首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wetlands are among the most vulnerable ecosystems, stressed by habitat loss and degradation from expanding and intensifying agricultural and urban areas. Climate change will exacerbate the impacts of habitat loss by altering temperature and rainfall patterns. Wetlands within Australia''s Great Barrier Reef (GBR) catchment are not different, stressed by extensive cropping, urban expansion, and alteration for grazing. Understanding how stressors affect wildlife is essential for the effective management of biodiversity values and minimizing unintended consequences when trading off the multiple values wetlands support. Impact assessment is difficult, often relying on an aggregation of ad hoc observations that are spatially biased toward easily accessible areas, rather than systematic and randomized surveys. Using a large aggregate database of ad hoc observations, this study aimed to examine the influence of urban proximity on machine‐learning models predicting taxonomic richness and assemblage turnover, relative to other habitat, landscape, and climate variables, for vertebrates dwelling in the wetlands of the GBR catchment. The distance from the nearest city was, by substantial margins, the most influential factor in predicting the richness and assemblage turnover of all vertebrate groups, except fish. Richness and assemblage turnover was predicted to be greatest nearest the main urban centers. The extent of various wetland habitats was highly influential in predicting the richness of all groups, while climate (predominately the rainfall in the wettest quarter) was highly influential in predicting assemblage turnover for all groups. Bias of survey records toward urban centers strongly influenced our ability to model wetland‐affiliated vertebrates and may obscure our understanding of how vertebrates respond to habitat loss and climate change. This reinforces the need for randomized and systematic surveys to supplement existing ad hoc surveys. We urge modelers in other jurisdictions to better portray the potential influence of survey biases when modeling species distributions.  相似文献   

2.
Temporal and spatial variation in the growth parameters skeletal density, linear extension and calcification rate in massive Porites from two nearshore regions of the northern Great Barrier Reef (GBR) were examined over a 16‐year study period. Calcification rates in massive Porites have declined by approximately 21% in two regions on the GBR ~450 km apart. This is a function primarily of a decrease in linear extension (~16%) with a smaller decline in skeletal density (~6%) and contrasts with previous studies on the environmental controls on growth of massive Porites on the GBR. Changes in the growth parameters were linear over time. Averaged across colonies, skeletal density declined over time from 1.32 g cm?3 (SE = 0.017) in 1988 to 1.25 g cm?3 (0.013) in 2003, equivalent to 0.36% yr?1 (0.13). Annual extension declined from 1.52 cm yr?1 (0.035) to 1.28 cm yr?1 (0.026), equivalent to 1.02% yr?1 (0.39). Calcification rates (the product of skeletal density and annual extension) declined from 1.96 g cm?2 yr?1 (0.049) to 1.59 g cm?2 yr?1 (0.041), equivalent to 1.29% yr?1 (0.30). Mean annual seawater temperatures had no effect on skeletal density, but a modal effect on annual extension and calcification with maxima at ~26.7 °C. There were minor differences in the growth parameters between regions. A decline in coral calcification of this magnitude with increasing seawater temperatures is unprecedented in recent centuries based on analysis of growth records from long cores of massive Porites. We discuss the decline in calcification within the context of known environmental controls on coral growth. Although our findings are consistent with studies of the synergistic effect of elevated seawater temperatures and pCO2 on coral calcification, we conclude that further data on seawater chemistry of the GBR are required to better understand the links between environmental change and effects on coral growth.  相似文献   

3.
To assess a species'' vulnerability to climate change, we commonly use mapped environmental data that are coarsely resolved in time and space. Coarsely resolved temperature data are typically inaccurate at predicting temperatures in microhabitats used by an organism and may also exhibit spatial bias in topographically complex areas. One consequence of these inaccuracies is that coarsely resolved layers may predict thermal regimes at a site that exceed species'' known thermal limits. In this study, we use statistical downscaling to account for environmental factors and develop high-resolution estimates of daily maximum temperatures for a 36 000 km2 study area over a 38-year period. We then demonstrate that this statistical downscaling provides temperature estimates that consistently place focal species within their fundamental thermal niche, whereas coarsely resolved layers do not. Our results highlight the need for incorporation of fine-scale weather data into species'' vulnerability analyses and demonstrate that a statistical downscaling approach can yield biologically relevant estimates of thermal regimes.  相似文献   

