首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Ponds are common features of the landscape and are considered important for freshwater biodiversity conservation. Although fish have a significant impact on the lentic ecosystems, the environmental factors that regulate fish assemblages in human-created water bodies, such as irrigation ponds, remain unclear. We evaluated the relationship between environmental factors and the fish assemblage structure in 31 ponds located in northern Japan. Species richness (range: 1–9) was positively correlated with the size of the inflow channel. Multivariate analyses revealed that the size of the inflow channel was a better predictor for species richness than lake morphology (surface area and maximum depth), vegetation coverage, water quality (turbidity, pH, DO, and EC), distance to the main channel, and distance to an adjacent pond. Species richness was significantly different between ponds with and without an inflow channel. Furthermore, three of the four most commonly observed species are thought to be relatively tolerant to low oxygen. Given that ponds have a relatively high local extinction rate resulting from exposure to stressful conditions, such as low oxygen and/or small population sizes, our results suggest that immigration from surrounding water bodies plays an important role in maintaining species richness of pond-dwelling fish.  相似文献   

2.
Ecologists have long realized that stable species richness values can mask rapid turnover in species composition. Because turnover occurs as a consequence of both local and regional processes, understanding the responsible factors provides insight on processes influencing community structure at different scales. Despite the insights to be gained from data on species turnover, they remain relatively uncommon. We present data on the interannual turnover in species composition of larval amphibian communities in 37 ponds over seven years. Species composition of a given pond community was highly dynamic; about half of the species that could be found breeding in a particular pond were actually present in a given year. All species participated in this community turnover, but to different degrees. Using a model selection approach, we show that a statistical model including local environmental factors (pond area, hydroperiod, and canopy cover) and pond connectivity on the landscape provided the best predictions of turnover. Averaged parameter estimates were significant for area, hydroperiod, and connectivity and these same variables were identified by hierarchical partitioning as having significant independent effects on turnover. Area and hydroperiod were negatively related to turnover, whereas connectivity was positively related to turnover. Additionally, the average fraction of years a species was present in a pond was positively correlated with average local population size, but even more strongly correlated with regional population size, suggesting both local and regional influences on turnover. Of the measured biotic factors (biomass of fish, invertebrate predators, anuran and caudate larvae), presence of fish was the only factor that significantly affected rates of turnover. Several mechanism could be responsible for changes in species composition (species extinctions, skipped breeding and movement of choruses), but extinctions appear to be the major cause of turnover. These results have important implications to understanding long‐term persistence of species on landscapes and the causes of patterns in species richness on environmental gradients.  相似文献   

3.
Aim The mechanisms of initial dispersal and habitat occupancy by invasive alien species are fundamental ecological problems. Most tests of metapopulation theory are performed on local population systems that are stable or in decline. In the current study we were interested in the usefulness of metapopulation theory to study patch occupancy, local colonization, extinction and the abundance of the invasive Caspian gull (Larus cachinnans) in its initial invasion stages. Location Waterbodies in Poland. Methods Characteristics of the habitat patches (waterbodies, 35 in total) occupied by breeding pairs of Caspian gulls and an equal sample of randomly selected unoccupied patches were compared with t‐tests. Based on presence–absence data from 1989 to 2006 we analysed factors affecting the probability of local colonization, extinction and the size of local populations using generalized linear models. Results Occupied habitat patches were significantly larger and less isolated (from other habitat patches and other local populations) and were located closer to rivers than empty patches. The proximity of local food resources (fish ponds, refuse dumps) positively affected the occurrence of breeding pairs. The probability of colonization was positively affected by patch area, and negatively by distances to fish ponds, nearest habitat patch, nearest breeding colony and to a river, and by higher forest cover around the patch boundaries. The probability of extinction was lower in patches with a higher number of breeding pairs and with a greater area of islets. The extinction probability increased with distances to other local populations, other habitat patches, fish ponds and to refuse dumps and with a higher cover of forest around the patch boundaries. The size of the local population decreased with distances to the nearest habitat patch, local population, river, fish pond and refuse dump. Local abundance was also positively affected by the area of islets in the patch. Main conclusions During the initial stages of the invasion of Caspian gulls in Poland the species underwent metapopulation‐like dynamics with frequent extinctions from colonized habitat patches. The results prove that metapopulation theory may be a useful conceptual framework for predicting which habitats are more vulnerable to invasion.  相似文献   

