首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
When woody plant abundance increases in grasslands and savannas, a phenomenon widely observed worldwide, there is considerable uncertainty as to whether aboveground net primary productivity (ANPP) and ecosystem carbon (C) and nitrogen (N) pools increase, decrease, or remain the same. We estimated ANPP and C and N pools in aboveground vegetation and surface soils on shallow clay and clay loam soils undergoing encroachment by Prosopis glandulosa in the Southern Great Plains of the United States. Aboveground Prosopis C and N mass increased linearly, and ANPP increased logarithmically, with stand age on clay loam soils; on shallow clays, Prosopis C and N mass and ANPP all increased linearly with stand age. We found no evidence of an asymptote in trajectories of C and N accumulation or ANPP on either soil type even following 68 years of stand development. Production and accumulation rates were lower on shallow clay sites relative to clay loam sites, suggesting strong edaphic control of C and N accumulation associated with woody plant encroachment. Response of herbaceous C mass to Prosopis stand development also differed between soil types. Herbaceous C declined with increasing aboveground Prosopis C on clay loams, but increased with increasing Prosopis C on shallow clays. Total ANPP (Prosopis+herbaceous) of sites with the highest Prosopis basal area were 1.2 × and 4.0 × greater than those with the lowest Prosopis basal area on clay loam and shallow clay soils, respectively. Prosopis ANPP more than offset declines in herbaceous ANPP on clay loams and added to increased herbaceous ANPP on shallow clays. Although aboveground C and N pools increased substantially with Prosopis stand development, we found no corresponding change in surface soil C and N pools (0–10 cm). Overall, our findings indicate that Prosopis stand development significantly increases ecosystem C and N storage/cycling, and the magnitude of these impacts varied with stand age, soil type and functional plant traits  相似文献   

2.
Although local increases in woody plant cover have been documented in arid and semiarid ecosystems worldwide, there have been few long‐term, large‐scale analyses of changes in woody plant cover and aboveground carbon (C) stocks. We used historical aerial photography, contemporary Landsat satellite data, field observations, and image analysis techniques to assess spatially specific changes in woody vegetation cover and aboveground C stocks between 1937 and 1999 in a 400‐km2 region of northern Texas, USA. Changes in land cover were then related to topo‐edaphic setting and historical land‐use practices. Mechanical or chemical brush management occurred over much of the region in the 1940–1950s. Rangelands not targeted for brush management experienced woody cover increases of up to 500% in 63 years. Areas managed with herbicides, mechanical treatments or fire exhibited a wide range of woody cover changes relative to 1937 (?75% to + 280%), depending on soil type and time since last management action. At the integrated regional scale, there was a net 30% increase in woody plant cover over the 63‐year period. Regional increases were greatest in riparian corridors (33%) and shallow clay uplands (26%) and least on upland clay loams (15%). Allometric relationships between canopy cover and aboveground biomass were used to estimate net aboveground C storage changes in upland (nonriparian) portions of regional landscapes. Carbon stocks increased from 380 g C m?2 in 1937 to 500 g C m?2 in 1999, a 32% net increase across the 400 km2 region over the 63‐year period. These plant C storage change estimates are highly conservative in that they did not include the substantial increases in woody plant cover observed within riparian landscape elements. Results are discussed in terms of implications for ‘carbon accounting’ and the global C cycle.  相似文献   

3.
Expansion of woody vegetation in grasslands is a worldwide phenomenon with implications for C and N cycling at local, regional and global scales. Although woody encroachment is often accompanied by increased annual net primary production (ANPP) and increased inputs of litter, mesic ecosystems may become sources for C after woody encroachment because stimulation of soil CO2 efflux releases stored soil carbon. Our objective was to determine if young, sandy soils on a barrier island became a sink for C after encroachment of the nitrogen‐fixing shrub Morella cerifera, or if associated stimulation of soil CO2 efflux mitigated increased litterfall. We monitored variations in litterfall in shrub thickets across a chronosequence of shrub expansion and compared those data to previous measurements of ANPP in adjacent grasslands. In the final year, we quantified standing litter C and N pools in shrub thickets and soil organic matter (SOM), soil organic carbon (SOC), soil total nitrogen (TN) and soil CO2 efflux in shrub thickets and adjacent grasslands. Heavy litterfall resulted in a dense litter layer storing an average of 809 g C m?2 and 36 g N m?2. Although soil CO2 efflux was stimulated by shrub encroachment in younger soils, soil CO2 efflux did not vary between shrub thickets and grasslands in the oldest soils and increases in CO2 efflux in shrub thickets did not offset contributions of increased litterfall to SOC. SOC was 3.6–9.8 times higher beneath shrub thickets than in grassland soils and soil TN was 2.5–7.7 times higher under shrub thickets. Accumulation rates of soil and litter C were highest in the youngest thicket at 101 g m?2 yr?1 and declined with increasing thicket age. Expansion of shrubs on barrier islands, which have low levels of soil carbon and high potential for ANPP, has the potential to significantly increase ecosystem C sequestration.  相似文献   

