首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2018年11月在安徽省黄山市太平湖国家湿地公园(30°34′42″N,118°41′47″E)和宣城市旌德县蔡家桥镇(30°21′26″N,118°30′11″E)的针阔混交林采集到3只麝鼩属小型兽类。3只个体体型较小,体重11~14 g;背毛灰褐色,腹部毛色稍淡;尾短而粗壮,上下异色,基部2/3散生稀疏的长刚毛,这些特征与台湾灰麝鼩(Crocidura tanakae)描述一致。基于Cyt b全序列构建的最大似然树显示,这3号标本与从GenBank下载的台湾灰麝鼩(GenBank登录号KX946002~KX946006、AB175080、AB175081)构成单系群(支持率为100%)。这3号标本Cyt b全序列与台湾灰麝鼩地模标本(GenBank登录号AB175080、AB175081)的遗传距离在0.76%~0.85%之间。基于以上结果,确定这3号标本为台湾灰麝鼩,这是该物种在安徽省的首次发现,也是其在华东地区的首个分布记录。  相似文献   

2.
    
Island systems are important models for evolutionary biology because they provide convenient, discrete biogeographic units of study. Continental islands with a history of intermittent dry land connections confound the discrete definitions of islands and have led zoologists to predict (i) little differentiation of terrestrial organisms among continental shelf islands and (ii) extinction, rather than speciation, to be the main cause of differences in community composition among islands. However, few continental island systems have been subjected to well‐sampled phylogeographic studies, leaving these biogeographic assumptions of connectivity largely untested. We analysed nine unlinked loci from shrews of the genus Crocidura from seven mountains and two lowland localities on the Sundaic continental shelf islands of Sumatra and Java. Coalescent species delimitation strongly supported all currently recognized Crocidura species from Sumatra (six species) and Java (five species), as well as one undescribed species endemic to each island. We find that nearly all species of Crocidura in the region are endemic to a single island and several of these have their closest relative(s) on the same island. Intra‐island genetic divergence among allopatric, conspecific populations is often substantial, perhaps indicating species‐level diversity remains underestimated. One recent (Pleistocene) speciation event generated two morphologically distinct, syntopic species on Java, further highlighting the prevalence of within‐island diversification. Our results suggest that both between‐ and within‐island speciation processes generated local endemism in Sundaland, supplementing the traditional view that the region's fauna is relictual and primarily governed by extinction.  相似文献   

3.
于2006年10月及2015年8月在中国云南省采集到台湾灰麝鼩(Crocidura tanakae Kuroda,1938)3号成体标本。1号雄性与1号雌性的标本来自屏边县大围山自然保护区(22°53′59″N,103°41′23″E,2 088 m),另1号雌性标本采自富宁县里达镇半边箐(23°28′11\"N,105°35′59″E,1 442 m)。其尾毛长而稀疏,尾长变异大,后足宽大,后足足底和掌外侧垫突出、聚集且呈圆形,这些特征与模式产地的标本吻合。其线粒体Cyt b与地模标本的遗传距离为1.6%。采集地生境为原生林与次生林交界处和落叶季雨林。  相似文献   

4.
<正>台湾灰麝鼩(Crocidura tanakae Kuroda,1938)属于鼩形目(Soricomorpha)鼩鼱科(Soricidae)麝鼩属,在台湾地区分布较广(Fang et al.,1997),其模式标本产于台湾台中市南投县。其后,Ellerman和Morrison-Scott (1951)等认为其是灰麝鼩(Crocidura attenuata)的亚种或同物异名(Ellerman  相似文献   

5.
正台湾灰麝鼩(Crocidura tanakae)属于鼩形目(Soricomorpha)鼩鼱科(Soricidae),首次被Kuroda于1938描述,其模式产地在中国台湾台中市(Taichung)。随后一直被认为是灰麝鼩(Crocidura attenuata)的亚种或同物异名(Corbet and Hill,1992;Hutterer,1993;Fang et al.,1997;Motoka-  相似文献   

