首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Finke DL  Denno RF 《Oecologia》2006,149(2):265-275
The ability of predators to elicit a trophic cascade with positive impacts on primary productivity may depend on the complexity of the habitat where the players interact. In structurally-simple habitats, trophic interactions among predators, such as intraguild predation, can diminish the cascading effects of a predator community on herbivore suppression and plant biomass. However, complex habitats may provide a spatial refuge for predators from intraguild predation, enhance the collective ability of multiple predator species to limit herbivore populations, and thus increase the overall strength of a trophic cascade on plant productivity. Using the community of terrestrial arthropods inhabiting Atlantic coastal salt marshes, this study examined the impact of predation by an assemblage of predators containing Pardosa wolf spiders, Grammonota web-building spiders, and Tytthus mirid bugs on herbivore populations (Prokelisia planthoppers) and on the biomass of Spartina cordgrass in simple (thatch-free) and complex (thatch-rich) vegetation. We found that complex-structured habitats enhanced planthopper suppression by the predator assemblage because habitats with thatch provided a refuge for predators from intraguild predation including cannibalism. The ultimate result of reduced antagonistic interactions among predator species and increased prey suppression was enhanced conductance of predator effects through the food web to positively impact primary producers. Behavioral observations in the laboratory confirmed that intraguild predation occurred in the simple, thatch-free habitat, and that the encounter and capture rates of intraguild prey by intraguild predators was diminished in the presence of thatch. On the other hand, there was no effect of thatch on the encounter and capture rates of herbivores by predators. The differential impact of thatch on the susceptibility of intraguild and herbivorous prey resulted in enhanced top-down effects in the thatch-rich habitat. Therefore, changes in habitat complexity can enhance trophic cascades by predator communities and positively impact productivity by moderating negative interactions among predators.  相似文献   

2.
Adult fish may affect the growth and survival of conspecific larvae through a variety of pathways, including negative interactions via competition for shared limiting resources or via predation (i.e., cannibalism), and positive interactions due to the consumption of larval predators and via resource enhancement (i.e., presence of adults increases availability of larval prey). To examine the overall effect of adult bluegill sunfish (Lepomis macrochirus) on larval bluegill, we conducted a field experiment in which we manipulated adult densities and quantified larval growth and survival, prey abundance, invertebrate predator abundance, and cannibalism. The presence of adult bluegill had a negative effect on final larval mass. This response was consistent with competition for zooplankton prey. Adult bluegill reduced the abundance of large zooplankton (e.g., Chaoborus and Daphnia), which were the dominant prey of bluegill larvae in the absence of adults. Larvae in the no-adult treatment also had significantly more prey in their stomachs compared to larvae in the presence of adults. Larval survival was maximized at intermediate adult densities and the overall production of larvae peaked at intermediate adult densities. The higher larval survival at intermediate adult densities is attributed to a reduction in invertebrate predators in treatments with adult bluegill; invertebrate predators experienced an 80% reduction in the presence of adult fish. Decreased larval survival at the highest adult density was not due to resource limitation and may be due to cannibalism, which was not directly observed in our study, but has been observed in other studies.  相似文献   

3.
Conservation biological control tactics, such as beetle banks, that increase habitat complexity generally increase epigeal predator abundance. Habitat complexity also increases alternative food which can attract and sustain predators but may reduce predation of target pests. Our goal was to determine how alternative food from different trophic levels (fly pupae and seeds) affects behavior and biological control efficacy of omnivorous carabid beetles. Seed subsidies increased omnivorous carabid abundance more than pupae by increasing aggregation and reducing emigration. Laboratory experiment demonstrated that both omnivorous carabid species preferred seeds and pupae over cutworms. However, in field cages seeds but not pupae resulted in greater cutworm damage to corn seedlings. Our results indicate that omnivorous carabids have a stronger behavioral response to seeds than prey such that only seeds influence aggregation, emigration, and crop damage. Interestingly, whereas seeds increased omnivorous carabid abundance, pupae had no affect on carnivore abundance. Thus, carabid guild composition is skewed in favor of omnivores when seed density increases. An important finding was that the effect of seeds on behavior, predation, and crop damage was consistent among replicate carabid species suggesting our results pertain to other omnivorous species in resource diverse habitats.Our results provide insight into the mechanisms underlying the unpredictable benefit of conservation biological control tactics that alter habitat complexity.  相似文献   