4.
The input and fate of new C in two forest soils under elevated CO2   总被引:2,自引:0,他引:2  
The aim of this study was to estimate (i) the influence of different soil types on the net input of new C into soils under CO2 enrichment and (ii) the stability and fate of these new C inputs in soils. We exposed young beech–spruce model ecosystems on an acidic loam and calcareous sand for 4 years to elevated CO2. The added CO2 was depleted in 13C, allowing to trace new C inputs in the plant–soil system. We measured CO2‐derived new C in soil C pools fractionated into particle sizes and monitored respiration as well as leaching of this new C during incubation for 1 year. Soil type played a crucial role in the partitioning of C. The net input of new C into soils under elevated CO2 was about 75% greater in the acidic loam than in the calcareous sand, despite a 100% and a 45% greater above‐ and below‐ground biomass on the calcareous sand. This was most likely caused by a higher turnover of C in the calcareous sand as indicated by 30% higher losses of new C from the calcareous sand than from the acidic loam during incubation. Therefore, soil properties determining stabilization of soil C were apparently more important for the accumulation of C in soils than tree productivity. Soil fractionation revealed that about 60% of the CO2‐derived new soil C was incorporated into sand fractions. Low natural 13C abundance and wide C/N ratios show that sand fractions comprise little decomposed organic matter. Consistently, incubation indicated that new soil C was preferentially respired as CO2. During the first month, evolved CO2 consisted to 40–55% of new C, whereas the fraction of new C in bulk soil C was 15–23% only. Leaching of DOC accounted for 8–23% of the total losses of new soil C. The overall effects of CO2 enrichment on soil C were small in both soils, although tree growth increased significantly on the calcareous sand. Our results suggest that the potential of soils for C sequestration is limited, because only a small fraction of new C inputs into soils will become long‐term soil C.  相似文献   

5.
Peatland ecosystems have been consistent carbon (C) sinks for millennia, but it has been predicted that exposure to warmer temperatures and drier conditions associated with climate change will shift the balance between ecosystem photosynthesis and respiration providing a positive feedback to atmospheric CO2 concentration. Our main objective was to determine the sensitivity of ecosystem photosynthesis, respiration and net ecosystem production (NEP) measured by eddy covariance, to variation in temperature and water table depth associated with interannual shifts in weather during 2004–2009. Our study was conducted in a moderately rich treed fen, the most abundant peatland type in western Canada, in a region (northern Alberta) where peatland ecosystems are a significant landscape component. During the study, the average growing season (May–October) water depth declined approximately 38 cm, and temperature [expressed as cumulative growing degree days (GDD, March–October)] varied approximately 370 GDD. Contrary to previous predictions, both ecosystem photosynthesis and respiration showed similar increases in response to warmer and drier conditions. The ecosystem remained a strong net sink for CO2 with an average NEP (± SD) of 189 ± 47 g C m?2 yr?1. The current net CO2 uptake rates were much higher than C accumulation in peat determined from analyses of the relationship between peat age and cumulative C stock. The balance between C addition to, and total loss from, the top 0–30 cm depth (peat age range 0–70 years) of shallow peat cores averaged 43 ± 12 g C m?2 yr?1. The apparent long‐term average rate of net C accumulation in basal peat samples was 19–24 g C m?2 yr?1. The difference between current rates of net C uptake and historical rates of peat accumulation is likely a result of vegetation succession and recent increases in tree establishment and productivity.  相似文献   

