首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim: To develop spa multiplex real‐time and conventional PCR assays to detect and differentiate between spaA, spaB and spaC genes within Erysipelothrix spp. Methods and Results: For evaluation of the assays, 28 Erysipelothrix spp. reference strains, 25 tissues from pigs inoculated with reference strains of serotypes 1, 2, 5, 10 or 18, and 15 diagnostic samples were used. SpaA was found to be present in Erysipelothrix rhusiopathiae serotypes 1a, 1b, 2, 5, 9, 12, 15, 16, 17, 23 and N; spaB was detected in E. rhusiopathiae serotypes 4, 6, 8, 11, 19 and 21 and spaC was detected in E. sp. strain 2 serotype 18. Spa‐related genes were not detected in E. tonsillarum strains (serotypes 3, 7, 10, 14, 20, 22, 24, 25, 26) or E. sp. strain 1 (serotype 13). With the spa multiplex real‐time PCR assay, it was also possible to further differentiate spaB into spaB1 (serotypes 4, 6, 8, 19 and 21) and spaB2 (serotype 11). Overall, spaA was detected in seven experimental tissue samples and six diagnostic tissue samples, and spaC in two experimental tissue samples. The detection limits were determined to be five colony‐forming units (CFU) per reaction for the spa multiplex real‐time PCR assay and 4000 CFU per reaction for the conventional PCR assay. Conclusions: Both spa PCR assays were specific and reproducible in the identification of spa types in Erysipelothrix spp. Significance and Impact of the Study: The described spa PCR assays may be useful tools for investigating spa prevalence among strains isolated from field tissues and to determine the role of the Spa proteins in vaccine protection and pathogenesis.  相似文献   

2.
Aims: To develop a multiplex real‐time PCR assay using TaqMan probes for the simultaneous detection and discrimination of potato powdery scab and common scab, two potato tuber diseases with similar symptoms, and the causal pathogens Spongospora subterranea and plant pathogenic Streptomyces spp. Methods and Results: Real‐time PCR primers and a probe for S. subterranea were designed based on the DNA sequence of the ribosomal RNA ITS2 region. Primers and a probe for pathogenic Streptomyces were designed based on the DNA sequence of the txtAB genes. The two sets of primer pairs and probes were used in a single real‐time PCR assay. The multiplex real‐time PCR assay was confirmed to be specific for S. subterranea and pathogenic Streptomyces. The assay detected DNA quantities of 100 fg for each of the two pathogens and linear responses and high correlation coefficients between the amount of DNA and Ct values for each pathogen were achieved. The presence of two sets of primer pairs and probes and of plant extracts did not alter the sensitivity and efficiency of multiplex PCR amplification. Using the PCR assay, we could discriminate between powdery scab and common scab tubers with similar symptoms. Common scab and powdery scab were detected in some tubers with no visible symptoms. Mixed infections of common scab and powdery scab on single tubers were also revealed. Conclusions: This multiplex real‐time PCR assay is a rapid, cost efficient, specific and sensitive tool for the simultaneous detection and discrimination of the two pathogens on infected potato tubers when visual symptoms are inconclusive or not present. Significance and Impact of the Study: Accurate and quick identification and discrimination of the cause of scab diseases on potatoes will provide critical information to potato growers and researchers for disease management. This is important because management strategies for common and powdery scab diseases are very different.  相似文献   

3.
For many years, Erysipelothrix rhusiopathiae has been known to be the causative agent of the occupationally related infection erysipeloid. A survey of the distribution of Erysipelothrix spp. in 19 Australasian seafoods was conducted, and methodologies for the detection of Erysipelothrix spp. were evaluated. Twenty-one Erysipelothrix spp. were isolated from 52 seafood parts. Primary isolation of Erysipelothrix spp. was most efficiently achieved with brain heart infusion broth enrichment followed by subculture onto a selective brain heart infusion agar containing kanamycin, neomycin, and vancomycin after 48 h of incubation. Selective tryptic soy broth, with 48 h of incubation, was the best culture method for the detection of Erysipelothrix spp. with PCR. PCR detection was 50% more sensitive than culture. E. rhusiopathiae was isolated from a variety of different fish, cephalopods, and crustaceans, including a Western rock lobster (Panulirus cygnus). There was no significant correlation between the origin of the seafoods tested and the distribution of E. rhusiopathiae. An organism indistinguishable from Erysipelothrix tonsillarum was isolated for the first time from an Australian oyster and a silver bream. Overall, Erysipelothrix spp. were widely distributed in Australasian seafoods, illustrating the potential for erysipeloid-like infections in fishermen.  相似文献   