4.
We evaluated the influence of intraguild predation among generalist insect predators on the suppression of an herbivore, the aphid Aphis gossypii, to test the appropriateness of the simple three trophic level model proposed by Hairston, Smith, and Slobodkin (1960). We manipulated components of the predator community, including three hemipteran predators and larvae of the predatory green lacewing Chrysoperla carnea, in field enclosure/exclosure experiments to address four questions: (1) Do generalist hemipteran predators feed on C. carnea? (2) Does intraguild predation (IGP) represent a substantial source of mortality for C. carnea? (3) Do predator species act in an independent, additive manner, or do significant interactions occur? (4) Can the experimental addition of some predators result in increased densities of aphids through a trophic cascade effect? Direct observations of predation in the field demonstrated that several generalist predators consume C. carnea and other carnivorous arthropods. Severely reduced survivorship of lacewing larvae in the presence of other predators showed that IGP was a major source of mortality. Decreased survival of lacewing larvae was primarily a result of predation rather than competition. IGP created significant interactions between the influences of lacewings and either Zelus renardii or Nabis predators on aphid population suppression. Despite the fact that the trophic web was too complex to delineate distinct trophic levels within the predatory arthropod community, some trophic links were sufficiently strong to produce cascades from higher-order carnivores to the level of herbivore population dynamics: experimental addition of either Z. renardii or Nabis predators generated sufficient lacewing larval mortality in one experiment to release aphid populations from regulation by lacewing predators. We conclude that intraguild predation in this system is wide-spread and has potentially important influences on the population dynamics of a key herbivore.  相似文献   

5.
The activity and density of generalist predators, such as carabid beetles, rove beetles and spiders, may increase in response to: (1) increased availability of prey from the belowground subsystem and/or (2) enhanced complexity of aboveground vegetation. Organic farming practices support decomposer populations and enhance habitat complexity due to an increased weed density. A response by generalist predators to such below‐ or aboveground changes could affect predation rates on herbivores in the aboveground food web. We tested this hypothesis in a replicated field experiment conducted in a winter wheat field, where increased predator activity could lead to improved control of herbivorous pests. In a crossed design, we increased and lowered densities of decomposer prey, and manipulated vegetation complexity using artificial plants in order to examine the effect of structural complexity in isolation from effects of plant‐attracted additional prey. Isotomid Collembola exhibited lowest activity‐densities (AD) in plots treated with soil insecticide and had gradually increasing AD in untreated plots and plots receiving detrital subsidies. Carabid beetles and cursorial spiders did not respond to increased availability of isotomid prey, and they unexpectedly displayed higher AD in the structurally less‐complex plots. Aphid density mirrored the positive response of isotomids to detrital subsidies, suggesting that aphids benefited from reduced predation due to predators switching to abundant prey in the decomposer subsystem. The absence of a numerical response by surface‐active predators apparently strengthened this indirect effect of isotomids on aphids. Our results suggest that indirect predator‐mediated prey‐prey interactions can reduce beneficial effects of detrital subsidies on pest suppression. We further demonstrated that generalist predators may not per se benefit from structural complexity. Both results document the challenges associated with management practices that support generalist predators, as these measures may not necessarily improve herbivore suppression.  相似文献   

