首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.

Background

Aluminium (Al) toxicity is a major agricultural constraint for crop cultivation on acid soils, which comprise a large portion of the world''s arable land. One of the most widely accepted mechanisms of Al tolerance in plants is based on Al-activated organic acid release into the rhizosphere, with organic acids forming stable, non-toxic complexes with Al. This mechanism has recently been validated by the isolation of bona-fide Al-tolerance genes in crop species, which encode membrane transporters that mediate Al-activated organic acid release leading to Al exclusion from root apices. In crop species such as sorghum and barley, members in the multidrug and toxic compound extrusion (MATE) family underlie Al tolerance by a mechanism based on Al-activated citrate release.

Scope and Conclusions

The study of Al tolerance in plants as conferred by MATE family members is in its infancy. Therefore, much is yet to be discovered about the functional diversity and evolutionary dynamics that led MATE proteins to acquire transport properties conducive to Al tolerance in plants. In this paper we review the major characteristics of transporters in the MATE family and will relate this knowledge to Al tolerance in plants. The MATE family is clearly extremely flexible with respect to substrate specificity, which raises the possibility that Al tolerance as encoded by MATE proteins may not be restricted to Al-activated citrate release in plant species. There are also indications that regulatory loci may be of pivotal importance to fully explore the potential for Al-tolerance improvement based on MATE genes.  相似文献   

2.
3.
Impaired root development caused by aluminum (Al) toxicity is a major cause of grain yield reduction in crops cultivated on acid soils, which are widespread worldwide. In sorghum, the major Al‐tolerance locus, AltSB, is due to the function of SbMATE, which is an Al‐activated root citrate transporter. Here we performed a molecular and physiological characterization of various AltSB donors and near‐isogenic lines harboring various AltSB alleles. We observed a partial transfer of Al tolerance from the parents to the near‐isogenic lines that was consistent across donor alleles, emphasizing the occurrence of strong genetic background effects related to AltSB. This reduction in tolerance was variable, with a 20% reduction being observed when highly Al‐tolerant lines were the AltSB donors, and a reduction as great as 70% when other AltSB alleles were introgressed. This reduction in Al tolerance was closely correlated with a reduction in SbMATE expression in near‐isogenic lines, suggesting incomplete transfer of loci acting in trans on SbMATE. Nevertheless, AltSB alleles from the highly Al‐tolerant sources SC283 and SC566 were found to retain high SbMATE expression, presumably via elements present within or near the AltSB locus, resulting in significant transfer of the Al‐tolerance phenotype to the derived near‐isogenic lines. Allelic effects could not be explained by coding region polymorphisms, although occasional mutations may affect Al tolerance. Finally, we report on the extensive occurrence of alternative splicing for SbMATE, which may be an important component regulating SbMATE expression in sorghum by means of the nonsense‐mediated RNA decay pathway.  相似文献   

4.
In order to develop a new positron emission tomography (PET) probe to study hepatobiliary transport mediated by the multi-drug and toxin extrusion transporter 1 (MATE1), 11C-labelled metformin was synthesized and then evaluated as a PET probe. [11C]Metformin ([11C]4) was synthesized in three steps, from [11C]methyl iodide. Evaluation by small animal PET of [11C]4 showed that there was increased concentrations of [11C]4 in the livers of mice pre-treated with pyrimethamine, a potential inhibitor of MATEs, inhibiting the hepatobiliary excretion of metformin. Radiometabolite analysis showed that [11C]4 was not degraded in vivo during the PET scan. Biodistribution studies were undertaken and the organ distributions were extrapolated into a standard human model. In conclusion, [11C]4 may be useful as a PET probe to non-invasively study the in vivo function of hepatobiliary transport and drug–drug interactions, mediated by MATE1 in future clinical investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号