6.
Roberts TE 《Molecular ecology》2006,15(8):2183-2199
The comparative phylogeography of widespread, codistributed species provides unique insights into regional biodiversity and diversification patterns. I used partial DNA sequences of the mitochondrial genes ND2 and cyt b to investigate phylogeographic structure in three widespread Philippine fruit bats. Ptenochirus jagori is endemic to the oceanic region of the Philippines and is most abundant in lowland primary forest. Macroglossus minimus and Cynopterus brachyotis are most common in disturbed and open habitats and are not endemic. In all three, genetic differentiation is present at multiple spatial scales and is associated to some degree with Pleistocene landbridge island groups. In P. jagori and C. brachyotis, genetic distance is correlated with geographic distance; in C. brachyotis and M. minimus, it is correlated with the sea-crossing distance between islands. P. jagori has the least overall genetic structure of these three species, whereas C. brachyotis and M. minimus have more geographic association among haplotypes, suggesting that phylogeographic patterns are linked to ecology and habitat preference. However, contrary to expectation, the two widespread, disturbed habitat species have more structure than the endemic species. Mismatch distributions suggest rapid changes in effective population size in C. brachyotis and P. jagori, whereas M. minimus appears to be demographically more stable. Geologic and geographic history are important in structuring variation, and phylogeographic patterns are the result of dynamic long-term processes rather than simply reflecting current conditions.  相似文献   

7.
    
The impact of islands on the population structure of Anopheles flavirostris (Ludlow) (Diptera: Culicidae), the primary malaria vector in the Philippines, was assessed. A phylogenetic analysis of 16 cytochrome oxidase subunit 1 (CO1) haplotypes revealed three clades: one basal clade containing genetically disparate haplotypes from Mindanao, and two derived clades, one of which was largely confined to the largest island, Luzon, and one that was widespread except for Luzon. For the Luzon clade, nested clade analysis revealed an isolation-by-distance effect, and a mismatch distribution analysis diagnosed a recent demographic expansion (sum of squared deviation, SDD = 0.0093, P= 0.075), which mirrors demographic attributes found in mainland primary malaria vectors and could inflate estimates of gene flow from F(ST). For the widespread clade, evidence of range expansion and past fragmentation and/or long distance colonization from the Visayas or Mindanao to Palawan is suggested. A south-to-north range expansion of An. flavirostris is suggested; estimates of coalescence for the Luzon clade was 214 000 years ago (ya) (95% confidence interval 35 600-298 000 ya), i.e. late Pleistocene. Present day rather than Pleistocene island association and some, but not all, sea barriers appeared to be important for An. flavirostris population structure. Our results suggest that endemic island malaria vector species need to be considered before any generalizations are made about the population structure of primary and secondary vectors.  相似文献   

8.
于2013年和2018年在河南信阳新县与浉河共采集到3号鼩鼱成年个体标本,基于齿色特征初步鉴定为劳亚食虫目鼩鼱科麝鼩属(Crocidura)物种。对所采3号标本的Cyt b基因进行PCR扩增和测序,测序结果与GenBank数据库进行比对,并通过构建系统发育关系树进一步明确所采3只标本的分类地位。根据标本形态、头骨特征,结合分子生物学证据,确定该物种为台湾灰麝鼩(C.tanakae),为河南哺乳动物分布新记录种。标本现存于郑州大学生物多样性与生态学研究所(编号分别为IBE20131005、IBE2018100501和IBE2018100502)。  相似文献   

9.
    
  相似文献   

10.
在贵州省六盘水市杨梅乡慕尼克村,利用陷阱法捕捉到3号麝鼩属(Crocidura)标本.本次采集标本的体形较小,头体长(49.0±0.8)mm,尾长[(41.8±4.2)mm]略短于头体长(尾长/头体长为85%).背毛呈浅灰褐色,腹毛颜色浅于背毛,呈灰色.尾部双色,背侧黑褐色,腹侧淡于背侧.前足背部白色,后足则为淡灰色.尾近乎裸露,尾基约1/3着生稀疏白色长毛.颅全长(15.92±0.55)mm,脑颅高(4.75±0.18)mm.上门齿1枚,有一长而大的前尖和一小而矮的后尖.上单尖齿3枚,第1单尖齿最大,第2单尖齿略大于第3单尖齿,1枚第四前臼齿(P4),3枚臼齿.上述特征与东阳江麝鼩(C.dongyangjiangensis)模式标本的描述和鉴定特征基本一致,因此将3号采集标本鉴定为东阳江麝鼩.基于Cytb基因进行分子系统发育分析,采集标本与麝鼩属物种中的东阳江麝鼩遗传距离最近,在0.004~0.027之间.系统发生树显示,3号标本与东阳江麝鼩构成一个单系进化分支,进一步证实本次采集的3号标本是东阳江麝鼩,为贵州省分布新记录种.  相似文献   

11.
    