6.
We investigated the addition of a trophic level to a simple food web. Direct and indirect effects caused by the presence of a new species in the food web were quantified by estimating survival and consumption rates on the basal resource. We focused on a blowfly intraguild prey–predator system with various ecological interactions taking place during the larval period. The experiments were designed to set Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) as the intraguild prey and Chrysomya albiceps (Wiedemann) as the intraguild predator and/or cannibal. The generalist pupal parasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) was introduced into the system during a non‐susceptible life stage of the interacting blowfly species. The cascading parasitoid effects induced behavioral changes in the blowfly larvae, increasing the impact of intraguild predation and cannibalism on blowfly survival. The results suggest that blowfly larvae can change their feeding behavior in response to the presence of a parasitoid.  相似文献   

7.
1. Prey organisms can perceive cues to predation hazard and adopt low‐risk behaviours to increase survival. Animals with complex life cycles, such as insects, can exhibit such anti‐predatory behaviours in multiple life stages. 2. Cues to predation risk may induce ovipositing females to choose habitats with low predation risk. Cues to predation risk may also induce larvae to adopt facultative behaviours that reduce risk of predation. 3. One hypothesis postulates that anti‐predation behaviours across adult and larval stages may be negatively associated because selection for effective anti‐predator behaviour in one stage leads to reduced selection for avoidance of predators in other stages. An alternative hypothesis suggests that selection by predation favours multi‐component defences, with both avoidance of oviposition and facultative adoption of low‐risk behaviours by larvae. 4. Laboratory and field experiments were used to determine whether defensive responses of adult and larval mosquitoes are positively or negatively associated. The study tested effects of waterborne cues from predatory Toxorhynchites theobaldi on oviposition choices and larval behaviours of three of its common prey: Culex mollis, Limatus durhamii and Aedes albopictus. 5. Culex mollis shows strong anti‐predator responses in both life stages, consistent with the hypothesis of a multi‐component behavioural defence. The other two species showed no detectable responses to waterborne predator cues in either adult or larval stages. Larvae of these unresponsive species were significantly more vulnerable to this predator than was C. mollis. 6. For these mosquitoes, species appear either to have been selected for multi‐component defences against predation or to act in ways that could be called predator‐naïve.  相似文献   

8.
The relative impact of cannibalism and predation on the development and survival of fourth instar larvae was assessed in two species of aphidophagous ladybird beetles, Coccinella septempunctata and Harmonia axyridis. The effect of eating aphids, conspecific larvae or heterospecific larvae on larval performance differed in the two species: aphids were the best food for C. septempunctata and survival of C. septempunctata larvae was significantly lower when offered heterospecific larvae rather than conspecific larvae or aphids as food, indicating that H. axyridis larvae were not suitable food for C. septempunctata. However, as the different foods did not affect the larval performance of H. axyridis, this species appears to be more polyphagous. Both intraguild predation by the aggressive larvae of H. axyridis and the polyphagous food habit of this species may account for its dominance in ladybird assemblages and its displacing other ladybird beetles in several places in the world.  相似文献   

9.
1. Population dynamics and interactions that vary over a species' range are of particular importance in the context of latitudinal clines in biological diversity. Winter moth (Operophtera brumata) and autumnal moth (Epirrita autumnata) are two species of eruptive geometrids that vary widely in outbreak tendency over their range, which generally increases from south to north and with elevation. 2. The predation pressure on geometrid larvae and pupae over an elevational gradient was tested. The effects of background larval density and bird occupancy of monitoring nest boxes on predation rates were also tested. Predation on larvae was tested through exclusion treatments at 20 replicate stations over four elevations at one site, while pupae were set out to measure predation at two elevations at three sites. 3. Larval densities were reduced by bird predation at three lower elevations, but not at the highest elevation, and predation rates were 1.9 times higher at the lowest elevation than at the highest elevation. The rate of predation on larvae was not related to background larval density or nest box occupancy, although there were more eggs and chicks at the lowest elevation. There were no consistent differences in predation on pupae by elevation. 4. These results suggest that elevational variation in avian predation pressure on larvae may help to drive elevational differences in outbreak tendency, and that birds may play a more important role in geometrid population dynamics than the focus on invertebrate and soil predators of previous work would suggest.  相似文献   