6.
Loiseau  P.  Soussana  J. F. 《Plant and Soil》1999,212(2):123-131
The effects of elevated [CO2] (700 μl l−1 [CO2]) and temperature increase (+3 °C) on carbon accumulation in a grassland soil were studied at two N-fertiliser supplies (160 and 530 kgN ha−1 year−1) in a long-term experiment (2.5 years) on well established ryegrass swards (Lolium perenne L.,) supplied with the same amounts of irrigation water. For all experimental treatments, the C:N ratio of the top soil organic matter fractions increased with their particle size. Elevated CO2 concentration increased the C:N ratios of the below-ground phytomass and of the macro-organic matter. A supplemental fertiliser N or a 3 °C increase in elevated [CO2] reduced it. At the last sampling date, elevated [CO2] did not affect the C:N ratio of the soil organic matter fractions, but increased significantly the accumulation of roots and of macro-organic matter above 200 μm (MOM). An increased N-fertiliser supply stimulated the accumulation of the non harvested plant phytomass and of the OM between 2 and 50 μm, without positive effect on the macro-organic matter >200 μm. Elevated [CO22] increased C accumulation in the OM fractions above 50 μm by +2.1 tC ha−1, on average, whereas increasing the fertiliser N supply led to an average supplemental accumulation of +0.8 tC ha−1. There was no significant effect of a 3 °C temperature increase under elevated [CO2] on C accumulation in the OM fractions above 50 μm. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Soil monitoring programmes face significant challenges as there is an important trade‐off between detecting significant changes in soil properties on the one hand (which can be achieved by minimizing variability by higher sampling density or stratification approaches), and identifying the driving forces responsible for these changes on the other hand (which requires enough variability). This study aims to reconcile these two objectives by identifying the driving forces of soil organic carbon (SOC) evolution over a long period, based on an extensive but stratified soil monitoring programme. Data at both the finest level (questionnaires to the farmers) and the large scale (agricultural census, climate and soil databases for southern Belgium) were used in a cluster analysis, multiple linear regressions and mixed odels in order to discriminate between the driving forces involved. Results indicated that the negative ‘baseline effect’ (i.e. the inversely proportional effect of the initial SOC content on the SOC evolution) was responsible for an important part of the SOC variability. Consequently, the systems are not at steady state when starting the observations, although this assumption is used by most SOC dynamic models. Moreover, the baseline effect resulted in a trend of the soils to converge towards a regional SOC stock which significantly differed according to land use (36.4 t C ha?1 for the plough depth of cropland and 92.2 t C ha?1 for the 0–30 cm layer of grassland). Despite this strong effect, the main driving forces of the SOC decrease of cropland (?0.2 t C ha?1 yr?1) and SOC increase of grassland (+0.2 t C ha?1 yr?1) over a period of 50 years were discriminated. The agricultural management (cropland) and the clay content (grassland), together with the change in precipitation (to a lesser degree for cropland) were highlighted as the predominant factors involved in SOC evolution, when land use change is excluded. The use of questionnaires allowed to better understanding the impact of an intensive agricultural management on the SOC content, as the lowest SOC stocks were associated to the most intensively managed fields. The mixed models partly succeeded in predicting SOC evolution as they presented still large uncertainties after validation (mean error from 3% to 25%, root mean square error of prediction from 21% to 242%). While SOC monitoring schemes are increasingly being implemented, our results will likely apply to those using a similar design. It was shown that this strategy succeeded to reconcile both the SOC change detection and the distinction of the driving forces involved at the regional scale.  相似文献   