4.
Urban amphibian assemblages as metacommunities   总被引:5,自引:0,他引:5  
1. Urban ecosystems are expanding throughout the world, and urban ecology is attracting increasing research interest. Some authors have questioned the value of existing ecological theories for understanding the processes and consequences of urbanization. 2. In order to assess the applicability of metacommunity theory to urban systems, I evaluated three assumptions that underlie the theory - the effect of patch area, the effect of patch isolation, and species-environment relations - using data on assemblages of pond-breeding amphibians in the Greater Melbourne area of Australia. I also assessed the relative impact of habitat fragmentation, habitat isolation, and changes to habitat quality on these assemblages. 3. Poisson regression modelling provided support for an important increase in species richness with patch area (pond size) and a decrease in species richness with increasing patch isolation, as measured by surrounding road cover. Holding all other variables constant, species richness was predicted to be 2.8-5.5 times higher at the largest pond than at the smallest, while the most isolated pond was predicted to have 12-19% of the species richness of the least isolated pond. Thus, the data were consistent with the first two assumptions of metacommunity theory evaluated. 4. The quality of habitat at a pond was also important, with a predicted 44-56% decrease in the number of species detected at ponds with a surrounding vertical wall compared with those with a gently sloping bank. This demonstrates that environmental differences between habitat patches were also influencing amphibian assemblages, providing support for the species-sorting and/or mass-effect perspectives of metacommunity theory. 5. Without management intervention, urbanization may lead to a reduction in the number of amphibian species persisting in urban ponds, particularly where increasing isolation of ponds by roads and associated infrastructure reduces the probability of re-colonization following local extinction. Journal of Animal Ecology (2006) 75, 757-764 doi: 10.1111/j.1365-2656.2006.01096.x.  相似文献   

5.
6.
1. The effect of habitat structural features and physicochemical characteristics of the water on the composition and richness of fish assemblages in temporary ponds near streams were examined at three spatial scales: among ponds, among streams and between drainage basins, in a ‘terra‐firme’ (not subject to long‐term flooding) forest reserve in Central Amazonia. 2. The fish assemblage in temporary ponds was composed of subsets of 18 small‐bodied species widely distributed in the reserve. The assemblages had a nested subset structure, where smaller ponds contained subgroups of the species found in larger ponds. 3. Species composition and richness in temporary ponds were similar between drainage basins, although the fish assemblages in streams differed between basins. 4. Fish assemblage structure was influenced by local factors related to habitat structure, such as pond area and depth, canopy cover and hydroperiod. Physicochemical characteristics of the water in the ponds were similar between drainage basins and had little detectable effect on the structure of pond fish assemblages. 5. No correspondence was found between the composition, richness or abundance of fishes in the ponds and in stretches of the streams adjacent to the ponds. Therefore, it is not possible to predict the composition of these temporary pond fish assemblages from the fish assemblages found in adjacent streams.  相似文献   

