首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Does climatic warming increase the risk of frost damage in northern trees?   总被引:6,自引:3,他引:3  
Abstract. The effect of climatic warming on the timing of bud burst and the subsequent risk of frost damage on trees in central Finland was assessed with the aid of a computer model, 73 years of temperature data and a climatic scenario corresponding to doubled level of atmospheric CO2. In general, climatic warming hastened bud burst, due to ontogenetic development during warm spells in autumn, winter and spring. During the years with the warmest winters in the scenario conditions: (a) bud burst took place during mid-winter; and (2) depending on the year, the trees were subsequently exposed to temperatures between −27 and −10°C. This finding suggests that the risk of frost damage to trees will be increased if the predicted climatic warming occurs. Because of the assumptions used in the model, the results are not conclusive, but they do point out the importance of further experimental studies on genetic and environmental regulation of timing of bud burst in trees.  相似文献   

2.
The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions.  相似文献   

3.
Fagaceae can be found in tropical and temperate regions and contain species of major ecological and economic importance. In times of global climate change, tree populations need to adapt to rapidly changing environmental conditions. The predicted warmer and drier conditions will potentially result in locally maladapted populations. There is evidence that major genera of the Fagaceae are already negatively affected by climate change‐related factors such as drought and associated biotic stressors. Therefore, knowledge of the mechanisms underlying adaptation is of great interest. In this review, we summarise current literature related to genetic adaptation to abiotic environmental conditions. We begin with an overview of genetic diversity in Fagaceae species and then summarise current knowledge related to drought stress tolerance, bud burst timing and frost tolerance in the Fagaceae. Finally, we discuss the role of hybridisation, epigenetics and phenotypic plasticity in adaptation.  相似文献   

4.
The frost hardiness of 20 to 25-year-old Scots pine (Pinus sylvestris L.) saplings was followed for 2 years in an experiment that attempted to simulate the predicted climatic conditions of the future, i.e. increased atmospheric CO2 concentration and/or elevated air temperature. Frost hardiness was determined by an electrolyte leakage method and visual damage scoring on needles. Elevated temperatures caused needles to harden later and deharden earlier than the controls. In the first year, elevated CO2 enhanced hardening at elevated temperatures, but this effect disappeared the next year. Dehardening was hastened by elevating CO2 in both springs. The frost hardiness was high (相似文献   

5.
For trees, the ability to obtain and maintain sufficient levels of frost hardiness in late autumn, winter and spring is crucial. We report that temperatures during dormancy induction influence bud set, frost hardiness, tolerance to cold storage, timing of bud burst and spring frost hardiness in seedlings of Norway spruce (Picea abies (L.) Karst.). Bud set occurred later in 12°C than in 21°C, and later in cool nights (7°C) than in constant temperature. One weekly frost night (−2.5°C) improved frost hardiness. Cool nights reduced frost hardiness early, but improved hardiness later during cold acclimation. Buds and stems were slightly hardier in 21°C than in 12°C, while needles were clearly hardier in 12°C. Cold daytime temperature, cool nights and one weekly frost night improved cold storability (0.7°C). Seedlings receiving high daytime temperatures burst buds later, and were less injured by light frost some days after bud burst.  相似文献   

6.
Under climate change, the reduction of frost risk, onset of warm temperatures and depletion of soil moisture are all likely to occur earlier in the year in many temperate regions. The resilience of tree species will depend on their ability to track these changes in climate with shifts in phenology that lead to earlier growth initiation in the spring. Exposure to warm temperatures (‘forcing’) typically triggers growth initiation, but many trees also require exposure to cool temperatures (‘chilling’) while dormant to readily initiate growth in the spring. If warming increases forcing and decreases chilling, climate change could maintain, advance or delay growth initiation phenology relative to the onset of favorable conditions. We modeled the timing of height‐ and diameter‐growth initiation in coast Douglas‐fir (an ecologically and economically vital tree in western North America) to determine whether changes in phenology are likely to track changes in climate using data from field‐based and controlled‐environment studies, which included conditions warmer than those currently experienced in the tree's range. For high latitude and elevation portions of the tree's range, our models predicted that warming will lead to earlier growth initiation and allow trees to track changes in the onset of the warm but still moist conditions that favor growth, generally without substantially greater exposure to frost. In contrast, toward lower latitude and elevation range limits, the models predicted that warming will lead to delayed growth initiation relative to changes in climate due to reduced chilling, with trees failing to capture favorable conditions in the earlier parts of the spring. This maladaptive response to climate change was more prevalent for diameter‐growth initiation than height‐growth initiation. The decoupling of growth initiation with the onset of favorable climatic conditions could reduce the resilience of coast Douglas‐fir to climate change at the warm edges of its distribution.  相似文献   

7.
The timing of spring leaf development, trajectories of summer leaf area, and the timing of autumn senescence have profound impacts to the water, carbon, and energy balance of ecosystems, and are likely influenced by global climate change. Limited field‐based and remote‐sensing observations have suggested complex spatial patterns related to geographic features that influence climate. However, much of this variability occurs at spatial scales that inhibit a detailed understanding of even the dominant drivers. Recognizing these limitations, we used nonlinear inverse modeling of medium‐resolution remote sensing data, organized by day of year, to explore the influence of climate‐related landscape factors on the timing of spring and autumn leaf‐area trajectories in mid‐Atlantic, USA forests. We also examined the extent to which declining summer greenness (greendown) degrades the precision and accuracy of observations of autumn offset of greenness. Of the dominant drivers of landscape phenology, elevation was the strongest, explaining up to 70% of the spatial variation in the onset of greenness. Urban land cover was second in importance, influencing spring onset and autumn offset to a distance of 32 km from large cities. Distance to tidal water also influenced phenological timing, but only within ~5 km of shorelines. Additionally, we observed that (i) growing season length unexpectedly increases with increasing elevation at elevations below 275 m; (ii) along gradients in urban land cover, timing of autumn offset has a stronger effect on growing season length than does timing of spring onset; and (iii) summer greendown introduces bias and uncertainty into observations of the autumn offset of greenness. These results demonstrate the power of medium grain analyses of landscape‐scale phenology for understanding environmental controls on growing season length, and predicting how these might be affected by climate change.  相似文献   