8.
A major obstacle for predicting the effects of climate and land use changes on global soil carbon (C) stores is the very limited knowledge about the long timescale dynamics of the relatively stable fraction of soil C, which represents the bulk of soil C and the primary determinant of the long‐term C balance of terrestrial ecosystems. In this study, we examined how variable topo‐edaphic conditions and herds of native migratory ungulates influenced turnover of the stable pool (total minus active fraction) of soil C in grasslands of Yellowstone National Park (YNP). Soil C properties were determined for grasslands located inside and outside long‐term ungulate exclosures established 1958–1962 at seven variable topographic positions. Active C pool sizes, estimated with soil laboratory incubations, and soil radiocarbon measures were used to parameterize a process‐based model to determine turnover of the stable C pool at the sites. Stable C turnover ranged 37–653 and 89–869 years for 0–10 and 0–20 cm soils, respectively. Among ungrazed communities, there was a trend for stable soil C turnover to slow along topographic gradients of increasing soil moisture, soil C content, and shoot biomass from hilltop to slope‐bottom positions. This was likely a result of an increasing amount of support tissue resulting in greater concentrations of lignin and cellulose as shoot biomass increased down slope. In contrast, across the grazed landscape, stable C turnover sped up from hilltop to slope‐bottom positions, which was likely a consequence of grazer effects on plant species composition along the topographic gradient. These findings indicated that despite topography playing the primary role in controlling such important site characteristics as soil moisture, soil C content, and plant production in YNP grassland, the long‐term turnover of the stable C pool was determined by herbivores. The results demonstrate the important regulatory role of herbivores in controlling the C balance of this semiarid grassland ecosystem.  相似文献   

9.
In the next decades, many soils will be subjected to increased drying/wetting cycles or modified water availability considering predicted global changes in precipitation and evapotranspiration. These changes may affect the turnover of C and N in soils, but the direction of changes is still unclear. The aim of the review is the evaluation of involved mechanisms, the intensity, duration and frequency of drying and wetting for the mineralization and fluxes of C and N in terrestrial soils. Controversial study results require a reappraisal of the present understanding that wetting of dry soils induces significant losses of soil C and N. The generally observed pulse in net C and N mineralization following wetting of dry soil (hereafter wetting pulse) is short‐lived and often exceeds the mineralization rate of a respective moist control. Accumulated microbial and plant necromass, lysis of live microbial cells, release of compatible solutes and exposure of previously protected organic matter may explain the additional mineralization during wetting of soils. Frequent drying and wetting diminishes the wetting pulse due to limitation of the accessible organic matter pool. Despite wetting pulses, cumulative C and N mineralization (defined here as total net mineralization during drying and wetting) are mostly smaller compared with soil with optimum moisture, indicating that wetting pulses cannot compensate for small mineralization rates during drought periods. Cumulative mineralization is linked to the intensity and duration of drying, the amount and distribution of precipitation, temperature, hydrophobicity and the accessible pool of organic substrates. Wetting pulses may have a significant impact on C and N mineralization or flux rates in arid and semiarid regions but have less impact in humid and subhumid regions on annual time scales. Organic matter stocks are progressively preserved with increasing duration and intensity of drought periods; however, fires enhance the risk of organic matter losses under dry conditions. Hydrophobicity of organic surfaces is an important mechanism that reduces C and N mineralization in topsoils after precipitation. Hence, mineralization in forest soils with hydrophobic organic horizons is presumably stronger limited than in grassland or farmland soils. Even in humid regions, suboptimal water potentials often restrict microbial activity in topsoils during growing seasons. Increasing summer droughts will likely reduce the mineralization and fluxes of C and N whereas increasing summer precipitation could enhance the losses of C and N from soils.  相似文献   

10.
1. We used high‐frequency in situ dissolved oxygen measurements to investigate the seasonal variability and factors regulating metabolism in a subtropical alpine lake in Taiwan between May 2004 and October 2005, specifically exploring how the typhoon season (from June or July to October) affects lake metabolism. 2. Gross primary production (GPP) and ecosystem respiration (R) both peaked in early summer and mid‐autumn but dropped during the typhoon season and winter. Yuan‐Yang Lake is a net heterotrophic ecosystem (annual mean net ecosystem production ?39.6 μmole O2 m?3). 3. Compared to the summer peaks, seasonal averages of GPP and R decreased by approximately 50% and 25%, respectively, during the typhoon season. Ecosystem respiration was more resistant to external disturbances than GPP and showed strong daily variation during typhoon seasons. 4. Changes in the quality and quantity of dissolved organic carbon controlled the temporal dynamics and metabolic regulation. External disturbances (typhoons) caused increased allochthony, increasing DOC and water colour and influencing lake metabolism. 5. Seasonal winter mixing and typhoon‐induced water mixing in summer and autumn play a key role in determining the extent to which the lake is a seasonal carbon sink or source to the atmosphere.  相似文献   

