首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has long been known that platelets undergo margination when flowing in blood vessels, such that there is an excess concentration near the vessel wall. We conduct experiments and three-dimensional boundary integral simulations of platelet-sized spherical particles in a microchannel 30 μm in height to measure the particle-concentration distribution profile and observe its margination at 10%, 20%, and 30% red blood cell hematocrit. The experiments involved adding 2.15-μm-diameter spheres into a solution of red blood cells, plasma, and water and flowing this mixture down a microfluidic channel at a wall shear rate of 1000 s−1. Fluorescence imaging was used to determine the height and velocity of particles in the channel. Experimental results indicate that margination has largely occurred before particles travel 1 cm downstream and that hematocrit plays a role in the degree of margination. With simulations, we can track the trajectories of the particles with higher resolution. These simulations also confirm that margination from an initially uniform distribution of spheres and red blood cells occurs over the length scale of O(1 cm), with higher hematocrit showing faster margination. The results presented here, from both experiments and 3D simulations, may help explain the relationship between bleeding time in vessel trauma and red blood cell hematocrit as platelets move to a vessel wall.  相似文献   

2.
3.
In this paper, we study quorum sensing in Pseudomonas aeruginosa biofilms. Quorum sensing is a process where bacteria monitor their population density through the release of extra-cellular signalling molecules. The presence of these molecules affects gene modulation leading to changes in behaviour such as the release of virulence factors. Here, we use numerical methods to approximate a 2-D model of quorum sensing. It is observed that the shape of the biofilm can have a profound effect on the onset of quorum sensing. This has serious repercussions for experimental observations since biofilms of the same biomass but different shapes can produce quite different results.  相似文献   

4.
Guanidinoacetate methyltransferase (GAMT) deficiency is a disorder of creatine metabolism characterized by low plasma creatine concentrations in combination with elevated guanidinoacetate (GAA) concentrations. The aim of this work was to investigate the in vitro effect of guanidinoacetate in NTPDase, 5′-nucleotidase and acetylcholinesterase activities in the synaptosomes, platelets and blood of rats. The results showed that in synaptosomes the NTPDase and 5′-nucleotidase activities were inhibited significantly in the presence of GAA at concentrations of 50, 100, 150 and 200 μM (P < 0.05). However, in platelets GAA at the same concentrations caused a significant increase in the activities of these two enzymes (P < 0.05). In relation to the acetylcholinesterase activity, GAA caused a significant inhibition in the activity of this enzyme in blood at concentrations of 150 and 200 μM (P < 0.05), but did not alter the acetylcholinesterase activity in synaptosomes from the cerebral cortex. Our results suggest that alterations caused by GAA in the activities of these enzymes may contribute to the understanding of the neurological dysfunction of GAMT-deficient patients.  相似文献   

5.
6.
Background and purpose Cerebral ischemia is known to elicit the activation of neural stem cells (NSCs); however its mechanism is not fully determined. Although oxygen concentration is known to mediate many ischemic actions, there has been little attention given to the role of pathological oxygen changes under cerebral ischemia on the activation of NSCs. We investigated the effects of various oxygen concentrations on mouse neural stem cells in vitro. Methods NSCs were cultured from the ganglionic eminence of fetal ICR mice on embryonic day 15.5 using a neurosphere method. The effects of oxygen concentrations on proliferation, differentiation, and cell death of NSCs were evaluated by bromodeoxyuridine (BrdU) incorporation, immunocytochemistry, and TUNEL assay, respectively. Results The highest proliferation and the neuronal differentiation of the NSCs were observed in 2% oxygen, which yielded significantly higher proportions of both BrdU-labeled cells and Tuj1-positive cells when compared with 20% and 4% oxygen. On the other hand, the differentiation to the astrocytes was not affected by oxygen concentrations, except in the case of anoxia (0% oxygen). The cell death of the NSCs increased in lower oxygen conditions and peaked at anoxia. Furthermore, the switching of the neuronal subtype differentiation from GABA-positive to glutamate-positive neurons was observed in lower oxygen conditions. Conclusions These findings raise the possibility that reduced oxygen levels occurring with cerebral ischemia enhance NSC proliferation and neural differentiation, and that mild hypoxia (2% oxygen), which is known to occur in the ischemic penumbra, is suitable for abundant neuronal differentiation.  相似文献   