4.
Aim: To develop a multiplex real‐time PCR assay for the detection and differentiation of Moraxella bovis (M. bovis), M. bovoculi and M. ovis. Methods and Results: The multiplex real‐time PCR assay was validated on three reference strains, 57 pure culture isolates and 45 lacrimal swab samples. All reference strains were identified correctly with no cross‐reactions between species. Sequencing of 53 of the 57 culture isolates confirmed the results obtained with the multiplex real‐time PCR, and the assay had 96·5% (55/57) concordance with a Moraxella spp. multiplex conventional PCR assay on the isolates. Among the lacrimal swab samples, the concordance between the multiplex real‐time PCR and culture was 86·7% (39/45) for M. bovoculi and 75·6% (34/45) for M. bovis. Conclusions: The multiplex real‐time PCR assay is specific and sensitive and can be used directly on lacrimal swab samples. Significance and Impact of Study: The lack of a rapid, specific and sensitive detection method is a barrier for determining the roles of M. bovis, M. bovoculi and M. ovis in infectious bovine keratoconjunctivitis cases, and the developed PCR assay will contribute to improved understanding of the epidemiology and pathogenesis of these three Moraxella species.  相似文献   

5.
6.
Rapid and accurate polymerase chain reaction (PCR) and real‐time PCR methods were developed for the detection of Colletotrichum lagenarium, the causal agent of anthracnose, in tissues of squash (Cucurbita moschata), watermelon (Citrullus lanatus), cucumber (Cucumis sativus) and muskmelon (Cucumis melo). PCR assays amplified different internal transcribed spacer sequences from C. lagenarium, so effectively detected this pathogen in infected tissues. PCR analysis with the primer co‐m‐337F1/R1 was able to differentiate C. lagenarium from other fungal pathogens, including Colletotrichum spp., Fusarium spp., Alternaria spp. and Didymella spp. An optimized real‐time PCR assay was developed to detect and monitor C. lagenarium in both infected plant tissues and soil samples. The sensitivity of real‐time PCR can detect down to 1 pg of DNA. Thus, PCR‐based analysis is a useful technique for rapid detection and diagnosis of C. lagenarium in infected plants or infested soils.  相似文献   

7.
Aims: Polymerase chain reaction (PCR) is the most rapid and sensitive method for diagnosing mycobacterial infections and identifying the aetiological Mycobacterial species in order to administer the appropriate therapy and for better patient management. Methods and Results: Two hundred and thirty‐five samples from 145 clinically suspected cases of tuberculosis were processed for the detection of Mycobacterial infections by ZN (Ziehl Neelsen) smear examination, L‐J & BACTECTM MGIT‐960 culture and multiplex PCR tests. The multiplex PCR comprised of genus‐specific primers targeting hsp65 gene, Mycobacterium tuberculosis complex‐specific primer targeting cfp10 (Rv3875, esxB) region and Mycobacterium avium complex‐specific primer pairs targeting 16S–23S Internal Transcribed Spacer sequences. The multiplex PCR developed had an analytical sensitivity of 10 fg (3–4 cells) of mycobacterial DNA. The multiplex PCR test showed the highest (77·24%) detection rate, while ZN smear examination had the lowest (20%) detection rate, which was bettered by L‐J culture (34·4%) and BACTECTM MGIT‐960 culture (50·34%) methods. The mean isolation time for M. tuberculosis was 19·03 days in L‐J culture and 8·7 days in BACTECTM MGIT‐960 culture. Using the multiplex PCR, we could establish M. tuberculosis + M. avium co‐infection in 1·3% HIV‐negative and 2·9% HIV‐positive patients. The multiplex PCR was also highly useful in diagnosing mycobacteraemia in 38·09% HIV‐positive and 15·38% HIV‐negative cases. Conclusions: The developed in‐house multiplex PCR could identify and differentiate the M. tuberculosis and M. avium complexes from other Mycobacterial species directly from clinical specimens. Significance and Impact of the Study: The triplex PCR developed by us could be used to detect and differentiate M. tuberculosis, M. avium and other mycobacteria in a single reaction tube.  相似文献   

