首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In Mycobacterium tuberculosis and ampicillin‐resistant mutants of Enterococcus faecium, the classical target of β‐lactam antibiotics is bypassed by l ,d ‐transpeptidases that form unusual 3 → 3 peptidoglycan cross‐links. β‐lactams of the carbapenem class, such as ertapenem, are mimics of the acyl donor substrate and inactivate l ,d ‐transpeptidases by acylation of their catalytic cysteine. We have blocked the acyl donor site of E. faecium l ,d ‐transpeptidase Ldtfm by ertapenem and identified the acyl acceptor site based on analyses of chemical shift perturbations induced by binding of peptidoglycan fragments to the resulting acylenzyme. An nuclear magnetic resonance (NMR)‐driven docking structure of the complex revealed key hydrogen interactions between the acyl acceptor and Ldtfm that were evaluated by site‐directed mutagenesis and development of a cross‐linking assay. Three residues are reported as critical for stabilisation of the acceptor in the Ldtfm active site and proper orientation of the nucleophilic nitrogen for the attack of the acylenzyme carbonyl. Identification of the catalytic pocket dedicated to the acceptor substrate opens new perspectives for the design of inhibitors with an original mode of action that could act alone or in synergy with β‐lactams.  相似文献   

2.
The beta-lactam antibiotics mimic the D-alanyl(4)-D-alanine(5) extremity of peptidoglycan precursors and act as "suicide" substrates of the DD-transpeptidases that catalyze the last cross-linking step of peptidoglycan synthesis. We have previously shown that bypass of the dd-transpeptidases by the LD-transpeptidase of Enterococcus faecium (Ldt(fm)) leads to high level resistance to ampicillin. Ldt(fm) is specific for the L-lysyl(3)-D-alanine(4) bond of peptidoglycan precursors containing a tetrapeptide stem lacking D-alanine(5). This specificity was proposed to account for resistance, because the substrate of Ldt(fm) does not mimic beta-lactams in contrast to the D-alanyl(4)-D-alanine(5) extremity of pentapeptide stems used by the DD-transpeptidases. Here, we unexpectedly show that imipenem, a beta-lactam of the carbapenem class, totally inhibited Ldt(fm) at a low drug concentration that was sufficient to inhibit growth of the bacteria. Peptidoglycan cross-linking was also inhibited, indicating that Ldt(fm) is the in vivo target of imipenem. Stoichiometric and covalent modification of Ldt(fm) by imipenem was detected by mass spectrometry. The modification was mapped into the trypsin fragment of Ldt(fm) containing the catalytic Cys residue, and the Cys to Ala substitution prevented imipenem binding. The mass increment matched the mass of imipenem, indicating that inactivation of Ldt(fm) is likely to involve rupture of the beta-lactam ring and acylation of the catalytic Cys residue. Thus, the spectrum of activity of beta-lactams is not restricted to transpeptidases of the DD-specificity, as previously thought. Combination therapy with imipenem and ampicillin could therefore be active against E. faecium strains having the dual capacity to manufacture peptidoglycan with transpeptidases of the LD- and DD-specificities.  相似文献   

3.
The d,d-transpeptidase activity of high molecular weight penicillin-binding proteins (PBPs) is essential to maintain cell wall integrity as it catalyzes the final cross-linking step of bacterial peptidoglycan synthesis. We investigated a novel beta-lactam resistance mechanism involving by-pass of the essential PBPs by l,d-transpeptidation in Enterococcus faecium. Determination of the peptidoglycan structure by reverse phase high performance liquid chromatography coupled to mass spectrometry revealed that stepwise selection for ampicillin resistance led to the gradual replacement of the usual cross-links generated by the PBPs (d-Ala(4) --> d-Asx-Lys(3)) by cross-links resulting from l,d-transpeptidation (l-Lys(3) --> d-Asx-Lys(3)). This was associated with no modification of the level of production of the PBPs or of their affinity for beta-lactams, indicating that altered PBP activity was not required for ampicillin resistance. A beta-lactam-insensitive l,d-transpeptidase was detected in membrane preparations of the parental susceptible strain. Acquisition of resistance was not because of variation of this activity. Instead, selection led to production of a beta-lactam-insensitive d,d-carboxypeptidase that cleaved the C-terminal d-Ala residue of pentapeptide stems in vitro and caused massive accumulation of cytoplasmic precursors containing a tetrapeptide stem in vivo. The parallel dramatic increase in the proportion of l-Lys(3) --> d-Asx-Lys(3) cross-links showed that the enzyme was activating the resistance pathway by generating the substrate for the l,d-transpeptidase.  相似文献   