7.
During normal kidney function, there are routinely wide swings in proximal tubule fluid flow and proportional changes in Na+ reabsorption across tubule epithelial cells. This “glomerulotubular balance” occurs in the absence of any substantial change in cell volume, and is thus a challenge to coordinate luminal membrane solute entry with peritubular membrane solute exit. In this work, linear optimal control theory is applied to generate a configuration of regulated transporters that could achieve this result. A previously developed model of rat proximal tubule epithelium is linearized about a physiologic reference condition; the approximate linear system is recast as a dynamical system; and a Riccati equation is solved to yield the optimal linear feedback that stabilizes Na+ flux, cell volume, and cell pH. The first observation is that optimal feedback control is largely consigned to three physiologic variables, cell volume, cell electrical potential, and lateral intercellular hydrostatic pressure. Parameter modulation by cell volume stabilizes cell volume; parameter modulation by electrical potential or interspace pressure act to stabilize Na+ flux and cell pH. This feedback control is utilized in a tracking problem, in which reabsorptive Na+ flux varies over a factor of two, in order to represent a substantial excursion of glomerulotubular balance. The resulting control parameters consist of two terms, an autonomous term and a feedback term, and both terms include transporters on both luminal and peritubular cell membranes. Overall, the increase in Na+ flux is achieved with upregulation of luminal Na+/H+ exchange and Na+–glucose cotransport, with increased peritubular Na+–3HCO3 and K+–Cl cotransport, and with increased Na+, K+–ATPase activity. The configuration of activated transporters emerges as a testable hypothesis of the molecular basis for glomerulotubular balance. It is suggested that the autonomous control component at each cell membrane could represent the cytoskeletal effects of luminal flow.  相似文献   

8.
Fibrillar aggregates of the α-synuclein (αS) protein are the hallmark of Parkinson’s Disease and related neurodegenerative disorders. Characterization of the effects of mutations and post-translational modifications (PTMs) on the αS aggregation rate can provide insight into the mechanism of fibril formation, which remains elusive in spite of intense study. A comprehensive collection (375 examples) of mutant and PTM aggregation rate data measured using the fluorescent probe thioflavin T is presented, as well as a summary of the effects of fluorescent labeling on αS aggregation (20 examples). A curated set of 131 single mutant de novo aggregation experiments are normalized to wild type controls and analyzed in terms of structural data for the monomer and fibrillar forms of αS. These tabulated data serve as a resource to the community to help in interpretation of aggregation experiments and to potentially be used as inputs for computational models of aggregation.  相似文献   

9.
10.
Candidosis has been attributed to C. albicans; however, infections caused by non-Candida albicans Candida (NCAC) species are increasingly being recognised. The ability of Candida to grow as a biofilm is an important feature that promotes both infection and persistence in the host. The biofilms’ activity is significant since high activity might be associated with enhanced expression of putative virulence factors, whilst in contrast low activity has previously been suggested as a mechanism for resistance of biofilm cells to antimicrobials. The aim of this study was to determine the metabolic activity of in vitro biofilms formed by different clinical isolates of NCAC species. The in situ total metabolic activity of C. parapsilosis, C. tropicalis and C. glabrata biofilms was determined using 2,3-(2-methoxy-4-nitro-5-sulphophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT) reduction assay, and the number of cultivable cells was also established by CFU (colony forming unit) counts. The biofilm structure was assessed by scanning electron microscopy (SEM). Results showed that total biofilm metabolic activity was species and strain dependent. C. glabrata exhibited the lowest biofilm metabolic activity despite having the highest number of biofilm cultivable cells. Similarly, the metabolic activity of resuspended C. glabrata biofilm and planktonic cells was lower than that of the other species. This study demonstrates the existence of intrinsic activity differences amongst NCAC species, which could have important implications in terms of species relative virulence. Furthermore, the absence of an obvious correlation, between cultivable cells number and total biofilm activity, raises the question about which parameter is the most appropriate for the in vitro assessment of biofilms and their potential clinical significance.  相似文献   