8.
A multiplex nested PCR assay was developed by optimizing reaction components and reaction cycling parameters for simultaneous detection of Corchorus golden mosaic virus (CoGMV) and a phytoplasma (Group 16Sr V‐C) causing little leaf and bunchy top in white jute (Corchorus capsularis). Three sets of specific primers viz. a CoGMV specific (DNA‐A region) primer, a 16S rDNA universal primer pair P1/P7 and nested primer pair R16F2n/R2 for phytoplasmas were used. The concentrations of the PCR components such as primers, MgCl2, Taq DNA polymerase, dNTPs and PCR conditions including annealing temperature and amplification cycles were examined and optimized. Expected fragments of 1 kb (CoGMV), 674 bp (phytoplasma) and 370 bp (nested R16F2n/R2) were successfully amplified by this multiplex nested PCR system ensuring simultaneous, sensitive and specific detection of the phytoplasma and the virus. The multiplex nested PCR provides a sensitive, rapid and low‐cost method for simultaneous detection of jute little leaf phytoplasma and CoGMV. Based on BLASTn analyses, the phytoplasma was found to belong to the Group 16Sr V‐C.

Significance and Impact of the Study

Incidence of phytoplasma diseases is increasing worldwide and particularly in the tropical and subtropical world. Co‐infection of phytoplasma and virus(s) is also common. Therefore, use of single primer PCR in detecting these pathogens would require more time and effort, whereas multiplex PCR involving several pairs of primers saves time and reduces cost. In this study, we have developed a multiplex nested PCR assay that provides more sensitive and specific detection of Corchorus golden mosaic virus (CoGMV) and a phytoplasma in white jute simultaneously. It is the first report of simultaneous detection of CoGMV and a phytoplasma in Corchorus capsularis by multiplex nested PCR.  相似文献   

9.
Aims: To develop a rapid multiplex PCR method for simultaneous detection of five major foodborne pathogens (Staphylococcus aureus, Listeria monocytogenes, Escherichia coli O157:H7, Salmonella Enteritidis and Shigella flexneri, respectively). Methods and Results: Amplification by PCR was optimized to obtain high efficiency. Sensitivity and specificity assays were investigated by testing different strains. With a multipathogen enrichment, multiplex PCR assay was able to simultaneously detect all of the five organisms in artificially contaminated pork samples. The developed method was further applied to retail meat samples, of which 80% were found to be positive for one or more of these five organisms. All the samples were confirmed by traditional culture methods for each individual species. Conclusions: This study reported a rapid multiplex PCR assay using five primers sets for detection of multiple pathogens. Higher consistency was obtained between the results of multiplex PCR and traditional culture methods. Significance and Impact of the Study: This work has developed a reliable, useful and cost‐effective multiplex PCR method. The assay performed equally as well as the traditional cultural method and facilitated the sensitive detection both in artificially contaminated and naturally contaminated samples.  相似文献   

10.
J.‐H. Lee, N.‐W. Lee, S.‐W. Hong, Y.‐S. Nam, J.‐W. Choi and Y.‐S. Kim Establishment of an efficient multiplex real‐time PCR assay for human papillomavirus genotyping in cervical cytology specimens: comparison with hybrid capture II Objective: To establish an efficient multiplex real‐time PCR assay for 15 human papillomavirus (HPV) genotypes, we designed multiplexing parameters and compared our PCR system with the hybrid capture (HC) II test using cervical cytology samples. Methods: For preventing cross‐reactive amplifications, variable HPV genes (E1, E2, E6, E7 and L1) were targeted. The melting temperatures of all primers and probes, and the size of the PCR product were optimized for the multiplex PCR. Our PCR system was compared with the HC II assays in the detection and genotyping of HPV infection using 173 cytology smears. Discordant cases between the two assays were verified by direct HPV DNA sequencing. Results: Of 173 women, 93 (53.8%) were HPV‐positive by the HC II assay and/or the multiplex real‐time PCR assay. The HPV genotypes were determined in 92 (98.9%) of 93 cases by the multiplex real‐time PCR and/or DNA sequencing. The agreement rate between multiplex PCR and HC II methods was 91.9% (kappa = 0.84). Although the sample size of this study needs to be increased to have epidemiological significance, multiple infections and HPV 16 were the predominant type. HPV 58, 52 and 18 accounted for 25% of HPV infections. HPV 52, 58 and 31 constituted 30% of CIN 2/3. Conclusion: The multiplex real‐time PCR system shows a good and reliable clinical performance. This in house PCR assay is fast and cost‐effective for HPV genotyping and the detection of HPV co‐infection in the post‐HPV vaccination era.  相似文献   