4.
d ‐Alanyl‐d ‐alanine carboxypeptidase DacC is important for synthesis and stabilization of the peptidoglycan layer of Escherichia coli. In this work, dacC of E. coli BL21 (DE3) was successfully deleted, and the effects of this deletion on extracellular protein production in E. coli were investigated. The extracellular activities and fluorescence value of recombinant amylase, green fluorescent protein, and α‐galactosidase of the deletion mutants were increased by 82.3, 29.1, and 37.7%, respectively, compared with that of control cells. The outer membrane permeability and intracellular soluble peptidoglycan accumulation of deletion mutant were also enhanced compared with those of control cells, respectively. Based on fluorescence‐assisted cell sorting analyses, we found that the morphology of the E. coli deletion mutant cells was altered compared with that of control cells. Local transparent bulges in the poles of the E. coli mutant with deletion of the dacC gene were found by transmission electron microscopy analysis. These bulges in the poles could explain the improvement in the production of extracellular protein by the E. coli mutant with deletion of the dacC gene. These findings provide important insights into the extracellular production of proteins using E. coli as microbial cell factories.  相似文献   

5.
Corynebacterium jeikeium is an emerging nosocomial pathogen responsible for vascular catheters infections, prosthetic endocarditis and septicemia. The treatment of C. jeikeium infections is complicated by the multiresistance of clinical isolates to antibiotics, in particular to β-lactams, the most broadly used class of antibiotics. To gain insight into the mechanism of β-lactam resistance, we have determined the structure of the peptidoglycan and shown that C. jeikeium has the dual capacity to catalyse formation of cross-links generated by transpeptidases of the d , d and l , d specificities. Two ampicillin-insensitive cross-linking enzymes were identified, LdtCjk1, a member of the active site cysteine l , d -transpeptidase family, and Pbp2c, a low-affinity class B penicillin-binding protein (PBP). In the absence of β-lactam, the PBPs and the l , d -transpeptidase contributed to the formation of 62% and 38% of the cross-links respectively. Although LdtCjk1 and Pbp2C were not inhibited by ampicillin, the participation of the l , d -transpeptidase to peptidoglycan cross-linking decreased in the presence of the drug. The specificity of LdtCjk1 for acyl donors containing a tetrapeptide stem accounts for this effect of ampicillin since the essential substrate of LdtCjk1 was produced by an ampicillin-sensitive d , d -carboxypeptidase (Pbp4Cjk). Acquisition and mutational alterations of pbp2C accounted for high-level β-lactam resistance in C. jeikeium .  相似文献   

6.
Bacterial cell wall hydrolases are essential for peptidoglycan turnover and crucial to preserve cell shape. The d ,d ‐carboxypeptidase DacA and l ,d ‐carboxypeptidase DacB of Streptococcus pneumoniae function in a sequential manner. Here, we determined the structure of the surface‐exposed lipoprotein DacB. The crystal structure of DacB, radically different to that of DacA, contains a mononuclear Zn2+ catalytic centre located in the middle of a large and fully exposed groove. Two different conformations were found presenting a different arrangement of the active site topology. The critical residues for catalysis and substrate specificity were identified. Loss‐of‐function of DacA and DacB altered the cell shape and this was consistent with a modified peptidoglycan peptide composition in dac mutants. Contrary, an lgt mutant lacking lipoprotein diacylglyceryl transferase activity required for proper lipoprotein maturation retained l ,d ‐carboxypeptidase activity and showed an intact murein sacculus. In addition we demonstrated pathophysiological effects of disabled DacA or DacB activities. Real‐time bioimaging of intranasal infected mice indicated a substantial attenuation of ΔdacB and ΔdacAΔdacB pneumococci, while ΔdacA had no significant effect. In addition, uptake of these mutants by professional phagocytes was enhanced, while the adherence to lung epithelial cells was decreased. Thus, structural and functional studies suggest DacA and DacB as optimal drug targets.  相似文献   