4.
气候变化背景下野生动物脆弱性评估方法研究进展   总被引:2,自引:2,他引:0  
李佳  刘芳  张宇  薛亚东  李迪强 《生态学报》2017,37(20):6656-6667
脆弱性评估是研究气候变化影响野生动物的重要内容,识别野生动物脆弱性,是适应和减缓气候变化影响的关键和基础。开展气候变化背景下野生动物的脆弱性评估工作,目的是为了确定易受气候变化影响的物种和明确导致物种脆弱性的因素,其评估结果有助于人类认识气候变化对野生动物的影响,为野生动物适应气候变化保护对策的制定提供科学依据。对野生动物而言(物种),脆弱性是物种受气候变化影响的程度,包括暴露度、敏感性和适应能力三大要素。其中,暴露度是由气候变化引起的外在因素,如温度、降雨量、极值天气等;敏感性是受物种自身因素影响,如种间关系、耐受性等;适应能力是物种通过自身调整来减小气候变化带来的影响,如迁移或扩散到适宜生境的能力、塑性反应和进化反应等。对近期有关气候变化背景下野生动物脆弱性评估方法予以综述,比较每种评估方法所选取指标的差异,总结在脆弱性评估中遇到的不确定性指标的处理方法,以及脆弱性评估结果在野生动物适应气候变化对策中的应用。通过总结野生动物脆弱性评估方法,以期为气候变化背景下评估我国野生动物资源的脆弱性提供参考方法。  相似文献   

5.
Unusual disease lesions were observed in Montipora corals on the fringing reef of Magnetic Island (Great Barrier Reef, Australia) following a period of high water temperature in early January 2002. Tissue death in Montipora spp. appeared as a black layer that spread rapidly across the colony surface, though this appeared as the final phase of disease progression (with three previous disease phases now identified, S. Anthony, unpublished). Culture and molecular-based microbial analysis of this layer did not identify a likely microbial pathogen. Despite this, DNA sequencing of microbial 16S rDNA indicated a shift in the bacterial population associated with affected coral tissue. A clone library of the healthy coral sample predominantly contained sequences within the -Proteobacteria. A disease coral sample representing the margin of the black lesion and healthy coral tissue was dominated by sequences, which demonstrated low sequence identity to a range of -Proteobacteria, -Proteobacteria and cyanobacteria. The microbes identified in the diseased Montipora spp. samples are likely to be opportunistic rather than the causative agent of the observed lesion. Studies are in progress to further characterise the ecology of this disease and describe the potential microbial pathogen(s).  相似文献   

6.
Governing climate change in cities entails a good understanding of urban vulnerabilities. This research presents an Indicator-based Vulnerability Assessment for 571 European cities. Basing on panel data from Urban Audit database and a set of newly developed indicators, we assessed urban vulnerabilities for the following impact chains: (i) heatwaves on human health; (ii) drought on water planning, and; (iii) flooding (sub-divided into pluvial, fluvial and coastal) on the socio-economic tissue and the urban fabric. Results shed light on the key challenges that specific groups of European cities face in order to better deal with the expected impacts of climate change. This knowledge is a necessary step to advance in the understanding of urban risks to climate change and the development of effective EU policies for urban adaptation.  相似文献   

7.
气候变化影响下海岸带脆弱性评估研究进展   总被引:7,自引:3,他引:7  
王宁  张利权  袁琳  曹浩冰 《生态学报》2012,32(7):2248-2258
近百年来,全球气候系统正经历着以全球变暖为主要特征的显著变化。研究海岸带系统对气候变化的响应机制,评估气候变化对海岸带社会、经济和生态的潜在影响,提出切实可行的应对策略,是保障海岸带系统安全的重要前提。回顾了IPCC的四次评估报告,分析了全球气候变化对海岸带的影响。总结了海岸带脆弱性评估框架以及脆弱性评价指标体系,综述了国内外气候变化影响下海岸带脆弱性评估研究的进展。在综述国内外该领域研究进展的基础上,展望了气候变化影响下海岸带脆弱性评估研究。全球气候变化及其对海岸带的影响还有大量的科学技术问题需要进一步探讨,同时也需要对各种适应气候变化措施的可行性和有效性进行研究和验证。  相似文献   