7.
High-altitude freshwater ecosystems and their biocoenosis are ideal sentinel systems to detect global change. In particular, pond communities are likely to be highly responsive to climate warming. For this reason, the Swiss National Park has included ponds as part of a long-term monitoring programme of the high-alpine Macun cirque. This cirque covers 3.6 km2, has a mean altitude of 2,660 m a.s.l., and includes a hydrographic system composed of a stream network and more than 35 temporary and permanent ponds. The first two steps in the programme were to (i) make an inventory of the macroinvertebrates of the waterbodies in the Macun cirque, and (ii) relate the assemblages to local or regional environmental variables. Sampling was conducted in 25 ponds between 2002 and 2004. The number of taxa characterising the region (Macun cirque) was low, represented by 47 lentic taxa. None of them was endemic to the Alps, although several species were cold stenothermal. Average pond richness was low (11.3 taxa). Assemblages were dominated by Chironomidae (Diptera), and Coleoptera and Oligochaeta were also relatively well represented. Other groups, which are frequent in lowland ponds, had particularly poor species richness (Trichoptera, Heteroptera) or were absent (Gastropoda, Odonata, Ephemeroptera). Macroinvertebrate assemblages (composition, richness) were only weakly influenced by local environmental variables. The main structuring processes were those operating at regional level and, namely, the connectivity between ponds, i.e. the presence of a physical connection (tributary) and/or small geographical distance between ponds. The results suggest that during the long-term monitoring of the Macun ponds (started in 2005), two kinds of change will affect macroinvertebrate assemblages. The first change is related to the natural dynamics, with high local-scale turnover, involving the metapopulations characterising the Macun cirque. The second change is related to global warming, leading to higher local and regional richness through an increase in the number of colonisation events resulting from the upward shift of geographical ranges of species. At the same time the cold stenothermal species from Macun will be subject to extinction. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editors: R. Céréghino, J. Biggs, B. Oertli & S. Declerck The ecology of European ponds: defining the characteristics of a neglected freshwater habitat  相似文献   

8.
Increased dispersal of individuals among discrete habitat patches should increase the average number of species present in each local habitat patch. However, experimental studies have found variable effects of dispersal on local species richness. Priority effects, predators, and habitat heterogeneity have been proposed as mechanisms that limit the effect of dispersal on species richness. However, the size of a habitat patch could affect how dispersal regulates the number of species able to persist. We investigated whether habitat size interacted with dispersal rate to affect the number of species present in local habitats. We hypothesized that increased dispersal rates would positively affect local species richness more in small habitats than in large habitats, because rare species would be protected from demographic extinction. To test the interaction between dispersal rate and habitat size, we factorially manipulated the size of experimental ponds and dispersal rates, using a model community of freshwater zooplankton. We found that high‐dispersal rates enhanced local species richness in small experimental ponds, but had no effect in large experimental ponds. Our results suggest that there is a trade‐off between patch connectivity (a mediator of dispersal rates) and patch size, providing context for understanding the variability observed in dispersal effects among natural communities, as well as for developing conservation and management plans in an increasingly fragmented world.  相似文献   

9.
We studied the abundance and species richness of adult dragonflies in 11 artificial ponds which were recently established (within 2years). We found that the adult dragonfly assemblage patterns were influenced by pond size as well as pond age. The species richness was positively correlated with the pond size, which was because the distributional patterns of species were significantly nested according to pond area. The species richness was highly correlated with pond age in association with the vegetation cover within ponds. It was suggested that the species richness was enhanced by the increasing immigration rate of species which favor well-vegetated ponds.  相似文献   

10.

Aim

(i) To determine whether area and connectivity of temporary ponds can predict plant species diversity, and the diversity and abundance of different plant life histories; (ii) To explore whether pond connectivity with the river prior to river regulation predicts better plant diversity patterns than current pond connectivity, suggestive of possible effects of connectivity loss.

Location

Eastern Carpathian Mountains, Romania, Europe.

Methods

We fitted linear and generalized linear models (LM and GLM) to examine whether pond area and current distance from the Olt River predict plant species richness, Shannon diversity and relative cover of different social behaviour types and overall plant species richness and Shannon diversity. Using historical maps, we measured pond distance from the river ca. 60 years before the Olt River was regulated, and we refitted the LM and GLM models using pond area and past distance from the river as independent variables.