11.
Dynamics of C,N, P and S in grassland soils: a model   总被引:42,自引:8,他引:42  
We have developed a model to simulate the dynamics of C, N, P, and S in cultivated and uncultivated grassland soils. The model uses a monthly time step and can simulate the dynamics of soil organic matter over long time periods (100 to 10,000 years). It was used to simulate the impact of cultivation (100 years) on soil organic matter dynamics, nutrient mineralization, and plant production and to simulate soil formation during a 10,000 year run. The model was validated by comparing the simulated impact of cultivation on soil organic matter C, N, P, and S dynamics with observed data from sites in the northern Great Plains. The model correctly predicted that N and P are the primary limiting nutrients for plant production and simulated the response of the system to inorganic N, P, and S fertilizer. Simulation results indicate that controlling the C:P and C:S ratios of soil organic matter fractions as functions of the labile P and S levels respectively, allows the model to correctly simulate the observed changes in C:P and C:S ratios in the soil and to simulate the impact of varying the labile P and S levels on soil P and S net mineralization rates.  相似文献   

12.
At the Harvard Forest, Massachusetts, a long-term effort is under way to study responses in ecosystem biogeochemistry to chronic inputs of N in atmospheric deposition in the region. Since 1988, experimental additions of NH4NO3 (0, 5 and 15 g N m–2 yr–1) have been made in two forest stands:Pinus resinosa (red pine) and mixed hardwood. In the seventh year of the study, we measured solute concentrations and estimated solute fluxes in throughfall and at two soil depths, beneath the forest floors (Oa) and beneath the B horizons.Beneath the Oa, concentrations and fluxes of dissolved organic C and N (DOC and DON) were higher in the coniferous stand than in the hardwood stand. The mineral soil exerted a strong homogenizing effect on concentrations beneath the B horizons. In reference plots (no N additions), DON composed 56% (pine) and 67% (hardwood) of the total dissolved nitrogen (TDN) transported downward from the forest floor to the mineral soil, and 98% of the TDN exported from the solums. Under N amendments, fluxes of DON from the forest floor correlated positively with rates of N addition, but fluxes of inorganic N from the Oa exceeded those of DON. Export of DON from the solums appeared unaffected by 7 years of N amendments, but as in the Oa, DON composed smaller fractions of TDN exports under N amendments. DOC fluxes were not strongly related to N amendment rates, but ratios of DOC:DON often decreased.The hardwood forest floor exhibited a much stronger sink for inorganic N than did the pine forest floor, making the inputs of dissolved N to mineral soil much greater in the pine stand. Under the high-N treatment, exports of inorganic N from the solum of the pine stand were increased >500-fold over reference (5.2 vs. 0.01 g N m–2 yr–1), consistent with other manifestations of nitrogen saturation. Exports of N from the solum in the pine forest decreased in the order NO3-N> NH4-N> DON, with exports of inorganic N 14-fold higher than exports of DON. In the hardwood forest, in contrast, increased sinks for inorganic N under N amendments resulted in exports of inorganic N that remained lower than DON exports in N-amended plots as well as the reference plot.  相似文献   

13.
Root production and turnover were studied using sequential core sampling and observations in permanent minirhizotrons in the field in three dry heathland stands dominated by the evergreen dwarfshrub Calluna vulgaris and the grasses Deschampsia flexuosa and Molinia caerulea, respectively. Root biomass production, estimated by core sampling, amounted to 160 (Calluna), 180 (Deschampsia) and 1380 (Molinia) g m-2 yr-1, respectively. Root biomass turnover rate in Calluna (0.64 yr-1) was lower compared with the grasses (Deschampsia: 0.96 yr-1; Molinia 1.68yr-1)). Root length turnover rate was 0.75–0.77 yr-1 (Deschampsia) and 1.17–1.49 yr-1 (Molinia), respectively. No resorption of N and P from senescing roots was observed in either species. Input of organic N into the soil due to root turnover, estimated using the core sampling data, amounted to 1.8 g N m-2 yr-1(Calluna), 1.7 g N m-2 yr-1 (Deschampsia) and 19.7 g N m-2 yr-1 (Molinia), respectively. The organic P input was 0.05, 0.07 and 0.55 g P M-2 yr-1, respectively. Using the minirhizotron turnover estimates these values were20–22% (Deschampsia) and 11–30% (Molinia) lower.When the biomass turnover data were used, it appeared that in the Molinia stand root turnover contributed 67% to total litter production, 87% to total litter nitrogen loss and 84% to total litter phosphorus loss. For Calluna and Deschampsia these percentages were about three and two times lower, respectively.This study shows that (1) Root turnover is a key factor in ecosystem C, N, and P cycling; and that (2) The relative importance of root turnover differs between species.  相似文献   