8.
 Significant coral reef ecosystems occur along the northwest (NW) coast of Australia in an oceanographic setting somewhat similar to that of the Great Barrier Reef off the northeast (NE) Australian coast. Seasonal and inter-annual variations of several surface climate variables are described for the NW coastal region of Australia from 10°–30°S over the period 1960 to 1992. Average climatic conditions in this region are compared with those for similar latitudes on the Great Barrier Reef. On average, sea surface temperatures (SSTs) along the NW Australian coast are warmer than at similar latitudes along the NE coast north of ∼20°S and cooler than the NE coast at higher latitudes. The annual range of SSTs along the NW coast is lower than found along the NE coast. There is also lower average cloud amount (and greater incoming solar radiation) along the NW coast compared with the NE coast. Corals reefs off the NW Australian coast are less likely to be influenced by freshwater and associated terrestrial impacts than nearshore reefs of the GBR. Although the latitudinal distribution of tropical cyclone activity is similar along the NW and NE Australian coasts, the total number of tropical cyclones and tropical cyclone days is substantially higher on the NW coast compared with the NE coast. Accepted: 22 June 1998  相似文献   

9.
Radiocarbon dating of seven drill cores from both the windward Lizard Island fringing reef and the windward and leeward margins of MacGillivray platform reef, Northern Great Barrier Reef Province, reveal the Holocene evolution of these two mid shelf coral reefs. The windward margin at Lizard Island started growing approximately 6,700 calendar years before present (cal yr BP) directly on an assumed granite basement and approached present day sea level approximately 4,000 cal yr BP. Growth of the windward margin at MacGillivray Reef was initiated by 7,600 cal yr BP and approached present day sea level by approximately 5,600 cal yr BP. The leeward margin at MacGillivray was initiated by 8,200 cal yr BP also directly on an assumed granite basement, but only approached sea level relatively recently, between 260 and 80 cal yr BP. None of the cores penetrated the Holocene-Pleistocene unconformity. The absence of Pleistocene reefal deposits, at 15 m depth in the cores from MacGillivray Reef, raises the possibility that the shelf in this region has subsided relative to modern day sea level by at least 15 m since the last interglacial [125,000 years ago (ka)].  相似文献   

10.
The deposition and cycling of carbon and nitrogen in carbonate sediments located between coral reefs on the northern and central sections of the Great Barrier Reef were examined. Rates of mass sediment accumulation ranged from 1.9 kg m−2 year−1 (inshore reefs) to 2.1–4.9 kg m−2 year−1 (between mid-shelf reefs); sedimentation was minimal off outer-shelf reefs. Rates of total organic carbon decomposition ranged from 1.7 to 11.4 mol C m−2 year−1 and total nitrogen mineralization ranged from 77 to 438 mmol N m−2 year−1, declining significantly with distance from land. Sediment organic matter was highly reactive, with mineralization efficiencies ranging from 81 to 99% for organic carbon and 64–100% for nitrogen, with little C and N burial. There was no evidence of carbonate dissolution/precipitation in short-term incubation experiments. Rates of sulfate reduction (range 0–3.4 mmol S m−2 day−1) and methane release (range 0–12.8 μmol CH4 m−2 day−1) were minor or modest pathways of carbon decomposition. Aerobic respiration, estimated by difference between total O2 consumption and the sum of the other pathways, accounted for 55–98% of total carbon mineralization. Rates of ammonification ranged from 150 to 1,725 μmol NH4 m−2 day−1, sufficient to support high rates of denitrification (range 30–2,235 μmol N2 m−2 day−1). N2O release was not detected and rates of NH4 + and NO2 + NO3 efflux were low, indicating that most mineralized N was denitrified. The percentage of total N input removed via denitrification averaged ≈75% (range 28–100%) with little regenerated N available for primary producers. Inter-reef environments are therefore significant sites of energy and nutrient flow, especially in spatially complex reef matrices such as the Great Barrier Reef.  相似文献   