11.
Aims: We established a real‐time PCR assay for the detection and strain identification of Candida species and demonstrated the ability to differentiate between Candida albicans the most common species, and also Candida parapsilosis, Candida glabrata, Candida tropicalis and Candida dubliniensis by LightCycler PCR and melting curve analysis. Methods and Results: The DNA isolation from cultures and serum was established using the QIAmp Tissue Kit. The sensitivity of the assay was ≥ 2 genome equivalents/assay. It was possible to differentiate all investigated Candida species by melting curve analysis, and no cross‐reaction to human DNA or Aspergillus species could be observed. Conclusions: The established real‐time PCR assay is a useful tool for the rapid identification of Candida species and a base technology for more complex PCR assays. Significance and Impact of the Study: We carried out initial steps in validation of a PCR assay for the detection and differentiation of medically relevant Candida species. The PCR was improved by generating PCR standards, additional generation of melting curves for species identification and the possibility to investigate different specimens simultaneously.  相似文献   

12.
Aims: The aim of this study was to explore a new PCR target gene for Vibrio parahaemolyticus, based on the histone‐like nucleoid structure (H‐NS) gene. Methods and Results: Primers for the H‐NS gene were designed for specificity to Vparahaemolyticus and incorporated into a PCR assay. The PCR assay was able to specifically detect all of the 82 Vparahaemolyticus strains tested, but did not result in amplification in the 47 other Vibrio spp. and nonVibrio spp. strains. The detection limit of the PCR assay was 0·14 pg purified genomic DNA and 1·8 × 105 CFU g?1 spiked oyster samples from Vparahaemolyticus RIMD2210633. Furthermore, a multiplex PCR assay targeting the hns, tdh and trh genes was successfully developed to detect virulent Vparahaemolyticus strains. Conclusions: The H‐NS‐based PCR assay developed in this study was sensitive and specific, with great potential for field detection of Vparahaemolyticus in seawater or seafood samples. Significance and Impact of the Study: The H‐NS gene was validated as a new specific marker gene in PCR assays for accurate detection and identification of Vparahaemolyticus, which has the potential to be applied in diagnostics and taxonomic studies.  相似文献   

13.
Aims: To develop and evaluate primer sets targeted to the dissimilatory sulfite reductase gene (dsrA) for use in quantitative real‐time PCR detection of sulfate‐reducing bacteria (SRB) in stored swine manure. Methods and Results: Degenerate primer sets were developed to detect SRB in stored swine manure. These were compared with a previously reported primer set, DSR1F+ and DSR‐R, for their coverage and ability to detect SRB communities in stored swine manure. Sequenced clones were most similar to Desulfovibrio sp. and Desulfobulbus sp., and these SRB populations differed within different manure ecosystems. Sulfur content of swine diets was shown to affect the population of Desulfobulbus‐like Group 1 SRB in manure. Conclusions: The newly developed assays were able to enumerate and discern different groups of SRB, and suggest a richly diverse and as yet undescribed population of SRB in swine manure. Significance and Impact of the Study: The PCR assays described here provide improved and efficient molecular tools for quantitative detection of SRB populations. This is the first study to show population shifts of SRB in swine manure, which are a result of either the effects of swine diets or the maturity of the manure ecosystem.  相似文献   

14.
With respect to disease risk for the quarantine fungus Guignardia citricarpa on citrus fruit an accurate diagnosis for routine analysis is required. Also, when inspections have to be performed on imported citrus fruits, a fast detection method is urgently needed. A fast automated DNA extraction method based on magnetic beads combined with a real‐time PCR assay was optimized to improve and advance the routine diagnosis of citrus black spot disease. Real‐time PCR was used for detection of the pathogen G. citricarpa in planta. A specific primer/TaqMan probe combination that discriminates between G. citricarpa and the harmless citrus endophyte Guignardia mangiferae, was designed based on the internal transcribed spacer region of the multi‐copy rDNA gene. Co‐amplification of target DNA along with an internal competitor DNA fragment made the diagnostic assay more reliable to check for false negatives. The real‐time PCR was specific, since no cross reaction was observed with a series of citrus pathogens and related species. The diagnostic assay was performed on lesions dissected from imported diseased oranges. Comparison between the conventional PCR and the real‐time PCR methods showed that the TaqMan method was more sensitive.  相似文献   