14.
Soil carbon is returned to the atmosphere through the process of soil respiration, which represents one of the largest fluxes in the terrestrial C cycle. The effects of climate change on the components of soil respiration can affect the sink or source capacity of ecosystems for atmospheric carbon, but no current techniques can unambiguously separate soil respiration into its components. Long‐term free air CO2 enrichment (FACE) experiments provide a unique opportunity to study soil C dynamics because the CO2 used for fumigation has a distinct isotopic signature and serves as a continuous label at the ecosystem level. We used the 13C tracer at the Duke Forest FACE site to follow the disappearance of C fixed before fumigation began in 1996 (pretreatment C) from soil CO2 and soil‐respired CO2, as an index of belowground C dynamics during the first 8 years of the experiment. The decay of pretreatment C as detected in the isotopic composition of soil‐respired CO2 and soil CO2 at 15, 30, 70, and 200 cm soil depth was best described by a model having one to three exponential pools within the soil system. The majority of soil‐respired CO2 (71%) originated in soil C pools with a turnover time of about 35 days. About 55%, 50%, and 68% of soil CO2 at 15, 30, and 70 cm, respectively, originated in soil pools with turnover times of less than 1 year. The rest of soil CO2 and soil‐respired CO2 originated in soil pools that turn over at decadal time scales. Our results suggest that a large fraction of the C returned to the atmosphere through soil respiration results from dynamic soil C pools that cannot be easily detected in traditionally defined soil organic matter standing stocks. Fast oxidation of labile C substrates may prevent increases in soil C accumulation in forests exposed to elevated [CO2] and may consequently result in shorter ecosystem C residence times.  相似文献   

15.
土壤碳、氮、磷是植物重要的营养来源和保障生态系统健康的重要生态因子,其含量及化学计量比的动态平衡对生态系统的生产力具有重要影响,分析土壤碳、氮、磷养分含量及化学计量比的空间变异性和影响机制,对区域土壤养分管理以及土地可持续利用具有重要意义。本研究选取位于黄土高原东缘的三眼井小流域,利用经典统计与地统计相结合的方法,分析了研究区表层土壤(0~20 cm)有机碳(SOC)、全氮(TN)和全磷(TP)以及土壤碳氮磷的化学计量比的空间变异性和影响机制。结果表明:(1)研究区表层土壤SOC、TN和TP的平均值分别为3.97、0.83和0.6 g·kg-1,C∶N、C∶P、N∶P的平均值分别为4.73、6.02、1.26,均属于中等变异水平。(2)土地利用类型和地貌类型对研究区土壤SOC、TN具有显著影响,林地和荒草地高于梯田和退耕地,梁上高于沟谷; TP主要受土地利用类型的显著影响,梯田显著高于其他三种土地利用类型;土地利用类型对土壤C∶N、C∶P和N∶P的影响较为一致,表现为梯田显著低于其他土地利用类型; C∶N还受到坡度和地貌类型的显著影响,C∶P和N∶P还分别受到坡度和海拔的显著影响。(3...  相似文献   