10.
Aphidophagous predators compete for the same prey species. During their foraging activity they frequently encounter heterospecific aphid predators. These situations can lead to intraguild predation and may disrupt biological control efforts against aphids where more than one predator species is present. We investigated the behavior of larvae of the hoverfly Episyrphus balteatus de Geer and its interaction with three other aphid predators: the ladybird Coccinella septempunctata L., the lacewing Chrysoperla carnea Stephens, and the gall midge Aphidoletes aphidimyza (Rondani). Interspecific interactions between predators were examined in arenas of different sizes and in the presence of extraguild prey. The outcome of interactions between E. balteatus larvae and the other predators depended predominantly on the relative body size of the competitors. Relatively large individuals acted as intraguild predators, while relatively smaller individuals became intraguild prey. Eggs and first- as well as second-instar larvae of E. balteatus were highly susceptible to predation by all other predators, whereas pupae of E. balteatus were preyed upon only by the larvae of C. carnea. Interactions between A. aphidimyza and E. balteatus were asymmetric and always favored the latter. Eggs and first- as well as second-instar larvae of E. balteatus sustained intraguild predation irrespective of the size of the arena or the presence of extraguild prey. However, the frequency of predation on third-instar larvae of E. balteatus was significantly reduced. This study indicated that the same species can be both intraguild predator and intraguild prey. It is suggested that combinations of predators must be carefully chosen for success in biological control of aphids.  相似文献   

11.
Interspecific predation and cannibalism are common types of interaction in phytoseiid predator guilds, but the extent and nature of these interactions have not been determined yet in phytoseiid guilds composed of African native and neotropical exotic phytoseiid predators found in cassava habitat in southern Africa. We determined in laboratory experiments the level of cannibalism and interspecific predation among the three phytoseiid mite species Euseius fustis, Iphiseius degenerans, and Typhlodromalus aripo in the absence of food and in the presence of limited or abundant quantities of two food types – Mononychellus tanajoa and maize pollen – commonly found on cassava in Africa. When confined without food, only two T. aripo females laid each two eggs within 5 days, and this species survived longer than I. degenerans and E. fustis. In the presence of con- or hetero-specific larvae or protonymphs, the three species fed more on the former than on the latter, and more on hetero-specifics than on con-specifics. Oviposition rates of the three species did not exceed 0.7 egg/female/day on con- and hetero-specific immatures. Typhlodromalus aripo and E. fustis survived longer on con-specific and hetero-specific larvae and on hetero-specific protonymphs than in the absence of any food, while T. aripo survived longer than the two other species on the same diets. Provision of limited quantity of food decreased interspecific predation rate by I. degenerans and T. aripo, but not by E. fustis, and increased oviposition rate and longevity of all three species. Provision of abundant food, however, eliminated cannibalism by all three species and further reduced interspecific predation rates, but their oviposition and longevity remained relatively unchanged compared with limited food provision. Potential consequences of cannibalism and interspecific predation among phytoseiid mites on cassava for the biological control of M. tanajoa are discussed.  相似文献   

12.
We examined whether predator interference could prevent effective conservation biological control of Delia spp. flies, important pests of cole crops, by an assemblage of carabid and staphylinid beetles. In laboratory feeding trials we found that the smaller (<1 cm) beetle species common at our site readily ate dipteran eggs, while the most common large carabid species, Pterostichus melanarius, rarely did. However, P. melanarius did eat several of the smaller beetle species. We conducted two field experiments where we manipulated immigration rates of the ground predator guild and then measured predation on fly eggs. Predation rates were consistently higher in cages where predators were added at ambient densities, compared to cages where ground predators were removed. However, in the second field experiment, when we quadrupled predator immigration rates neither beetle activity-density nor predation rate increased. High immigration rate plots had a higher proportion of P. melanarius in the predator community, compared to plots with beetles added at ambient densities, suggesting that P. melanarius was reducing activity-densities of the smaller beetles, perhaps through intraguild predation. Thus, tactics to improve the biological control of Delia spp. by conserving generalist predators, such as providing in- or extra-field refuges, could be thwarted if the primary predators of fly eggs, small carabids and staphylinids, are the targets of intraguild predation by also-conserved larger predators.  相似文献   