11.
Large-scale bleaching of corals on the Great Barrier Reef   总被引:10,自引:10,他引:10  
 The Great Barrier Reef (GBR) experienced its most intensive and extensive coral bleaching event on record in early 1998. Mild bleaching commenced in late January and intensified by late February/early March 1998. Broad-scale aerial surveys conducted of 654 reefs (∼23% of reefs on the GBR) in March and April 1998, showed that 87% of inshore reefs were bleached at least to some extent (>1% of coral cover) compared to 28% of offshore (mid- and outer-shelf) reefs. Of inshore reefs 67% had high levels of bleaching (>10% of coral) and 25% of inshore reefs had extreme levels of bleaching (>60% of coral). Fewer offshore reefs (14%) showed high levels of bleaching while none showed extreme levels of bleaching. Ground-truth surveys of 23 reefs, which experienced bleaching in intensities ranging from none to extreme, showed that the aerial survey data are likely to be underestimates of the true extent and intensity of bleaching on the GBR. The primary cause of this bleaching event is likely to be elevated sea temperature and solar radiation, exacerbated by lowered salinity on inshore and some offshore reefs in the central GBR. Accepted: 30 July 1998  相似文献   

12.
Climate change is driving rapid and widespread erosion of the environmental conditions that formerly supported species persistence. Existing projections of climate change typically focus on forecasts of acute environmental anomalies and global extinction risks. The current projections also frequently consider all species within a broad taxonomic group together without differentiating species-specific patterns. Consequently, we still know little about the explicit dimensions of climate risk (i.e., species-specific vulnerability, exposure and hazard) that are vital for predicting future biodiversity responses (e.g., adaptation, migration) and developing management and conservation strategies. Here, we use reef corals as model organisms (n = 741 species) to project the extent of regional and global climate risks of marine organisms into the future. We characterise species-specific vulnerability based on the global geographic range and historical environmental conditions (1900–1994) of each coral species within their ranges, and quantify the projected exposure to climate hazard beyond the historical conditions as climate risk. We show that many coral species will experience a complete loss of pre-modern climate analogs at the regional scale and across their entire distributional ranges, and such exposure to hazardous conditions are predicted to pose substantial regional and global climate risks to reef corals. Although high-latitude regions may provide climate refugia for some tropical corals until the mid-21st century, they will not become a universal haven for all corals. Notably, high-latitude specialists and species with small geographic ranges remain particularly vulnerable as they tend to possess limited capacities to avoid climate risks (e.g., via adaptive and migratory responses). Predicted climate risks are amplified substantially under the SSP5-8.5 compared with the SSP1-2.6 scenario, highlighting the need for stringent emission controls. Our projections of both regional and global climate risks offer unique opportunities to facilitate climate action at spatial scales relevant to conservation and management.  相似文献   