11.
12.
Rosmarinic acid (RA) was assessed for its quorum sensing inhibitory (QSI) potential against Aeromonas hydrophila strains AH 1, AH 12 and MTCC 1739. The pathogenic strains of A. hydrophila were isolated from infected zebrafish and identified through biochemical analysis and amplification of a species-specific gene (rpsL). The biofilm inhibitory concentration (BIC) of RA against A. hydrophila strains was found to be 750 μg ml?1. At this concentration, RA reduced the QS mediated hemolysin, lipase and elastase production in A. hydrophila. In FT-IR analysis, RA treated A. hydrophila cells showed a reduction in cellular components. Gene expression analysis confirmed the down-regulation of virulence genes such as ahh1, aerA, lip and ahyB. A. hydrophila infected zebrafish upon treatment with RA showed increased survival rates. Thus, the present study demonstrates the use of RA as a plausible phytotherapeutic compound to control QS mediated biofilm formation and virulence factor production in A. hydrophila.  相似文献   

13.
Contrary to cell cycle-associated cyclin-dependent kinases, CDK5 is best known for its regulation of signaling processes in regulating mammalian CNS development. Studies of CDK5 have focused on its phosphorylation, although the diversity of CDK5 functions in the brain suggests additional forms of regulation. Here we expanded on the functional roles of CDK5 glycosylation in neurons. We showed that CDK5 was dynamically modified with O-GlcNAc in response to neuronal activity and that glycosylation represses CDK5-dependent apoptosis by impairing its association with p53 pathway. Blocking glycosylation of CDK5 alters cellular function and increases neuronal apoptosis in the cell model of the ICH. Our findings demonstrated a new role for O-glycosylation in neuronal apoptosis and provided a mechanistic understanding of how glycosylation contributes to critical neuronal functions. Moreover, we identified a previously unknown mechanism for the regulation of activity-dependent gene expression, neural development, and apoptosis.  相似文献   

14.
15.
During hypoxia the respiratory network produces gasping in vivo and in vitro. To understand the mechanisms involved in such response and to validate in vitro findings, correlative studies are necessary. During perinatal age gasping generation is robust and then declines during postnatal development, possibly due to changes in either the rhythm generator (the pre-Bötzinger complex, PBC) and/or its motor outputs. We tested this hypothesis by recording respiratory response to hypoxia in vivo and in vitro during postnatal development. We found that postnatal age influences: (1) The hypoxia-induced pattern change in the PBC bursts, (2) The coupling between the PBC and the XII nucleus during prolonged hypoxia and (3) The ability of mice to gasp and autoresuscitate from hypoxic conditions. We conclude that the inability of mice to gasp during late postnatal development might be determined by a progressive uncoupling between the respiratory rhythm generator and its motor outputs in hypoxia.  相似文献   

16.
Stromal elements within a tumor interact with cancer cells to create a microenvironment that supports tumor growth and survival. Adrenomedullin (ADM) is an autocrine/paracrine factor produced by both stromal cells and cancer cells to create such a microenvironment. During differentiation of macrophages, ADM is produced in response to pro-inflammatory stimuli and hypoxia. In this study we investigated the role of ADM as a growth factor for ovarian cancer cells and as a modulator of macrophages. We also analyzed ADM expression levels in a retrospective clinical study using nanofluidic technology and assessment of ADM at the gene level in 220 ovarian cancer patients. To study the effects of ADM, ovarian cancer cell lines A2780, OVCAR-3, and HEY and their drug-resistant counterparts were used for proliferation assays, while monocytes from healthy donors were differentiated in vitro. ADM was a weak growth factor, as revealed by proliferation assays and cell cycle analysis. After culturing cancer cells under stressing conditions, such as serum starvation and/or hypoxia, ADM was found to be a survival factor in HEY but not in other cell lines. In macrophages, ADM showed activity on proliferation/differentiation, primarily in type 2 macrophages (M2). Unexpectedly, the clinical study revealed that high expression of ADM was linked to positive outcome and to cancer with low Ca125. In conclusion, although in vitro ADM was a potential factor in biological aggressiveness, this possibility was not confirmed in patients. Therefore, use of an ADM antagonist would be inappropriate in managing ovarian cancer patients.  相似文献   