13.
1. Seasonal variation in leaf quality and climate conditions often imposes constraints on the temporal occurrence of tree‐feeding insect larvae, but the seasonal effects of predation have received limited attention. In temperate climate zones, both the abundance and activity of predators can be expected to vary over time. 2. The study reported herein examined the impact of temporal variation in predator activity levels on the life history of an herbivorous insect feeding on a constant food source: previous‐year needles of Scots pine (Pinus sylvestris L.). In field experiments, the survival and growth rates of colonies of Thaumetopoea pinivora Treitschke larvae that had been manipulated to hatch at three different dates were compared. Eggs of T. pinivora usually hatch by mid‐April in southern Sweden, which is earlier than most other herbivorous insects that overwinter as eggs in this region. 3. Predator exclusion experiments indicated that larvae which hatched later than April experienced a higher level of predator activity, mainly by ants. The final larval size and the timing of pupation were not affected by hatching date. First instar larvae were more extensively preyed on than second instars. 4. The life history of herbivore species can be affected by seasonal variation in predation pressures. This study suggests that early hatching in a lepidopteran species can allow a temporal escape from predation during the vulnerable early life stages.  相似文献   

14.
1 Spiders and carabid beetles are abundant generalist predators that prey upon insect pests of soybean. A field experiment was conducted to determine the impact of spiders and carabids on soybean yield. Prior to planting, three 7 × 7 m plots were fenced in order to reduce spider and carabid immigration. Carabids that emerged within the plots were not removed, but spiders that ballooned into these predator‐reduction plots or that entered by climbing the fence were removed by pitfall trapping and searching the vegetation. Three unmanipulated, unfenced plots served as the control treatment. 2 Densities of spiders on soybean vegetation, and activity‐densities of spiders and carabids determined by pitfall trapping, were c. 75% lower in the spider‐carabid reduction treatment than in control plots. Despite clear differences between treatments in numbers and activity of these major generalist predators, the weight of soybeans harvested did not differ between control and spider‐carabid reduction plots. 3 Paralleling the absence of an effect of predator reduction on soybean yield was the absence of any significant difference between treatments in densities of whiteflies (Aleyrodidae), leafhoppers (Cicadellidae), thrips (Thysanoptera), Lepidoptera larvae and herbivorous Coleoptera. 4 Our experiment provides no evidence that spiders and carabid beetles at ambient densities affect soybean yield. Low populations of pest species or low predation pressure on soybean pests by spiders and carabids at the ambient densities of this experiment could be responsible for this result.  相似文献   

15.
Numerous studies conducted in agro-ecosystems support the enemies hypothesis, which states that predators and parasites are more efficient in controlling pest densities in polycultures than in monocultures. Few similar studies, however, have been conducted in forest ecosystems, and we do not yet have evidence as to whether the enemies hypothesis holds true in forests. In a 2-year study, we investigated whether the survival of autumnal moth (Epirrita autumnata) larvae and pupae differs between silver birch monocultures and two-species mixtures of birch with black alder, Norway spruce and Scots pine. We placed young larvae on birch saplings and monitored their survival until the end of the larval period, when we checked whether they had been parasitized. After the larvae had pupated, pupal survival was tested in a field trial. In 2002, the larvae disappeared earlier and their overall survival was lower in birch–pine mixtures than in other stand types. In 2003, survival probability was lowest in birch–pine stands only during the first week and there were no differences between stands in overall survival. Larval parasitism was not affected by tree species composition. Pupal weight and pupal survival were likewise not affected by stand type. Among the predators, wood ants were more abundant on birches growing in birch–pine mixtures than in other stand types probably because colonies of myrmecophilic aphids were common on pines. In contrast, spider numbers did not differ between stand types. Ant exclusion by means of a glue ring around the birch trunk increased larval survival, indicating that ants are important predators of the autumnal moth larvae; differences in larval survival between stands are probably due to differential ant predation. Our results provide only partial support for the enemies hypothesis, and suggest that it is both tree species composition and species diversity which affect herbivore survival and predation.  相似文献   