13.
14.
Detailed mapping of coral bleaching events provides an opportunity to examine spatial patterns in bleaching over scales of 10 s to 1,000 s of km and the spatial correlation between sea surface temperature (SST) and bleaching. We present data for two large-scale (2,000 km) bleaching events on the Great Barrier Reef (GBR): one from 1998 and another from 2002, both mapped by aerial survey methods. We examined a wide range of satellite-derived SST variables to determine which one best correlated with the observed bleaching patterns. We found that the maximum SST occurring over any 3-day period (max3d) during the bleaching season predicted bleaching better than anomaly-based SST variables and that short averaging periods (3–6 days) predicted bleaching better than longer averaging periods. Short periods of high temperature are therefore highly stressful to corals and result in highly predictable bleaching patterns. Max3d SST predicted the presence/absence of bleaching with an accuracy of 73.2%. Large-scale (GBR-wide) spatial patterns of bleaching were similar between 1998 and 2002 with more inshore reefs bleached compared to offshore reefs. Spatial change in patterns of bleaching occurred at scales of ~10 s km, indicating that reefs bleach (or not) in spatial clusters, possibly due to local weather patterns, oceanographic conditions, or both. Approximately 42% of reefs bleached to some extent in 1998 with ~18% strongly bleached, while in 2002, ~54% of reefs bleached to some extent with ~18% strongly bleached. These statistics and the fact that nearly twice as many offshore reefs bleached in 2002 compared to 1998 (41 vs. 21%, respectively) makes the 2002 event the worst bleaching event on record for the GBR. Modeling of the relationship between bleaching and max3d SST indicates that a 1 °C increase would increase the bleaching occurrence of reefs from 50% (approximate occurrence in 1998 and 2002) to 82%, while a 2 °C increase would increase the occurrence to 97% and a 3 °C increase to 100%. These results suggest that coral reefs are profoundly sensitive to even modest increases in temperature and, in the absence of acclimatization/adaptation, are likely to suffer large declines under mid-range International Panel for Climate Change predictions by 2050.
Ray BerkelmansEmail: Phone: +61-7-47534268Fax: +61-7-47534429
  相似文献   

15.
中国水稻生产对历史气候变化的敏感性和脆弱性   总被引:9,自引:0,他引:9  
熊伟  杨婕  吴文斌  黄丹丹  曹阳 《生态学报》2013,33(2):509-518
有效的适应措施需要了解两类基础信息,一是农业生产所面临的各种气候变异风险,二是作物产量对潜在气候变异风险的反应及其机制.评价作物生产对历史气候变化的敏感性和脆弱性,可以在时间上和空间上揭示气候变化的趋势及作物产量对其的反应,从而为适应行动的全面开展提供基础信息.通过分析1981-2007年水稻生育期3个气候因子(平均温度、日较差、辐射)的变化对水稻产量的影响,评估我国水稻生产对这3个气候因子变化的敏感性和脆弱性及其区域分布状况.结果表明,1981-2007年间我国大部分水稻产区生育期内3个气候因子均发生了明显变化,存在着气候变异风险,其中以最高温的变化最普遍和明显,导致水稻生产中高温热害风险增加.部分区域水稻产量变化与单一气象因子的变化存在着显著的线性相关,这些地区气候因子的变化可以一定程度地解释水稻产量变化趋势,其中产量变化对辐射变化最敏感.当水稻生育期内平均温度上升1℃、日较差升高1℃、辐射下降10%时,我国部分地区水稻产量随之发生了相应的变化,其中辐射降低导致我国水稻生产的脆弱面积最大,其次为日较差.受3种气象因子变化趋势的综合影响,约有30%的水稻产区对1981-2007年的气候变化趋势敏感,少部分地区表现为脆弱,但水稻主产区受到的影响不大,且在东北地区还集中表现出产量增加的趋势,为我国水稻发展提供了契机.  相似文献   

16.
Climate change may shrink and/or shift plant species ranges thereby increasing their vulnerability and requiring targeted conservation to facilitate adaptation. We quantified the vulnerability to climate change of plant species based on exposure, sensitivity and adaptive capacity and assessed the effects of including these components in complementarity‐based spatial conservation prioritisation. We modelled the vulnerability of 584 native plant species under three climate change scenarios in an 11.9 million hectare fragmented agricultural region in southern Australia. We represented exposure as species' geographical range under each climate change scenario as quantified using species distribution models. We calculated sensitivity as a function of the impact of climate change on species' geographical ranges. Using a dispersal kernel, we quantified adaptive capacity as species' ability to migrate to new geographical ranges under each climate change scenario. Using Zonation, we assessed the impact of individual components of vulnerability (exposure, sensitivity and adaptive capacity) on spatial conservation priorities and levels of species representation in priority areas under each climate change scenario. The full vulnerability framework proved an effective basis for identifying spatial conservation priorities under climate change. Including different dimensions of vulnerability had significant implications for spatial conservation priorities. Incorporating adaptive capacity increased the level of representation of most species. However, prioritising sensitive species reduced the representation of other species. We conclude that whilst taking an integrated approach to mitigating species vulnerability to climate change can ensure sensitive species are well‐represented in a conservation network, this can come at the cost of reduced representation of other species. Conservation planning decisions aimed at reducing species vulnerability to climate change need to be made in full cognisance of the sensitivity of spatial conservation priorities to individual components of vulnerability, and the trade‐offs associated with focussing on sensitive species.  相似文献   