Aim Nearly 150 years ago, T. H. Huxley modified Wallace’s Line, including the island of Palawan as a component of the Asian biogeographic realm and separating it from the oceanic Philippines. Although Huxley recognized some characteristics of a transition between the regions, Palawan has since been regarded primarily as a peripheral component of the Sunda Shelf. However, several recent phylogenetic studies of Southeast Asian lineages document populations on Palawan to be closely related to taxa from the oceanic Philippines, apparently contradicting the biogeographic association of Palawan with the Sunda Shelf. In the light of recent evidence, we evaluate taxonomic and phylogenetic data in an attempt to identify the origin(s) of Palawan’s terrestrial vertebrate fauna. Location The Sunda Shelf and the Philippines. Methods We review distributional and phylogenetic data for populations of terrestrial vertebrates from Palawan. Using taxonomic data, we compare the number of Palawan taxa (species and genera) shared with the Sunda Shelf and oceanic Philippines. Among widespread lineages, we use phylogenetic data to identify the number of Palawan taxa with sister relationships to populations or species from the Sunda Shelf or oceanic Philippines. Results Although many terrestrial vertebrate taxa are shared between Palawan and the Sunda Shelf, an increasing number of species and populations are now recognized as close relatives of lineages from the oceanic Philippines. Among the 39 putative lineages included in molecular phylogenetic studies with sampling from the Sunda Shelf, Palawan and the oceanic Philippines, 17 of them reveal sister relationships between lineages from Palawan and the oceanic Philippines. Main conclusions Rather than a simple nested subset of Sunda Shelf populations, Palawan is best viewed as having played multiple biogeographic roles, including a young and old extension of the Sunda Shelf, a springboard to diversification in the oceanic Philippines, and a biogeographic component of the Philippine archipelago. Palawan has a long, complex geological history, which may explain this variation in pattern. Huxley originally noted transitional elements in Palawan’s fauna; we therefore suggest that his modification of Wallace’s Line should be recognized as a filter zone, reflecting both his original intent and available taxonomic and molecular evidence.  相似文献   

12.
13.
The species-area relationship of the island biogeography theory was calculated for macroinvertebrates in 22 coastal, adjacent streams. A z-value of 0.19 was obtained. The low z-value was probably a consequence of the short distances between streams as well as high dispersal rates. In addition, a cluster analysis based on the dissimilarity of species assemblages showed that stream size was of prime importance in categorizing the streams. To a smaller extent water quality affected the community structure in the streams.  相似文献   

14.
    
Aim Magpie‐robins and shamas are forest and woodland birds of south Asia. There are two genera: Trichixos for the monotypic T. pyrrhopygus, and Copsychus for other species. Two species are widespread, whereas the others are restricted to specific islands. Endemicity is highest in the Philippines. Using phylogenetic methods, we examined how this group came to its unusual distribution. Location Mainland Asia from India to southern China, and islands from Madagascar to the Philippines. Particular emphasis is placed on the Greater Sundas and Philippines. Methods The phylogeny was estimated from DNA sequences of 14 ingroup taxa representing all nine currently recognized Copsychus and Trichixos species. The entire mitochondrial ND2 gene and portions of nuclear myoglobin intron 2 (Myo2) and transforming growth factor beta 2 intron 5 (TGFβ2‐5) were sequenced for all but two species. The phylogeny was reconstructed using maximum likelihood and Bayesian methods. The timing of divergence events was estimated using a relaxed molecular clock approach, and ancestral areas were examined using stochastic modelling. Results The group comprises three main clades corresponding to ecological types: Trichixos, a primary‐forest specialist; Copsychus magpie‐robins, open‐woodland and coastal species; and Copsychus shamas, thick‐forest species. Trichixos appears to be sister to the magpie‐robins, rendering Copsychus polyphyletic. The dating of phylogenetic nodes was too ambiguous to provide substantial insight into specific geographical events responsible for divergence within the group. Some patterns are nevertheless clear. Copsychus shamas reached the Philippines, probably in two separate invasions, and split into endemic species. Copsychus malabaricus and C. saularis expanded widely in the Greater Sundas and mainland Southeast Asia without species‐level diversification. Main conclusions Magpie‐robins are excellent dispersers and have diversified into distinct species only on isolated oceanic islands. Trichixos, a poor disperser, is restricted to mature forests of the Malay Peninsula, Sumatra and Borneo. Copsychus shamas are intermediate in habitat preference and dispersal capabilities. Their endemism in the Philippines may be attributed to early colonization and specialization to interior forests. In the Greater Sundas, C. malabaricus and C. saularis populations split and came together on Borneo to form two separate subspecies (of each species), which now hybridize.  相似文献   

