首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

Data processing is one of the biggest problems in metabolomics, given the high number of samples analyzed and the need of multiple software packages for each step of the processing workflow.

Objectives

Merge in the same platform the steps required for metabolomics data processing.

Methods

KniMet is a workflow for the processing of mass spectrometry-metabolomics data based on the KNIME Analytics platform.

Results

The approach includes key steps to follow in metabolomics data processing: feature filtering, missing value imputation, normalization, batch correction and annotation.

Conclusion

KniMet provides the user with a local, modular and customizable workflow for the processing of both GC–MS and LC–MS open profiling data.
  相似文献   

2.

Introduction

Untargeted metabolomics is a powerful tool for biological discoveries. To analyze the complex raw data, significant advances in computational approaches have been made, yet it is not clear how exhaustive and reliable the data analysis results are.

Objectives

Assessment of the quality of raw data processing in untargeted metabolomics.

Methods

Five published untargeted metabolomics studies, were reanalyzed.

Results

Omissions of at least 50 relevant compounds from the original results as well as examples of representative mistakes were reported for each study.

Conclusion

Incomplete raw data processing shows unexplored potential of current and legacy data.
  相似文献   

3.

Background

One of the recent challenges of computational biology is development of new algorithms, tools and software to facilitate predictive modeling of big data generated by high-throughput technologies in biomedical research.

Results

To meet these demands we developed PROPER - a package for visual evaluation of ranking classifiers for biological big data mining studies in the MATLAB environment.

Conclusion

PROPER is an efficient tool for optimization and comparison of ranking classifiers, providing over 20 different two- and three-dimensional performance curves.
  相似文献   

4.

Purpose

This discussion article aims to highlight two problematic aspects in the International Reference Life Cycle Data System (ILCD) Handbook: its guidance to the choice between attributional and consequential modeling and to the choice between average and marginal data as input to the life cycle inventory (LCI) analysis.

Methods

We analyze the ILCD guidance by comparing different statements in the handbook with each other and with previous research in this area.

Results and discussion

We find that the ILCD handbook is internally inconsistent when it comes to recommendations on how to choose between attributional and consequential modeling. We also find that the handbook is inconsistent with much of previous research in this matter, and also in the recommendations on how to choose between average and marginal data in the LCI.

Conclusions

Because of the inconsistencies in the ILCD handbook, we recommend that the handbook be revised.
  相似文献   

5.

Introduction

Data sharing is being increasingly required by journals and has been heralded as a solution to the ‘replication crisis’.

Objectives

(i) Review data sharing policies of journals publishing the most metabolomics papers associated with open data and (ii) compare these journals’ policies to those that publish the most metabolomics papers.

Methods

A PubMed search was used to identify metabolomics papers. Metabolomics data repositories were manually searched for linked publications.

Results

Journals that support data sharing are not necessarily those with the most papers associated to open metabolomics data.

Conclusion

Further efforts are required to improve data sharing in metabolomics.
  相似文献   

6.

Introduction

Concerning NMR-based metabolomics, 1D spectra processing often requires an expert eye for disentangling the intertwined peaks.

Objectives

The objective of NMRProcFlow is to assist the expert in this task in the best way without requirement of programming skills.

Methods

NMRProcFlow was developed to be a graphical and interactive 1D NMR (1H & 13C) spectra processing tool.

Results

NMRProcFlow (http://nmrprocflow.org), dedicated to metabolic fingerprinting and targeted metabolomics, covers all spectra processing steps including baseline correction, chemical shift calibration and alignment.

Conclusion

Biologists and NMR spectroscopists can easily interact and develop synergies by visualizing the NMR spectra along with their corresponding experimental-factor levels, thus setting a bridge between experimental design and subsequent statistical analyses.
  相似文献   

7.

Background

Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations.

Results

We show that new data processing tools and visualization systems can be used successfully in biomedical and life science applications. We present an adaptive high-resolution display system suitable for biomedical image data, algorithms for analyzing and visualization protein surfaces and retinal optical coherence tomography data, and visualization tools for 3D gene expression data.

Conclusion

We demonstrated that interactive processing and visualization methods and systems can support scientists in a variety of biomedical and life science application areas concerned with massive data analysis.
  相似文献   

8.

Background

In recent years the visualization of biomagnetic measurement data by so-called pseudo current density maps or Hosaka-Cohen (HC) transformations became popular.

Methods

The physical basis of these intuitive maps is clarified by means of analytically solvable problems.

Results

Examples in magnetocardiography, magnetoencephalography and magnetoneurography demonstrate the usefulness of this method.

Conclusion

Hardware realizations of the HC-transformation and some similar transformations are discussed which could advantageously support cross-platform comparability of biomagnetic measurements.
  相似文献   

9.

Background

Cord blood lipids are potential disease biomarkers. We aimed to determine if their concentrations were affected by delayed blood processing.