Results

Total plant species richness increased with pond area, and it decreased with the distance from the river, but total plant Shannon diversity index was affected, positively, only by pond area. The strength of responses to pond area and connectivity of species richness, Shannon diversity and relative cover varied across the different social behaviour types. Past and current distances between ponds and riverbeds had similar effects on plant diversity, with some evidence for stronger effect of the present connectivity on specialist species Shannon diversity and a weaker effect on disturbance tolerants, generalists and competitors.

Main Conclusions

Pond area and connectivity with the landscape are important predictors of the diversity of plant life history strategies, and therefore, useful tools in pond conservation. Consistent species richness and Shannon diversity responses of wetland specialists to pond area and connectivity make this life history type well suited for monitoring pond condition.  相似文献   

11.
Habitat split is a major force behind the worldwide decline of amphibian populations, causing community change in richness and species composition. In fragmented landscapes, natural remnants, the terrestrial habitat of the adults, are frequently separated from streams, the aquatic habitat of the larvae. An important question is how this landscape configuration affects population levels and if it can drive species to extinction locally. Here, we put forward the first theoretical model on habitat split which is particularly concerned on how split distance – the distance between the two required habitats – affects population size and persistence in isolated fragments. Our diffusive model shows that habitat split alone is able to generate extinction thresholds. Fragments occurring between the aquatic habitat and a given critical split distance are expected to hold viable populations, while fragments located farther away are expected to be unoccupied. Species with higher reproductive success and higher diffusion rate of post-metamorphic youngs are expected to have farther critical split distances. Furthermore, the model indicates that negative effects of habitat split are poorly compensated by positive effects of fragment size. The habitat split model improves our understanding about spatially structured populations and has relevant implications for landscape design for conservation. It puts on a firm theoretical basis the relation between habitat split and the decline of amphibian populations.  相似文献   

12.
Aim We investigated how current and historical land use and landscape structure affect species richness and the processes of extinction, immigration and species turnover. Location The northern part of the Stockholm archipelago, Baltic Sea, Sweden. We resurveyed 27 islands ranging from 0.3 to 33 ha in area. Methods We compared current plant survey data, cadastral maps and aerial photographs with records obtained from a survey in 1908, using databases and a digital elevation model to examine changes in plant community dynamics in space and time. We examined the effects of local and landscape structure and land use changes on plant species dynamics by using stepwise regression in relation to eight local and three landscape variables. The eight local variables were area, relative age, shape, soil heterogeneity, bedrock ratio, number of houses, forest cover change, and grazing 100 years ago. The three landscape variables were distance to mainland, distance to closest island with a farm 100 years ago, and structural connectivity. Hanski’s connectivity measure was modified to incorporate both connectivity and fragmentation. Results The investigated islands have undergone drastic changes, with increasing forest cover, habitation, and abandonment of grassland management. Although the total species richness increased by 31% and mean island area by 23%, we found no significant increase in species richness per unit area. Local variables explain past species richness (100 years ago), whereas both local and landscape variables explain current species richness, extinctions, immigrations and species turnover. Grazing that occurred 100 years ago still influences species richness, even though grazing management was abandoned several decades ago. The evidence clearly shows an increase in nitrophilous plant species, particularly among immigrant species. Main conclusions This study highlights the importance of including land use history when interpreting current patterns of species richness. Furthermore, local environment and landscape patterns affect important ecological processes such as immigration, extinction and species turnover, and hence should be included when assessing the impact of habitat fragmentation and land use change. We suggest that our modified structural connectivity measure can be applied to other types of landscapes to investigate the effects of fragmentation and habitat loss.  相似文献   