16.
Abstract. 1. Aggregation in bark beetles (Coleoptera: Scolytidae) aids in mate attraction and resource procurement when colonising well‐defended plants; however, some species colonise primarily poorly defended plants, and intraspecific competition increases mortality. The hypothesis that decreased risk of predation was a potential benefit to aggregation in such circumstances was tested, using the pine engraver, Ips pini (Say) and its two major predators Thanasimus dubius (F.) (Coleoptera: Cleridae) and Platysoma cylindrica (Paykull) (Coleoptera: Histeridae). Both single‐ and multiple‐predator effects, across a range of prey densities, were tested. 2. Both male and female colonisation events increased with herbivore density, in an asymptotic fashion. 3. Predators decreased the number of colonisers in a density‐dependent manner, consistent with a type II functional response. 4. The proportional impact of predators decreased with increased herbivore colonisation densities. These findings indicate that predator dilution may be a viable benefit to aggregation. 5. Total emergence of the herbivore also increased with density, although the net replacement rate during one generation was independent of initial arrival density. This was likely due to larval predation, which negates potential relationships between per capita reproductive success and establishment density. 6. Each predator species decreased I. pini's net replacement rate by approximately 42%, and their combined effect was approximately 70%. 7. Overall, these predators modified their prey's establishment and adult mortality relationships in additive manners. This is somewhat surprising, given the potential for emergent effects due to interactions between multiple predators foraging within a common habitat. The persistence of additivity, rather than risk reduction or enhancement to the prey, may increase the predator‐swamping benefit to aggregation for this herbivore. 8. The effects of these predators are substitutable, and likely exert equivalent selective pressures to mask signals at the whole‐plant level.  相似文献   

17.
Antagonist interactions such as intraguild predation (IGP) or cannibalism among predatory arthropods can reduce the impact of these invertebrates on pest limitation in agroecosystems. Here, the effects of IGP between two major natural enemies of cotton pests, the cursorial spider Cheiracanthium pelasgicum (C.L. Koch) and the common green lacewing Chrysoperla carnea (Stephens), were studied under laboratory conditions. First, a feeding preference test was carried out to determine the degree of C. pelasgicum preference for lacewing larvae, using second-instar Helicoverpa armigera larvae as alternative prey. In a second bioassay, the effects of predator interactions on potential predation of H. armigera larvae were analysed using three treatment combinations (plus a control with no predator): (1) spider alone, (2) lacewing larvae alone, (3) spider + lacewing larvae. Potential predation by C. pelasgicum on lacewing eggs was also studied. C. pelasgicum showed no significant preference for either of the two species, indicating that this spider may impact negatively on the green lacewing population. Findings revealed no additive effects and an antagonist interaction between C. pelasgicum and green lacewing larvae, which adversely affected H. armigera suppression; both predators displayed lower predation rates when kept together than either predator alone. However, presence of lacewing larvae and subsequent unidirectional IGP did not affect the predation capacity of C. pelasgicum. Finally, predation rates of C. pelasgicum on lacewing eggs were very low (mean 2.35 ± 0.71 eggs, 24 h after offering) indicating that the impact of C. pelasgicum on lacewing populations may be limited.  相似文献   