Method

Refrigerated cord blood from six healthy newborns was centrifuged every 12 h for 4 days. Plasma lipids were analysed by liquid chromatography/mass spectroscopy.

Results

Of 262 lipids identified, only eight varied significantly over time. These comprised three dihexosylceramides, two phosphatidylserines and two phosphatidylethanolamines whose relative concentrations increased and one sphingomyelin that decreased.

Conclusion

Delay in separation of plasma from refrigerated cord blood has minimal effect overall on the plasma lipidome.
  相似文献   

10.

Introduction

Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.

Objectives

We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.

Methods

Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.

Results

Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.

Conclusions

Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.
  相似文献   

11.

Objective

To examine the activities of residual enzymes in dried shiitake mushrooms, which are a traditional foodstuff in Japanese cuisine, for possible applications in food processing.

Results

Polysaccharide-degrading enzymes remained intact in dried shiitake mushrooms and the activities of amylase, β-glucosidase and pectinase were high. A potato digestion was tested using dried shiitake powder. The enzymes reacted with potato tuber specimens to solubilize sugars even under a heterogeneous solid-state condition and that their reaction modes were different at 38 and 50 °C.

Conclusion

Dried shiitake mushrooms have a potential use in food processing as an enzyme preparation.
  相似文献   

12.

Introduction

New platforms are emerging that enable more data providers to publish life cycle inventory data.

Background

Providing datasets that are not complete LCA models results in fragments that are difficult for practitioners to integrate and use for LCA modeling. Additionally, when proxies are used to provide a technosphere input to a process that was not originally intended by the process authors, in most LCA software, this requires modifying the original process.

Results

The use of a bridge process, which is a process created to link two existing processes, is proposed as a solution.

Discussion

Benefits to bridge processes include increasing model transparency, facilitating dataset sharing and integration without compromising original dataset integrity and independence, providing a structure with which to make the data quality associated with process linkages explicit, and increasing model flexibility in the case that multiple bridges are provided. A drawback is that they add additional processes to existing LCA models which will increase their size.

Conclusions

Bridge processes can be an enabler in allowing users to integrate new datasets without modifying them to link to background databases or other processes they have available. They may not be the ideal long-term solution but provide a solution that works within the existing LCA data model.
  相似文献   

13.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

14.

Background

MicroRNAs (miRNAs) are a large class of non-coding RNAs with important functions wide spread in animals, plants and viruses. Studies showed that an RNase III family member called Drosha recognizes most miRNAs, initiates their processing and determines the mature miRNAs. The Drosha processing sites identification will shed some light on both miRNA identification and understanding the mechanism of Drosha processing.

Methods

We developed a computational method for Drosha processing site predicting, named as DroshaPSP, which employs a two-layer mathematical model to integrate structure feature in the first layer and sequence features in the second layer. The performance of DroshaPSP was estimated by 5-fold cross-validation and measured by ACC (accuracy), Sn (sensitivity), Sp (specificity), P (precision) and MCC (Matthews correlation coefficient).

Results

The results of testing DroshaPSP on the miRNA data of Drosophila melanogaster indicated that the Sn, Sp, and MCC thereof reach to 0.86, 0.99 and 0.86 respectively.

Conclusions

We found the Shannon entropy, a chemical kinetics feature, is a significant feature in telling the true sites among the nearby sites and improving the performance.
  相似文献   

15.

Introduction

Mass spectrometry imaging (MSI) experiments result in complex multi-dimensional datasets, which require specialist data analysis tools.

Objectives

We have developed massPix—an R package for analysing and interpreting data from MSI of lipids in tissue.

Methods

massPix produces single ion images, performs multivariate statistics and provides putative lipid annotations based on accurate mass matching against generated lipid libraries.

Results

Classification of tissue regions with high spectral similarly can be carried out by principal components analysis (PCA) or k-means clustering.

Conclusion

massPix is an open-source tool for the analysis and statistical interpretation of MSI data, and is particularly useful for lipidomics applications.
  相似文献   

16.

Introduction

Human plasma metabolomics offer powerful tools for understanding disease mechanisms and identifying clinical biomarkers for diagnosis, efficacy prediction and patient stratification. Although storage conditions can affect the reliability of data from metabolites, strict control of these conditions remains challenging, particularly when clinical samples are included from multiple centers. Therefore, it is necessary to consider stability profiles of each analyte.

Objectives

The purpose of this study was to extract unstable metabolites from vast metabolome data and identify factors that cause instability.

Method

Plasma samples were obtained from five healthy volunteers, were stored under ten different conditions of time and temperature and were quantified using leading-edge metabolomics. Instability was evaluated by comparing quantitation values under each storage condition with those obtained after ?80 °C storage.