7.
Penicillin-binding proteins were long considered as the only peptidoglycan cross-linking enzymes and one of the main targets of β-lactam antibiotics. A new class of transpeptidases, the l,d-transpeptidases, has emerged in the last decade. In most Gram-negative and Gram-positive bacteria, these enzymes generally have nonessential roles in peptidoglycan synthesis. In some clostridiae and mycobacteria, such as Mycobacterium tuberculosis, they are nevertheless responsible for the major peptidoglycan cross-linking pathway. l,d-Transpeptidases are thus considered as appealing new targets for the development of innovative therapeutic approaches. Carbapenems are currently investigated in this perspective as they are active on extensively drug-resistant M. tuberculosis and represent the only β-lactam class inhibiting l,d-transpeptidases. The molecular basis of the enzyme selectivity for carbapenems nevertheless remains an open question. Here we present the backbone and side-chain 1H, 13C, 15N NMR assignments of the catalytic domain of Enterococcus faecium l,d-transpeptidase before and after acylation with the carbapenem ertapenem, as a prerequisite for further structural and functional studies.  相似文献   

8.
Molecular recognition in water is an important challenge in supramolecular chemistry. Surface‐core double cross‐linking of template‐containing surfactant micelles by the click reaction and free radical polymerization yields molecularly imprinted nanoparticles (MINPs) with guest‐complementary binding sites. An important property of MINP‐based receptors is the surface‐cross‐linking between the propargyl groups of the surfactants and a diazide cross‐linker. Decreasing the number of carbons in between the two azides enhanced the binding affinity of the MINPs, possibly by keeping the imprinted binding site more open prior to the guest binding. The depth of the binding pocket can be controlled by the distribution of the hydrophilic/hydrophobic groups of the template and was found to influence the binding in addition to electrostatic interactions between oppositely charged MINPs and guests. Cross‐linkers with an alkoxyamine group enabled two‐stage double surface‐cross‐linking that strengthened the binding constants by an order of magnitude, possibly by expanding the binding pocket of the MINP into the polar region. The binding selectivity among very similar isomeric structures also improved.  相似文献   

9.
D-aspartate ligase has remained the last unidentified peptide bond-forming enzyme in the peptidoglycan assembly pathway of Gram-positive bacteria. Here we show that a two-gene cluster of Enterococcus faecium encodes aspartate racemase (Racfm) and ligase (Aslfm) for incorporation of D-Asp into the side chain of the peptidoglycan precursor. Aslfm was identified as a new member of the ATP-grasp protein superfamily, which includes a diverse set of enzymes catalyzing ATP-dependent carboxylate-amine ligation reactions. Aslfm specifically ligated the beta-carboxylate of D-Asp to the epsilon-amino group of L-Lys in the nucleotide precursor UDP-N-acetylmuramyl-pentapeptide. D-iso-asparagine was not a substrate of Aslfm, indicating that the presence of this amino acid in the peptidoglycan of E. faecium results from amidation of the alpha-carboxyl of D-Asp after its addition to the precursor. Heterospecific expression of the genes encoding Racfm and Aslfm in Enterococcus faecalis led to production of stem peptides substituted by D-Asp instead of L-Ala2, providing evidence for the in vivo specificity and function of these enzymes. Strikingly, sequencing of the cross-bridges revealed that substitution of L-Ala2 by D-Asp is tolerated by the d,d-transpeptidase activity of the penicillin-binding proteins both in the acceptor and in the donor substrates. The Aslfm ligase appears as an attractive target for the development of narrow spectrum antibiotics active against multiresistant E. faecium.  相似文献   

10.
11.
Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection gonorrhea and is adapted to survive in humans, its only host. The N. gonorrhoeae cell wall is critical for maintaining envelope integrity, resisting immune cell killing and production of cytotoxic peptidoglycan (PG) fragments. Deletion of the N. gonorrhoeae strain FA1090 genes encoding two predicted low‐molecular‐mass, penicillin‐binding proteins (LMM PBPs), DacB and DacC, substantially altered the PG cross‐linking. Loss of the DacB peptidase resulted in global alterations to the PG composition, while loss of the DacC protein affected a much narrower subset of PG peptide components. A double ΔdacB/ΔdacC mutant resembled the ΔdacB single mutant, but had an even greater level of cross‐linked PG. While single ΔdacB or ΔdacC mutants did not show any major phenotypes, the ΔdacB/ΔdacC mutant displayed an altered cellular morphology, decreased resistance to antibiotics and increased sensitivity to detergent‐mediated death. Loss of the two proteins also drastically reduced the number of Type IV pili (Tfp), a critical virulence factor. The decreased piliation reduced transformation efficiency and correlated with increased growth rate. While these two LMM PBPs differentially alter the PG composition, their overlapping effects are essential to proper envelope function and expression of factors critical for pathogenesis.  相似文献   