16.
The impact of anthropogenic CO2 emissions on climate change may be mitigated in part by C sequestration in terrestrial ecosystems as rising atmospheric CO2 concentrations stimulate primary productivity and ecosystem C storage. Carbon will be sequestered in forest soils if organic matter inputs to soil profiles increase without a matching increase in decomposition or leaching losses from the soil profile, or if the rate of decomposition decreases because of increased production of resistant humic substances or greater physical protection of organic matter in soil aggregates. To examine the response of a forest ecosystem to elevated atmospheric CO2 concentrations, the Duke Forest Free‐Air CO2 Enrichment (FACE) experiment in North Carolina, USA, has maintained atmospheric CO2 concentrations 200 μL L?1 above ambient in an aggrading loblolly pine (Pinus taeda) plantation over a 9‐year period (1996–2005). During the first 6 years of the experiment, forest‐floor C and N pools increased linearly under both elevated and ambient CO2 conditions, with significantly greater accumulations under the elevated CO2 treatment. Between the sixth and ninth year, forest‐floor organic matter accumulation stabilized and C and N pools appeared to reach their respective steady states. An additional C sink of ~30 g C m?2 yr?1 was sequestered in the forest floor of the elevated CO2 treatment plots relative to the control plots maintained at ambient CO2 owing to increased litterfall and root turnover during the first 9 years of the study. Because we did not detect any significant elevated CO2 effects on the rate of decomposition or on the chemical composition of forest‐floor organic matter, this additional C sink was likely related to enhanced litterfall C inputs. We also failed to detect any statistically significant treatment effects on the C and N pools of surface and deep mineral soil horizons. However, a significant widening of the C : N ratio of soil organic matter (SOM) in the upper mineral soil under both elevated and ambient CO2 suggests that N is being transferred from soil to plants in this aggrading forest. A significant treatment × time interaction indicates that N is being transferred at a higher rate under elevated CO2 (P=0.037), suggesting that enhanced rates of SOM decomposition are increasing mineralization and uptake to provide the extra N required to support the observed increase in primary productivity under elevated CO2.  相似文献   

17.
Shand  C.A.  Williams  B.L.  Smith  S.  Young  M.E. 《Plant and Soil》2000,222(1-2):1-13
We have determined the temporal changes in the concentration of dissolved organic carbon (DOC) and P and N components in soil solution following application of synthetic sheep urine (500 kg N ha-1) to a brown forest soil in boxes sown with Agrostis capillaris. Three contrasting defoliation treatments (no cutting, single cut before urine application and regular cutting twice per week) plus a fallow soil were studied. The synthetic urine contained 15N labelled urea and was P-free. Intact soil cores were taken after 2, 7, 14, 21 and 56 d and centrifuged to obtain soil solution. The urea in the synthetic urine was rapidly hydrolysed in the soil, increasing soil solution pH, DOC and total dissolved phosphorus (TDP) concentrations. For the regularly defoliated sward, DOC and P reached maximum concentrations (4000 mg DOC L-1 and 59 mg TDP L-1) on day 7. From their peak values, pH and DOC and P concentrations generally decreased with time and at day 56 were near those of the control. Concentrations of NH4 + and NO3 - in the no-urine treatments fluctuated and the greatest treatment differences were between the fallow soil and the soil sown with grass. Adding synthetic urine increased NH4 + concentrations during the first week, but NO3 - concentrations decreased. This was consistent with the 15N labelling of the NO3 - pool which required 3 weeks to reach that of 15NH4 +. Dissolved organic nitrogen (DON) reached a maximum value at day 7 with a concentration of 409 mg N L-1. The DON in soil solution contained no detectable amounts of 15N label indicating that it was derived from sources in the soil. Differences in soil solution composition related to the effect of the other cutting treatments and the fallow treatment were small compared to the effect of synthetic urine addition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Elevated CO2, N deposition and climate change can alter ecosystem‐level nutrient cycling both directly and indirectly. We explored the interactive effects of these environmental changes on extracellular enzyme activity and organic matter fractionation in soils of a California annual grassland. The activities of hydrolases (polysaccharide‐degrading enzymes and phosphatase) increased significantly in response to nitrate addition, which coincided with an increase in soluble C concentrations under ambient CO2. Water addition and elevated CO2 had negative but nonadditive effects on the activities of these enzymes. In contrast, water addition resulted in an increase in the activities of lignin‐degrading enzymes (phenol oxidase and peroxidase), and a decrease in the free light fraction (FLF) of soil organic matter. Independent of treatment effects, lignin content in the FLF was negatively correlated with the quantity of FLF across all samples. Lignin concentrations were lower in the aggregate‐occluded light fraction (OLF) than the FLF, and there was no correlation between percent lignin and OLF quantity, which was consistent with the protection of soil organic matter in aggregates. Elevated CO2 decreased the quantity of OLF and increased the OLF lignin concentration, however, which is consistent with increased degradation resulting from increased turnover of soil aggregates. Overall, these results suggest that the effects of N addition on hydrolase activity are offset by the interactive effects of water addition and elevated CO2, whereas water and elevated CO2 may cause an increase in the breakdown of soil organic matter as a result of their effects on lignin‐degrading enzymes and soil aggregation, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号