15.
  总被引:1,自引:0,他引:1  
Four to 10 years after the successful eradication of the Norway rat (Rattus norvegicus) from three islands of the Sept–Îles Archipelago and one in the Molène Archipelago (Brittany, France), the abundance index of the lesser white‐toothed shrew (Crocidura suaveolens) increased by factors of 7–25, depending on the island and the year. Moreover, in the same region, the abundance index of the greater white‐toothed shrew (Crocidura russula) on Tomé Island increased by factors of 9 and 17, one and two years after the Norway rat eradication, respectively. The maximum variation of the abundance index for the lesser white‐toothed shrew during seven years on the rat‐free island of Béniguet in the same region was a factor of only 2.5. Moreover, the distribution of the lesser white‐toothed shrew on Bono island, restricted before the eradication to two steep areas with few rats, increased and encompassed virtually the entire island four years after rats disappeared. These results suggest strong detrimental interactions between the introduced Norway rat and the two Crocidura shrew species on temperate oceanic islands. However, our data do not indicate the ecological mechanisms at work in these interactions. The main reason this shrew recovery was detected after rat eradication was the inclusion in the eradication protocol of the evaluation of impacts on the local biota of eliminating alien species. The rigor of the sampling procedure was also crucial to this discovery. This example demonstrates that an eradication operation can be extremely useful for both scientists and managers if it is planned as a research project.  相似文献   

16.
    
Aim The oriental magpie‐robin (Copsychus saularis) of South and Southeast Asia is a phenotypically variable species that appears to be closely related to two endemic species of the western Indian Ocean: the Madagascar magpie‐robin (Copsychus albospecularis) and the Seychelles magpie‐robin (Copsychus sechellarum). This unusual distribution led us to examine evolutionary relationships in magpie‐robins, and also the taxonomic significance of their plumage variation, via a molecular phylogenetic and population genetic analysis of C. saularis and C. albospecularis. Location Southern Asia from Nepal across Indochina to southern China, and the Indian Ocean from Madagascar to the Greater Sunda and Philippine islands. Methods We sequenced 1695 nucleotides of mitochondrial DNA comprising the complete second subunit of the nicotinamide adenine dinucleotide dehydrogenase (ND2) gene and 654 bases of the cytochrome c oxidase subunit I (COI) region in 51 individuals of eight C. saularis subspecies, 10 individuals of C. albospecularis (one subspecies) and single individuals of two other Copsychus species as outgroups. The data were analysed phylogenetically, with maximum likelihood, Bayesian, relaxed clock and parsimony methods, and geographically for patterns of genetic diversity. Results Phylogenetic analysis indicated that C. albospecularis lies within the nominal C. saularis, making C. saularis polyphyletic. Malagasy and non‐Philippine Asian populations form a monophyletic group that is sister to a clade of Philippine populations. Within non‐Philippine Asian populations, two groups are evident: black‐bellied birds in the eastern Greater Sunda islands and white‐bellied birds in the western Sundas and on mainland Asia. Main conclusions The phylogeny of magpie‐robins suggests a novel pattern of dispersal and differentiation in the Old World. Ancestral magpie‐robins appear to have spread widely among islands of the Indian Ocean in the Pliocene, probably aided by their affinity for coastal habitats. Populations subsequently became isolated in island groups, notably the Philippines, Madagascar and the Greater Sundas, leading to speciation in all three areas. Isolation in the Philippines may have been aided by competitive exclusion of C. saularis from Palawan by a congener, the white‐vented shama (Copsychus niger). In the Greater Sundas, white‐bellied populations appear to have invaded Borneo and Java recently, where they hybridize with resident black‐bellied birds.  相似文献   

17.
The Macarthur-Wilson equilibrium theory of island biogeography has had a contradictory role in ecology. As a lasting contribution, the theory has created a new way of viewing insular environments as dynamical systems. On the other hand, many of the applications of the theory have reduced to mere unimaginative curve-fitting. I analyze this paradox in semiotic terms: the theory was mainly equated with the simple species-area relationship which became a signifier of interesting island ecology. The theory is, however, better viewed as a theoretical framework that suggests specific hypotheses on the ecology of colonization of insular environments. This paradox is inherent in the use of simplifying analytic models. Analytic models are necessary and fruitful in the work of ecologists, but they ought to be supplemented with a broader, pluralistic appreciation of the role of theories in general.  相似文献   

18.
    