13.
Species responses are influenced by processes operating at multiple scales, yet many conservation studies and management actions are focused on a single scale. Although landscape-level habitat conditions (i.e., habitat amount, fragmentation and landscape quality) are likely to drive the regional persistence of spatially structured populations, patch-level factors (i.e., patch size, isolation, and quality) may also be important. To determine the spatial scales at which habitat factors influence the regional persistence of endangered Ord's kangaroo rats (Dipodomys ordii) in Alberta, Canada, we simulated population dynamics under a range of habitat conditions. Using a spatially-explicit population model, we removed groups of habitat patches based on their characteristics and measured the resulting time to extinction. We used proportional hazards models to rank the influence of landscape and interacting patch-level variables. Landscape quality was the most influential variable followed by patch quality, with both outweighing landscape- and patch-level measures of habitat quantity and fragmentation/proximity. Although habitat conservation and restoration priorities for this population should be in maximizing the overall quality of the landscape, population persistence depends on how this goal is achieved. Patch quality exerted a significant influence on regional persistence, with the removal of low quality road margin patches (sinks) reducing the risk of regional extinction. Strategies for maximizing overall landscape quality that omit patch-level considerations may produce suboptimal or detrimental results for regional population persistence, particularly where complex local population dynamics (e.g., source-sink dynamics) exist. This study contributes to a growing body literature that suggests that the prediction of species responses and future conservation actions may best be assessed with a multi-scale approach that considers habitat quality and that the success of conservation actions may depend on assessing the influences of habitat factors at multiple scales.  相似文献   

14.
De Block M  Geenen S  Jordaens K  Backeljau T  Stoks R 《Genetica》2005,124(2-3):137-144
Several insect species seem to persist not only in permanent but also in temporary ponds where they face particularly harsh conditions and frequent extinctions. Under such conditions, gene flow may prevent local adaptation to temporary ponds and may promote phenotypic plasticity, or maintain apparent population persistence. The few empirical studies on insects suggest the latter mechanism, but no studies so far quantified gene flow including both pond types. We investigated the effects of pond type and temporal variation on population genetic differentiation and gene flow in the damselfly Lestes viridis in northern Belgium. We report a survey of two allozyme loci (Gpi, Pgm) with polyacrylamide gel electrophoresis in 14 populations from permanent and temporary ponds, and compared these results with similar data from the same permanent populations one year before. The data suggested that neither pond-drying regime, nor temporal variation have a substantial effect on population genetic structuring and did not provide evidence for stable population differentiation in L. viridis in northern Belgium. Gene flow estimates were high within permanent and temporary ponds, and between pond types. Our data are consistent with a source-sink metapopulation system where temporary ponds act as sinks in dry years, and are quickly recolonized after local population extinction. This may create a pattern of apparent population persistence of this species in permanent and temporary ponds without clear local adaptation.  相似文献   

15.
16.
We examine the variability of riverine fish assemblages in terms of assemblage stability (i.e. variability of numbers of individuals within species over time and variability of assemblage total density), assemblage persistence, and assemblage species richness using data from a 9-yr survey of 27 sites within 18 coastal streams of North-western France. To do so, we test a hypothesized directional model for the expected relationships between environmental variability, assemblage variability, assemblage persistence, and assemblage species richness: 1) environmental variability within a given system is likely to generate variable local population size within this system, thus increasing local assemblages variability; 2) environmental variability should increase extinction rates (or, under constant colonization rates, decrease persistence), because the more population sizes vary within an assemblage, the more likely they are to become zero in some period of time; 3) assemblage variability should reduce assemblage species richness by increasing extinction rates within populations composing these assemblages. Results are compatible with our starting hypotheses and show that assemblage variability increased with environmental variability (i.e. discharge variability), that assemblage persistence decreased with environmental variability, and that species richness decreased with assemblage variability after environmental factors were controlled for. Thus, disturbance regimes, in our case, can alter the stability properties of assemblages and extrinsic determinants of assemblage variability may be an important determinant of assemblage species richness. These results have important conservation and management implications, due to the strong impact of river regulation on flow regimes.  相似文献   