15.
Aims: A new real‐time polymerase chain reaction‐based method was developed for the detection of Salmonella enterica in food. Methods and Results: The method consisted of a novel two‐step enrichment involving overnight incubation in buffered peptone water and a 5‐h subculture in Rappaport–Vassiliadis medium, lysis of bacterial cells and a Salmonella‐specific 5′‐nuclease real‐time PCR with an exogenous internal amplification control. Because a two‐step enrichment was used, the detection limit for dead S. enterica cells in artificially contaminated ice cream and salami samples was high at 107 CFU (25 g)?1, eliminating potential false‐positive results. When the method was evaluated with a range of 100 naturally contaminated food samples, three positive samples were detected by both the real‐time PCR‐based method and by the standard microbiological method, according to EN ISO 6579. When the real‐time PCR‐based method was evaluated alongside the standard microbiological method according to EN ISO 6579 with 36 food samples artificially contaminated at a level of 100 CFU (25 g)?1, identical results were obtained from both methods. Conclusions: The real‐time PCR‐based method involving a two‐step enrichment produced equivalent results to EN ISO 6579 on the day after sample receipt. Significance and Impact of the Study: The developed method is suitable for rapid detection of S. enterica in food.  相似文献   

16.
A real time polymerase chain reaction (PCR) assay was developed and evaluated to detect the presence of the thermostable direct hemolysin gene (tdh), a current marker of pathogenicity in Vibrio parahaemolyticus. The real time PCR fluorogenic probe and primer set was tested against a panel of numerous strains from 13 different bacterial species. Only V. parahaemolyticus strains possessing the tdh gene generated a fluorescent signal, and no cross-reaction was observed with tdh negative Vibrio or non-Vibrio spp. The assay detected a single colony forming unit (CFU) per reaction of a pure culture template. This sensitivity was achieved when the same template amount per reaction was tested in the presence of 2.5 microl of a tdh negative oyster:APW enrichment (oyster homogenate enriched in alkaline peptone water overnight at 35 degrees C). This real time technique was used to test 131 oyster:APW enrichments from an environmental survey of Alabama oysters collected between March 1999 and September 2000. The results were compared to those previously obtained using a streak plate procedure for culture isolation from the oyster:APW enrichment combined with use of a non-radioactive DNA probe for detection of the tdh gene. Real time PCR detected tdh in 61 samples, whereas the streak plate/probe method detected tdh in 15 samples. Only 24 h was required for detection of pathogenic V. parahaemolyticus in oyster:APW enrichments by real time PCR, whereas the streak plate/probe method required 3 days and was more resource intensive. This study demonstrated that real time PCR is a rapid and reliable technique for detecting V. parahaemolyticus possessing the tdh gene in pure cultures and in oyster enrichments.  相似文献   

17.
The objective of this study was to develop a multiplex detection and identification protocol for bacterial soft rot coliforms, namely Pectobacterium wasabiae (Pw), Pectobacterium atrosepticum (Pba) and Dickeya spp., responsible for potato blackleg and tuber soft rot. The procedures were derived from the phylogenetic relationships of these and other Enterobacteriaceae based on recA sequences. The group of Pw strains was highly homogeneous and could be distinguished from the other species. A ligation‐based method for detection of Pw was developed. Five padlock probes (PLPs) were designed, targeting recA sequences to identify the Pw, Pba or Dickeya spp., whereas a sixth probe recognised recA sequences of all soft rot coliforms including Pectobacterium carotovorum subsp. carotovorum (Pcc). Two PLP‐based applications were developed: one using real‐time PCR and one using universal microarrays. Assay sensitivity and specificity were demonstrated using 71 strains of Pw, Pcc, Pba and Dickeya spp. Both multiplex methods can be potentially used for seed testing and in ecological studies, but further validation is required.  相似文献   