Jason R. Ali  Shai Meiri 《Ecography》2019,42(5):989-999
Models for biodiversity growth on the remote oceanic islands assume that in situ cladogenesis is a major contributor. To test this, we compiled occurrence data for 194 terrestrial reptile species on 53 volcanically‐constructed middle‐ to low‐latitude landmasses worldwide. Despite 273 native island‐species records, there are only 8–12 cases of the phenomenon, including just two radiations. Diversification frequencies are largely uncorrelated with island area, age, maximum altitude, and isolation. Furthermore, there is no indication that the presence of non‐sister congeners on an island stymies the process. Diversity on individual oceanic islands therefore results primarily from immigration and anageneis, but this is not a simple matter. Clusters that are difficult to reach (far or challenging to get to) or thrive upon (e.g. Canaries, Galápagos) have relatively few clades (3–8), some of which have many species (6–14), and all host at least one endemic genus. In these settings, diversity grows mainly by intra‐archipelago transfer followed by within‐island anagenetic speciation. In contrast, those island groups that are easier to disperse to (characterized by short distances and conducive transit conditions) and harbour more benign habitats (e.g. Comoros, Lesser Antilles) have been settled by many ancestor‐colonizers (≥ 14), but each clade has few derived species (≤ 4). These archipelagoes lack especially distinctive lineages. Models explaining the assembly and growth of terrestrial biotic suites on the volcanic ocean islands thus need to accommodate these new insights.  相似文献   

19.
    
The Ionian archipelago is the second largest Greek archipelago after the Aegean, but the factors driving plant species diversity in the Ionian islands are still barely known. We used stepwise multiple regressions to investigate the factors affecting plant species diversity in 17 Ionian islands. Generalized dissimilarity modelling was applied to examine variation in the magnitude and rate of species turnover along environmental gradients, as well as to assess the relative importance of geographical and climatic factors in explaining species turnover. The values of the residuals from the ISAR log10‐transfomed models of native and endemic taxa were used as a measure of island floristic diversity. Area was confirmed to be the most powerful single explanatory predictor of all diversity metrics. Mean annual precipitation and temperature, as well as shortest distance to the nearest island are also significant predictors of vascular plant diversity. The island of Kalamos constitutes an important plant diversity hotspot in the Ionian archipelago. The recent formation of the islands, the close proximity to the mainland source and the relatively low dispersal filtering of the Ionian archipelago has resulted in islands with a flora principally comprising common species and a low proportion of endemics. Small islands keep a key role in conservation of plant priority sites.  相似文献   

20.
Glor RE 《Molecular ecology》2011,20(23):4823-4826
If island biogeography has a sweet spot, it's where islands generate their own species diversity rather than merely taking on mainland immigrants. In birds and other highly dispersive taxa, however, this 'zone of radiation', may be vanishingly small. Darwin's finches and Hawaiian Honeycreepers are among only a handful of examples of island radiation in birds (Price 2008), suggesting that winged powers of dispersal make sufficient isolation from mainland colonists unlikely, while also hindering speciation within and among isolated islands. Nevertheless, two studies in this issue of Molecular Ecology join a string of other recent analyses suggesting that island radiation in birds remains under-appreciated (see also Moyle et al. 2009; Kisel & Barraclough 2010; Rosindell & Phillimore 2011). Melo et al. (2011) use a phylogenetic analysis of white-eyes on islands in the Gulf of Guinea to identify two previously overlooked island radiations, and reveal replicated adaptive divergence on islands where species occur in pairs. Sly et al. (2011), meanwhile, consider possible explanations for speciation and geographic differentiation within a large island, and find the same type of oceanic barriers that are critical to bird speciation across archipelagos may also contribute to divergence that appears to have occurred within a single island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号