity in a group of North American lizards. Populations in cold regions can grow and reproduce more when warming lengthens their active season. However, future warming of currently warm regions advances the reproductive season but reduces the survival of embryos and juveniles. Hence, stressful temperatures during summer can offset predicted gains from extended growth seasons and select for lizards that reproduce after the warm summer months. Understanding these cascading effects of climate change may be crucial to predict shifts in the life history and demography of species.  相似文献   

18.
Extreme weather events can have strong negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme, short‐lived, winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (for instance, 2–10 °C for 2–14 days) but upon return to normal winter climate exposes the ecosystem to much colder temperatures due to the loss of insulating snow. Single events have been shown to reduce plant reproduction and increase shoot mortality, but impacts of multiple events are little understood as are the broader impacts on community structure, growth, carbon balance, and nutrient cycling. To address these issues, we simulated week‐long extreme winter warming events – using infrared heating lamps and soil warming cables – for 3 consecutive years in a sub‐Arctic heathland dominated by the dwarf shrubs Empetrum hermaphroditum, Vaccinium vitis‐idaea (both evergreen) and Vaccinium myrtillus (deciduous). During the growing seasons after the second and third winter event, spring bud burst was delayed by up to a week for E. hermaphroditum and V. myrtillus, and berry production reduced by 11–75% and 52–95% for E. hermaphroditum and V. myrtillus, respectively. Greater shoot mortality occurred in E. hermaphroditum (up to 52%), V. vitis‐idaea (51%), and V. myrtillus (80%). Root growth was reduced by more than 25% but soil nutrient availability remained unaffected. Gross primary productivity was reduced by more than 50% in the summer following the third simulation. Overall, the extent of damage was considerable, and critically plant responses were opposite in direction to the increased growth seen in long‐term summer warming simulations and the ‘greening’ seen for some arctic regions. Given the Arctic is warming more in winter than summer, and extreme events are predicted to become more frequent, this generates large uncertainty in our current understanding of arctic ecosystem responses to climate change.  相似文献   

19.
Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high‐Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community‐scale and long‐term experiments in stress response.  相似文献   

20.
Effects of climate change are predicted to be greatest at high latitudes, with more pronounced warming in winter than summer. Extreme mid‐winter warm spells and heavy rain‐on‐snow events are already increasing in frequency in the Arctic, with implications for snow‐pack and ground‐ice formation. These may in turn affect key components of Arctic ecosystems. However, the fitness consequences of extreme winter weather events for tundra plants are not well understood, especially in the high Arctic. We simulated an extreme mid‐winter rain‐on‐snow event at a field site in high Arctic Svalbard (78°N) by experimentally encasing tundra vegetation in ice. After the subsequent growing season, we measured the effects of icing on growth and fitness indices in the common tundra plant, Arctic bell‐heather (Cassiope tetragona). The suitability of this species for retrospective growth analysis enabled us to compare shoot growth in pre and postmanipulation years in icing treatment and control plants, as well as shoot survival and flowering. Plants from icing treatment plots had higher shoot mortality and lower flowering success than controls. At the individual sample level, heavily flowering plants invested less in shoot growth than nonflowering plants, while shoot growth was positively related to the degree of shoot mortality. Therefore, contrary to expectation, undamaged shoots showed enhanced growth in ice treatment plants. This suggests that following damage, aboveground resources were allocated to the few remaining undamaged meristems. The enhanced shoot growth measured in our icing treatment plants has implications for climate studies based on retrospective analyses of Cassiope. As shoot growth in this species responds positively to summer warming, it also highlights a potentially complex interaction between summer and winter conditions. By documenting strong effects of icing on growth and reproduction of a widespread tundra plant, our study contributes to an understanding of Arctic plant responses to projected changes in winter climatic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号