12.
Since donated red blood cells must be constantly refrigerated, they are not available in remote areas and battlefields. We have previously shown that the hemoglobin of the earthworm Lumbricus terrestris (LtEc) is an effective and safe substitute for donated blood that is stable enough to be stored for long periods at the relatively high temperatures that may be encountered in remote areas. The goal of this study was to further increase the thermal stability of LtEc by covalently cross‐linking LtEc with glutaraldehyde (gLtEc). Our results show that the melting temperatures of the gLtEc samples steadily increase as the molar ratio of glutaraldehyde to heme increases (from Tm = 57°C for native LtEc up to Tm = 68°C at a ratio of 128:1). In addition, while native LtEc is susceptible to subunit dissociation at alkaline pH (8–10), cross‐linking with glutaraldehyde completely prevents dissociation of gLtEc at pH 10. Increasing the molar ratio of glutaraldehyde:heme also significantly increased the oxygen affinity of gLtEc, but this effect was decreased by cross‐linking gLtEc in the deoxygenated T state. Finally, while gLtEc samples cross‐linked at low G:H ratios (e.g., 2:1) exhibited slight increases in oxidation rate in Tris buffer, no significant difference in oxidation rate was observed between native LtEc and the gLtEc samples in Ringer's Solution, which contains antioxidants. Overall, cross‐linking LtEc with glutaraldehyde significantly increases its thermal and structural stability without any loss of function, making gLtEc an attractive blood substitute for deployment in remote areas and battlefields. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:521–528, 2018  相似文献   

13.
Corrinoid cofactors play a crucial role as methyl group carriers in the C1 metabolism of anaerobes, e.g. in the cleavage of phenyl methyl ethers by O‐demethylases. For the methylation, the protein‐bound corrinoid has to be in the super‐reduced [CoI]‐state, which is highly sensitive to autoxidation. The reduction of inadvertently oxidized corrinoids ([CoII]‐state) is catalysed in an ATP‐dependent reaction by RACE proteins, the r eductive a ctivators of c orrinoid‐dependent e nzymes. In this study, a reductive activator of Odemethylase corrinoid proteins was characterized with respect to its ATPase and corrinoid reduction activity. The reduction of the corrinoid cofactor was dependent on the presence of potassium or ammonium ions. In the absence of the corrinoid protein, a basal slow ATP hydrolysis was observed which was obviously not coupled to corrinoid reduction. ATP hydrolysis was significantly stimulated by the corrinoid protein in the [CoII]‐state of the corrinoid cofactor. The stoichiometry of ATP hydrolysed per mol corrinoid reduced was near 1:1. Site‐directed mutagenesis was applied to study the impact of a highly conserved region possibly involved in nucleotide binding of RACE proteins, indicating that an aspartate and a glycine residue may play an essential role for the function of the enzyme.  相似文献   

14.
Sequence determination of the flanking regions of the vancomycin resistance van gene cluster carried by pIP816 in Enterococcus faecium BM4147 revealed similarity to transposons of the Tn3 family. Imperfect inverted repeats (36 of 38 bp) delineated a 10,851-bp element designated Tn1546. The 4-kb region located upstream from the vanR gene contained two open reading frames (ORF) transcribed in opposite directions. The deduced amino acid sequence of ORF1 (988 residues) displayed, respectively, 56 and 42% identity to those of the transposases of Tn4430 from Bacillus thuringiensis and of Tn917 from Enterococcus faecalis. The product of ORF2 (191 residues) was related to the resolvase of Tn917 (33% amino acid identity) and to the Res protein (48%) of plasmid pIP404 from Clostridium perfringens. Tn1546 transposed consecutively in Escherichia coli from plasmid pUC18 into pOX38 and from pOX38 into various sites of pBR329. Transposition was replicative, led to the formation of cointegrates, and produced a 5-bp duplication at the target site. Southern hybridization and DNA amplification revealed the presence of Tn1546-related elements in enterococci highly resistant to glycopeptides. Analysis of sequences surrounding these elements indicated that transposition plays a role in dissemination of the van gene cluster among replicons of human clinical isolates of E. faecium.  相似文献   