18.
Abstract 1. The present study quantified egg and pupal cannibalism, and interspecific predation on eggs and pupae, by larvae and adults of seven species of flour beetle (Tribolium spp.) under laboratory conditions: T. anaphe, T. brevicornis, T. castaneum, T. confusum, T. destructor, T. freemani, and T. madens. 2. Variation among species in cannibalism and predation propensities did not reflect taxonomic affinities within the genus, indicating that these behaviours were shaped by ecology at species level. 3. Within species, larvae and adults displayed different propensities for cannibalism and predation, leading to the conclusion that these behaviours evolve independently in the two life stages. 4. All species behaved as intraguild predators to some degree, especially in the adult stage. 5. Three general patterns of cannibalism and predation were described by principal component mapping and cluster analysis. 6. The first group comprised three cosmopolitan pest species that were more voracious as adults than as larvae: T. castaneum, T. confusum, and T. destructor. It is proposed that stored product environments select for high adult voracity because the costs associated with emigration from such rare, but resource‐rich, habitats intensifies interference competition among adults. 7. The second group consisted of species that inhabit natural environments and that were more voracious as larvae: T. anaphe, T. freemani, and T. madens. Habitats for these species are probably numerous, but generally poor in quality, a situation that intensifies larval competition, while favouring earlier adult emigration. 8. The largest species, T. brevicornis, demonstrated inconsistent voracity between life stages and was the only species with chemically defended pupae. 9. It is proposed that consumption of eggs provides primarily nutritional benefits, whereas consumption of pupae has a more important role in interference competition.  相似文献   

19.
Environment-friendly farming techniques seek to increase invertebrate biodiversity in part with the intention of encouraging greater numbers of predators that will help to control crop pests. However, in theory, this effect may be negated if the availability of a greater abundance and diversity of alternative prey diverts predators away from feeding on pests. The hypothesis that access to alternative prey can lead to reduced pest suppression under semi-field conditions was tested. Alternative prey type and diversity were manipulated in 70 mesocosms over 7+ weeks in the presence of the carabid Pterostichus melanarius (Illiger), a known predator of slugs, and reproducing populations of the slug Deroceras reticulatum (Müller). Significantly fewer slugs survived where no alternative prey were provided. Maximum slug numbers and biomass were found in treatments containing either carabids plus a high diversity of alternative prey (many species of earthworm and three of Diptera larvae) or a single additional prey (blowfly larvae, Calliphora vomitoria Linnaeus). In these treatments slug numbers and biomass were as high as in plots lacking predators. The effects of alternative prey were taxon-specific. Alternative prey strongly affected carabid fitness in terms of biomass and egg load. The fittest predators (those with access to high alternative prey diversity or C. vomitoria larvae) reduced slug numbers the least. The mean individual slug weights were greater in treatments with alternative prey than where no alternative prey were provided to the carabids. These results suggest that pests may survive and reproduce more rapidly in patches where predators have access to alternative prey.  相似文献   

20.
Intraspecific aggression represents a major source of mortality for many animals and is often experienced alongside the threat of predation. The presence of predators can strongly influence ecological systems both directly by consuming prey and indirectly by altering prey behavior or habitat use. As such, the threat of attack by higher level predators may strongly influence agonistic interactions among conspecifics via nonconsumptive (e.g., behaviorally mediated) predator effects. We sought to investigate these interactions experimentally using larval salamanders (Ambystoma maculatum) as prey and dragonfly nymphs (Anax junius) as predators. Specifically, we quantified salamander behavioral responses to perceived predation risk (PPR) from dragonfly nymphs and determined the degree to which PPR influenced intraspecific aggression (i.e., intraspecific biting and cannibalism) among prey. This included examining the effects of predator exposure on the magnitude of intraspecific biting (i.e., extent of tail damage) and the resulting change in performance (i.e., burst swim speed). Salamander larvae responded to PPR by reducing activity and feeding, but did not increase refuge use. Predator exposure did not significantly influence overall survival; however, the pattern of survival differed among treatments. Larvae exposed to PPR experienced less tail damage from conspecifics, and maximum burst swim speed declined as tail damage became more extensive. Thus, escape ability was more strongly compromised by intraspecific aggression occurring in the absence of predation risk. We conclude that multitrophic indirect effects may importantly modulate intraspecific aggression and should be considered when evaluating the effects of intraspecific competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号