17.
Hypoxia and post-hypoxic reoxygenation induces disruption of the blood–brain barrier (BBB). Alterations of the BBB function after hypoxia/reoxygenation (H/R) injury remain unclear. Cyclosporin A (CsA), a potent immunosuppressant, induces neurotoxic effects by entering the brain, although the transport of CsA across the BBB is restricted by P-glycoprotein (P-gp), a multidrug efflux pump, and tight junctions of the brain capillary endothelial cells. The aim of this study was to evaluate whether the BBB after H/R damage is vulnerable to CsA-induced BBB dysfunction. We attempted to establish a pathophysiological BBB model with immortalized mouse brain capillary endothelial (MBEC4) cells. The effects of CsA on permeability and P-gp activity of the MBEC4 cells were then examined. Exposure to hypoxia for 4 h and reoxygenation for 1 h (H/R (4 h/1 h)) produced a significant decrease in P-gp function of MBEC4 cells, without changing cell viability and permeability for sodium fluorescein and Evan’s blue-albumin at 7 days after H/R (4 h/1 h). CsA-induced hyperpermeability and P-gp dysfunction in MBEC4 monolayers at 7 days after H/R (4 h/1 h) were exacerbated. The possibility that CsA penetrates the BBB with incomplete functions in the vicinity of cerebral infarcts to induce neurotoxicity has to be considered.  相似文献   

18.
Polybrominated diphenyl ethers (PBDEs) are widely used as additive flame-retardants and have been detected in human blood, adipose tissue, and breast milk. Developmental and long-term exposures to these chemicals may pose a human health risk, especially to children. We have previously demonstrated that polychlorinated biphenyls (PCBs), which are structurally similar to PBDEs and cause neurotoxicity, perturb intracellular signaling events including calcium homeostasis and protein kinase C translocation, which are critical for neuronal function and development of the nervous system. The objective of the present study was to test whether environmentally relevant PBDE congeners 47 and 99 are also capable of disrupting Ca2 + homeostasis. Calcium buffering was determined by measuring 45Ca2 + -uptake by microsomes and mitochondria, isolated from adult male rat brain (frontal cortex, cerebellum, hippocampus, and hypothalamus). Results show that PBDEs 47 and 99 inhibit both microsomal and mitochondrial 45Ca2 + -uptake in a concentration-dependent manner. The effect of these congeners on 45Ca2 + -uptake is similar in all four brain regions though the hypothalamus seems to be slightly more sensitive. Among the two preparations, the congeners inhibited 45Ca2 + -uptake in mitochondria to a greater extent than in microsomes. These results indicate that PBDE 47 and PBDE 99 congeners perturb calcium signaling in rat brain in a manner similar to PCB congeners, suggesting a common mode of action of these persistent organic pollutants. The research described in this article has been reviewed by the National Health and Environmental Effects Research Laboratory of the US Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Agency nor does mention of trade names or commercial products constitute endorsement or recommendation for use. These results will be presented at the 21th Biennial Meeting of International Society for Neurochemistry and American Society for Neurochemistry in Cancun, Mexico (August 19–24, 2007). Special issue article in honor of Dr. Frode Fonnum.  相似文献   

19.
Nosocomial transmission of viral and bacterial infections is a major problem worldwide, affecting millions of patients (and causing hundreds of thousands of deaths) per year. Rotavirus infections affect most children worldwide at least once before age five. We present here deterministic and stochastic models for the transmission of rotavirus in a pediatric hospital ward and draw on published data to compare the efficacy of several possible control measures in reducing the number of infections during a 90-day outbreak, including cohorting, changes in healthcare worker-patient ratio, improving compliance with preventive hygiene measures, and vaccination. Although recently approved vaccines have potential to curtail most nosocomial rotavirus transmission in the future, even short-term improvement in preventive hygiene compliance following contact with symptomatic patients may significantly limit transmission as well, and remains an important control measure, especially where resources are limited.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号