15.
16.
The formation mechanism of Maillard peptides was explored in Maillard reaction through diglycine/glutathione(GSH)/(Cys‐Glu‐Lys‐His‐Ile‐Met)–xlyose systems by heating at 120 °C for 30–120 min. Maximum fluorescence intensity of Maillard reaction products (MRPs) with an emission wavelength of 420~430 nm in all systems was observed, and the intensity values were proportional to the heating time. Taken diglycine/GSH–[13C5]xylose systems as a control, it was proposed that the compounds with high m/z values of 379 and 616 have the high molecular weight (HMW) products formed by cross‐linking of peptides and sugar. In (Cys‐Glu‐Lys‐His‐Ile‐Met)–xylose system, the m/z value of HMW MRPs was not observed, which might be due to the weak signals of these products. According to the results of gel permeation chromatography, HMW MRPs were formed by Maillard reaction, especially in (Cys‐Glu‐Lys‐His‐Ile‐Met)–xylose system, the percentage of Maillard peptides reached 52.90%. It was concluded that Maillard peptides can be prepared through the cross‐linking of sugar and small peptides with a certain MW range. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
18.
19.
Understanding of eukaryotic ribosome synthesis has been slowed by a lack of structural data for the pre‐ribosomal particles. We report rRNA‐binding sites for six late‐acting 40S ribosome synthesis factors, three of which cluster around the 3′ end of the 18S rRNA in model 3D structures. Enp1 and Ltv1 were previously implicated in ‘beak’ structure formation during 40S maturation—and their binding sites indicate direct functions. The kinase Rio2, putative GTPase Tsr1 and dimethylase Dim1 bind sequences involved in tRNA interactions and mRNA decoding, indicating that their presence is incompatible with translation. The Dim1‐ and Tsr1‐binding sites overlap with those of homologous Escherichia coli proteins, revealing conservation in assembly pathways. The primary binding sites for the 18S 3′‐endonuclease Nob1 are distinct from its cleavage site and were unaltered by mutation of the catalytic PIN domain. Structure probing indicated that at steady state the cleavage site is likely unbound by Nob1 and flexible in the pre‐rRNA. Nob1 binds before pre‐rRNA cleavage, and we conclude that structural reorganization is needed to bring together the catalytic PIN domain and its target.  相似文献   

20.
Vancomycin resistance in Enterococcus faecium BM4147 is mediated by vancomycin resistance proteins VanA and VanH. VanA is a D-alanine:D-alanine ligase of altered substrate specificity [Bugg, T. D. H., Dutka-Malen, S., Arthur, M., Courvalin, P., & Walsh, C. T. (1991) Biochemistry 30, 2017-2021], while the sequence of VanH is related to those of alpha-keto acid dehydrogenases [Arthur, M., Molinas, C., Dutka-Malen, S., & Courvalin, P. (1991) Gene (submitted)]. We report purification of VanH to homogeneity, characterization as a D-specific alpha-keto acid dehydrogenase, and comparison with D-lactate dehydrogenases from Leuconostoc mesenteroides and Lactobacillus leichmanii. VanA was found to catalyze ester bond formation between D-alanine and the D-hydroxy acid products of VanH, the best substrate being D-2-hydroxybutyrate (Km = 0.60 mM). The VanA product D-alanyl-D-2-hydroxybutyrate could then be incorporated into the UDPMurNAc-pentapeptide peptidoglycan precursor by D-Ala-D-Ala adding enzyme from Escherichia coli or by crude extract from E. faecium BM4147. The vancomycin binding constant of a synthetic modified peptidoglycan analogue N-acetyl-D-alanyl-D-2-hydroxybutyrate (Kd greater than 73 mM) was greater than 1000-fold higher than the binding constant for N-acetyl-D-alanyl-D-alanine (Kd = 54 microM), partly due to the disruption of a hydrogen bond in the vancomycin-target complex, thus providing a molecular rationale for high-level vancomycin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号