17.
Adaptation to localised thermal regimes is facilitated by restricted gene flow, ultimately leading to genetic divergence among populations and differences in their physiological tolerances. Allozyme analysis of six polymorphic loci was used to assess genetic differentiation between nine populations of the reef-building coral Acropora millepora over a latitudinal temperature gradient on the inshore regions of the Great Barrier Reef (GBR). Small but significant genetic differentiation indicative of moderate levels of gene flow (pairwise F ST 0.023 to 0.077) was found between southern populations of A. millepora in cooler regions of the GBR and the warmer, central or northern GBR populations. Patterns of genetic differentiation at these putatively neutral allozyme loci broadly matched experimental variation in thermal tolerance and were consistent with local thermal regimes (warmest monthly-averages) for the A. millepora populations examined. It is therefore hypothesized that natural selection has influenced the thermal tolerance of the A. millepora populations examined and greater genetic divergence is likely to be revealed by examination of genetic markers under the direct effects of natural selection.  相似文献   

18.
The visual pigments in the retinal photoreceptors of 12 species of snappers of the genus Lutjanus (Teleostei; Perciformes; Lutjanidae) were measured by microspectrophotometry. All the species were caught on the Great Barrier Reef (Australia) but differ in the colour of the water in which they live. Some live in the clear blue water of the outer reef, some in the greener water of the middle and inshore reefs and some in the more heavily stained mangrove and estuarine water. All the species had double cones, each member of the pair containing a different visual pigment. Using Baker's and Smith's (1982) model to predict the spectral distribution of ambient light from chlorophyll and dissolved organic matter it was found that the absorption spectra of the visual pigments in the double cones were close to those that confer the maximum sensitivity in the different water types. Single cones contained a blue or violet-sensitive visual pigment. The visual pigments in the rods showed little variation, their wavelength of maximum absorption always being in the region 489–502 nm.Abbreviations DOC dissolved organic carbon - DOM dissolved organic material - MSP microspectrophotometry deceased  相似文献   

19.
自然生态系统响应气候变化的脆弱性评价研究进展   总被引:7,自引:10,他引:7  
以气候变暖为标志的全球气候变化已引起各国政府、国际组织和科学工作者的高度重视.气候变化给人类及自然生态系统带来的风险和危害日趋增大.生态系统脆弱性分析和评价是适应和减缓气候变化的关键和基础,已成为近年来气候变化领域和生态学领域的研究热点.目前国内外学者正在不同领域、不同空间尺度上开展响应气候变化的脆弱性评价,其中以自然生态系统为评价对象的脆弱性研究也有了长足的发展.本文通过对脆弱性的概念、气候变化脆弱性评价研究现状、自然生态系统响应气候变化的脆弱性定量评价方法的综述,探讨了该研究领域存在的问题和未来的发展前景.  相似文献   

20.
Climate change vulnerability assessments are an important tool for understanding the threat that climate change poses to species and populations, but do not generally yield insight into the spatial variation in vulnerability throughout a species’ habitat. We demonstrate how to adapt the method of ecological‐niche factor analysis (ENFA) to objectively quantify aspects of species sensitivity to climate change. We then expand ENFA to quantify aspects of exposure and vulnerability to climate change as well, using future projections of global climate models. This approach provides spatially‐explicit insight into geographic patterns of vulnerability, relies only on readily‐available spatial data, is suitable for a wide range of species and habitats, and invites comparison between different species. We apply our methods to a case study of two species of montane mammals, the American pika Ochotona princeps and the yellow‐bellied marmot Marmota flaviventris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号