Result

Stability profiling of the 992 metabolites showed time- and temperature-dependent increases in numbers of significantly changed metabolites. This large volume of data enabled comparisons of unstable metabolites with their related molecules and allowed identification of causative factors, including compound-specific enzymatic activity in plasma and chemical reactivity. Furthermore, these analyses indicated extreme instability of 1-docosahexaenoylglycerol, 1-arachidonoylglycerophosphate, cystine, cysteine and N6-methyladenosine.

Conclusion

A large volume of data regarding storage stability was obtained. These data are a contribution to the discovery of biomarker candidates without misselection based on unreliable values and to the establishment of suitable handling procedures for targeted biomarker quantification.
  相似文献   

17.

Introduction

The generic metabolomics data processing workflow is constructed with a serial set of processes including peak picking, quality assurance, normalisation, missing value imputation, transformation and scaling. The combination of these processes should present the experimental data in an appropriate structure so to identify the biological changes in a valid and robust manner.

Objectives

Currently, different researchers apply different data processing methods and no assessment of the permutations applied to UHPLC-MS datasets has been published. Here we wish to define the most appropriate data processing workflow.

Methods

We assess the influence of normalisation, missing value imputation, transformation and scaling methods on univariate and multivariate analysis of UHPLC-MS datasets acquired for different mammalian samples.

Results

Our studies have shown that once data are filtered, missing values are not correlated with m/z, retention time or response. Following an exhaustive evaluation, we recommend PQN normalisation with no missing value imputation and no transformation or scaling for univariate analysis. For PCA we recommend applying PQN normalisation with Random Forest missing value imputation, glog transformation and no scaling method. For PLS-DA we recommend PQN normalisation, KNN as the missing value imputation method, generalised logarithm transformation and no scaling. These recommendations are based on searching for the biologically important metabolite features independent of their measured abundance.

Conclusion

The appropriate choice of normalisation, missing value imputation, transformation and scaling methods differs depending on the data analysis method and the choice of method is essential to maximise the biological derivations from UHPLC-MS datasets.
  相似文献   

18.

Background

Centrifugation is an indispensable procedure for plasma sample preparation, but applied conditions can vary between labs.

Aim

Determine whether routinely used plasma centrifugation protocols (1500×g 10 min; 3000×g 5 min) influence non-targeted metabolomic analyses.

Methods

Nuclear magnetic resonance spectroscopy (NMR) and High Resolution Mass Spectrometry (HRMS) data were evaluated with sparse partial least squares discriminant analyses and compared with cell count measurements.

Results

Besides significant differences in platelet count, we identified substantial alterations in NMR and HRMS data related to the different centrifugation protocols.

Conclusion

Already minor differences in plasma centrifugation can significantly influence metabolomic patterns and potentially bias metabolomics studies.
  相似文献   

19.

Introduction

Untargeted metabolomics workflows include numerous points where variance and systematic errors can be introduced. Due to the diversity of the lipidome, manual peak picking and quantitation using molecule specific internal standards is unrealistic, and therefore quality peak picking algorithms and further feature processing and normalization algorithms are important. Subsequent normalization, data filtering, statistical analysis, and biological interpretation are simplified when quality data acquisition and feature processing are employed.

Objectives

Metrics for QC are important throughout the workflow. The robust workflow presented here provides techniques to ensure that QC checks are implemented throughout sample preparation, data acquisition, pre-processing, and analysis.

Methods

The untargeted lipidomics workflow includes sample standardization prior to acquisition, blocks of QC standards and blanks run at systematic intervals between randomized blocks of experimental data, blank feature filtering (BFF) to remove features not originating from the sample, and QC analysis of data acquisition and processing.

Results

The workflow was successfully applied to mouse liver samples, which were investigated to discern lipidomic changes throughout the development of nonalcoholic fatty liver disease (NAFLD). The workflow, including a novel filtering method, BFF, allows improved confidence in results and conclusions for lipidomic applications.

Conclusion

Using a mouse model developed for the study of the transition of NAFLD from an early stage known as simple steatosis, to the later stage, nonalcoholic steatohepatitis, in combination with our novel workflow, we have identified phosphatidylcholines, phosphatidylethanolamines, and triacylglycerols that may contribute to disease onset and/or progression.
  相似文献   

20.

Introduction

Microbial cells secrete many metabolites during growth, including important intermediates of the central carbon metabolism. This has not been taken into account by researchers when modeling microbial metabolism for metabolic engineering and systems biology studies.

Materials and Methods

The uptake of metabolites by microorganisms is well studied, but our knowledge of how and why they secrete different intracellular compounds is poor. The secretion of metabolites by microbial cells has traditionally been regarded as a consequence of intracellular metabolic overflow.

Conclusions

Here, we provide evidence based on time-series metabolomics data that microbial cells eliminate some metabolites in response to environmental cues, independent of metabolic overflow. Moreover, we review the different mechanisms of metabolite secretion and explore how this knowledge can benefit metabolic modeling and engineering.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号