18.
A multiplex polymerase chain reaction (PCR) assay for simultaneous, fast and reliable detection of the main soft rot and blackleg potato pathogens in Europe has been developed. It utilises three pairs of primers and enables detection of three groups of pectinolytic bacteria frequently found in potato, namely: Pectobacterium atrosepticum, Pectobacterium carotovorum subsp. carotovorum together with Pectobacterium wasabiae and Dickeya spp. in a multiplex PCR assay. In studies with axenic cultures of bacteria, the multiplex assay was specific as it gave positive results only with strains of the target species and negative results with 18 non‐target species of bacteria that can possibly coexist with pectinolytic bacteria in a potato ecosystem. The developed assay could detect as little as 0.01 ng µL–1 of Dickeya sp. genomic DNA, and down to 0.1 ng µL–1 of P. atrosepticum and P. carotovorum subsp. carotovorum genomic DNA in vitro. In the presence of competitor genomic DNA, isolated from Pseudomonas fluorescens cells, the sensitivity of the multiplex PCR decreased tenfold for P. atrosepticum and Dickeya sp., while no change was observed for P. carotovorum subsp. carotovorum and P. wasabiae. In spiked potato haulm and tuber samples, the threshold level for target bacteria was 101 cfu mL–1 plant extract (102 cfu g–1 plant tissue), 102 cfu mL–1 plant extract (103 cfu g–1 plant tissue), 103 cfu mL–1 plant extract (104 cfu g–1 plant tissue), for Dickeya spp., P. atrosepticum and P. carotovorum subsp. carotovorum/P. wasabiae, respectively. Most of all, this assay allowed reliable detection and identification of soft rot and blackleg pathogens in naturally infected symptomatic and asymptomatic potato stem and progeny tuber samples collected from potato fields all over Poland.  相似文献   

19.
Aims: To develop a highly sensitive and rapid protocol for simultaneous detection and differentiation of Tobacco mosaic virus (TMV) and Tomato mosaic virus (ToMV) in pepper and tomato. In this study, we use the multiplex PCR technique to detect dual infection of these two viruses. Methods and Results: A multiplex RT–PCR method consisting of one‐tube reaction with two primer pairs targeted to replicase genes was developed to simultaneously detect TMV and ToMV in seed samples of pepper and tomato. Specific primers were designed from conserved regions of each of the virus genomes, and their specificity was confirmed by sequencing PCR products. RT–PCR detected up to 10?6 dilution of total RNA extracted from infected leaves. Multiplex RT–PCR revealed the presence of both TMV and ToMV in three of 18 seed samples of tomato and one of 18 seed samples of pepper. Conclusions: The multiplex PCR assay was a cost effective, quick diagnostic technique, which was helpful in differentiating TMV and ToMV accurately. Significance and Impact of the Study: The multiplex PCR assay described in this study is a valuable tool for plant pathology and basic research studies. This method may facilitate better recognition and distinction of TMV and ToMV in both pepper and tomato.  相似文献   

20.
A multiplex real‐time quantitative polymerase chain reaction (PCR) assay was developed to simultaneously detect the DNA of three rice planthoppers, that is, Sogatella furcifera (Horváth) (white‐backed planthopper), Nilaparvata lugens (Stål) (brown planthopper) and Laodelphax striatellus (Fallén) (small brown planthopper), in the gut of their predators. The sets of primers and ALLGlo probes were targeted to the regions of internal transcribed spacer 2 (ITS2) genes in nuclear ribosomal DNA (rDNA). The sensitivity, specificity and interference test for the multiplex real‐time quantitative PCR assay were analysed. The assay's detection limits were 100, 1000 and 100 copies for the white‐backed planthopper, the brown planthopper and the small brown planthopper, respectively. The specificity tests showed no cross‐reactivity with genomic DNA from 30 other dominant herbivores, saprophagous insects and predators from rice ecosystem for each planthopper species. The assay was used in a preliminary study of predation events on the three planthoppers by three major spiders viz., Pardosa pseudoannulata (Bösenberg et Strand), Ummeliata insecticeps (Bösenberg et Strand) and Tetragnatha maxillosa Thorell which each differ in their preferred microhabitat as well as their predatory habits in rice field, and the results showed their predation on each planthopper species could be well evaluated using this method. Therefore, the multiplex real‐time quantitative PCR assay provides a new tool to study the mechanisms of prey shifting and natural regulation of the three rice planthoppers by generalist predators in rice ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号