17.
The progressive lost of natural wetlands as a consequence of human activities has lead to the use of new habitats by the species linked to water presence. In Southeast Spain, thousands of irrigation ponds have been lately constructed to store water for agriculture and are used by waterbirds as an alternative habitat. For this study, breeding and wintering waterbirds were counted in a subset of irrigation ponds between 2002 and 2007. Breeding communities were more abundant than wintering communities, but they presented a similar richness and diversity. The ponds were selected by waterbirds according to their characteristics, and breeding communities were more selective than wintering communities. Our results enhance the importance of pond size (area), connectivity (distance to the nearest wetland) and habitat quality (resource offer and construction material) in the pond selection process. The presence and design of these impoundments could be playing a crucial role for some waterbirds species. Therefore, the long-term information provided here can be useful for establishing management strategies for these artificial wetlands.  相似文献   

18.
Wetland restoration is increasingly important to reverse habitat degradation, recover ecosystem services, and maintain biodiversity. To aid project design, more information is required on the influence of wetland size, depth of water, and isolation on the waterbird communities that become established. During a restoration project in Doñana, one of the Europe's most important wetland complexes, an experimental network of 96 temporary ponds with standard shape but variable size, water depth, and isolation was created. We surveyed the waterbird community in spring from 2006 to 2008 and related species abundance and richness to abiotic pond characteristics. We also performed analyses pooling species by foraging guilds or body size. Waterbird abundance and species richness were highest in 2007, the wettest year when the ponds had longer hydroperiods. Larger ponds had consistently higher abundance and species richness for the entire community and for different guilds and body sizes. Moreover, the density of birds per hectare was higher in large ponds than in the smaller ones. Pond isolation and excavated depth did not affect overall abundance and richness, although opposing effects of depth were observed on some size classes, and ducks and large birds preferred isolated ponds. Some bird groups preferred ponds at a particular location. This is the first waterbird study to address the importance of pond size, depth, and isolation independently of confounding variables such as pond shape. It illustrates the varied responses from different bird groups and demonstrates the importance of varying depth, location, and isolation to enhance community abundance and diversity .  相似文献   

19.
Colonization and extinction are primary drivers of local population dynamics, community structure, and spatial patterns of biological diversity. Existing paradigms of island biogeography, metapopulation biology, and metacommunity ecology, as well as habitat management and conservation biology based on those paradigms, emphasize patch size, number, and isolation as primary characteristics influencing colonization and extinction. Habitat selection theory suggests that patch quality could rival size, number, and isolation in determining rates of colonization and resulting community structure. We used naturally colonized experimental landscapes to address four issues: (a) how do colonizing aquatic beetles respond to variation in patch number, (b) how do they respond to variation in patch quality, (c) does patch context affect colonization dynamics, and (d) at what spatial scales do beetles respond to habitat variation? Increasing patch number had no effect on per patch colonization rates, while patch quality and context were critical in determining colonization rates and resulting patterns of abundance and species richness at multiple spatial scales. We graphically illustrate how variation in immigration rates driven by perceived predation risk (habitat quality) can further modify dynamics of the equilibrium theory of island biogeography beyond predator-driven effects on extinction rates. Our data support the importance of patch quality and context as primary determinants of colonization rate, occupancy, abundance, and resulting patterns of species richness, and reinforce the idea that management of metapopulations for species preservation, and metacommunities for local and regional diversity, should incorporate habitat quality into the predictive equation.  相似文献   

20.
Manmade ecosystems provide a variety of resources that have strong economic values. We assessed the importance of 37 farm ponds for the biodiversity of Odonata in an agricultural landscape lacking natural wetlands in southwestern France. Farm ponds captured 40% of the regional species pool, including both common and rare species. The species assemblages were not correlated with pond use (e.g., cattle watering, duck farming, etc.) or to landscape variable. Species richness was correlated with pond area, suggesting that community diversity was primarily driven by autoecological processes. Farm ponds thus made a positive contribution to the maintenance of aquatic biodiversity. This added value for biodiversity should be considered when calculating the costs and benefits of constructing water bodies for human activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号