8.
Hurme P  Sillanpää MJ  Arjas E  Repo T  Savolainen O 《Genetics》2000,156(3):1309-1322
We examined the genetic basis of large adaptive differences in timing of bud set and frost hardiness between natural populations of Scots pine. As a mapping population, we considered an "open-pollinated backcross" progeny by collecting seeds of a single F(1) tree (cross between trees from southern and northern Finland) growing in southern Finland. Due to the special features of the design (no marker information available on grandparents or the father), we applied a Bayesian quantitative trait locus (QTL) mapping method developed previously for outcrossed offspring. We found four potential QTL for timing of bud set and seven for frost hardiness. Bayesian analyses detected more QTL than ANOVA for frost hardiness, but the opposite was true for bud set. These QTL included alleles with rather large effects, and additionally smaller QTL were supported. The largest QTL for bud set date accounted for about a fourth of the mean difference between populations. Thus, natural selection during adaptation has resulted in selection of at least some alleles of rather large effect.  相似文献   

9.
High‐dispersal rates in heterogeneous environments and historical rapid range expansion can hamper local adaptation; however, we often see clinal variation in high‐dispersal tree species. To understand the mechanisms of the species’ distribution, we investigated local adaptation and adaptive plasticity in a range‐wide context in Sitka spruce, a wind‐pollinated tree species that has recently expanded its range after glaciations. Phenotypic traits were observed using growth chamber experiments that mimicked temperature and photoperiodic regimes from the limits of the species realized niche. Bud phenology exhibited parallel reaction norms among populations; however, putatively adaptive plasticity and strong divergent selection were seen in bud burst and bud set timing respectively. Natural selection appears to have favoured genotypes that maximize growth rate during available frost‐free periods in each environment. We conclude that Sitka spruce has developed local adaptation and adaptive plasticity throughout its range in response to current climatic conditions despite generally high pollen flow and recent range expansion.  相似文献   

10.
Although plants are more susceptible to frost damage under elevated atmospheric [CO2], the importance of frost damage under future, warmer climate scenarios is unknown. Accordingly, we used a model to examine the incidence and severity of frost damage to snow gum (Eucalyptus pauciflora) in a sub‐alpine region of Australia for current and future conditions using the A2 IPCC elevated CO2 and climate change scenario. An existing model for predicting frost effects on E. pauciflora seedlings was adapted to include effects of elevated [CO2] on acclimation to freezing temperatures, calibrated with field data, and applied to a study region in Victoria using climate scenario data from CSIRO's Global Climate Model C‐CAM for current (1975–2004) and future (2035–2064) 30 years climate sequences. Temperatures below 0 °C were predicted to occur less frequently while the coldest temperatures (i.e. those below ?8 °C) were almost as common in the future as in the current climate. Both elevated [CO2] and climate warming affected the timing and rates of acclimation and de‐acclimation of snow gum to freezing temperatures, potentially reducing the length of time that plants are fully frost tolerant and increasing the length of the growing season. Despite fewer days when temperatures fall below 0 °C in the future, with consequently fewer damaging frosts with lower average levels of impact, individual weather sequences resulting in widespread plant mortality may still occur. Furthermore, delayed acclimation due to either warming or rising [CO2] combined with an early severe frost could lead to more frost damage and higher mortality than would occur in current conditions. Effects of elevated [CO2] on frost damage were greater in autumn, while warming had more effect in spring. Thus, frost damage will continue to be a management issue for plantation and forest management in regions where frosts persist.  相似文献   

11.
Late spring frost events can affect vegetation. The response of grassland species, however, is generally unknown. We explore the late‐frost sensitivity of four common European grass species and investigate whether these species exhibit local adaptations to late frost on a continental scale and whether past climatic experience influences late frost sensitivity. Ecotypes of Arrhenatherum elatius, Alopecurus pratensis, Festuca pratensis, and Holcus lanatus from Spain, Italy, Bulgaria, Hungary, Sweden and Germany were exposed to late frost after drought and warming manipulations in the preceding growing season in a common garden experiment. Late frost reduced the productivity of the grasses on average by 20%. Ecotypes differed in their late‐frost sensitivity in three of the four species and local adaptations to late frost were identified. Previous exposure to drought and warming caused differences in late‐frost sensitivity in some cases. The impact of late frost events may increase in a warmer world due to an earlier onset of growing and no change in timing of late frost events. The history of climatic exposure can alter the performance of plants, possibly through epigenetic mechanisms. Based on the complex response pattern observed, a maximization of genetic diversity is proposed as a promising adaptation strategy against climate change.  相似文献   

12.
Evidence that global warming has altered the phenology of the biosphere, possibly contributing to increased plant production in the northern hemisphere, has come from a diversity of observations at scales ranging from the view of the back yard to satellite images of the earth. These observations, coupled with an understanding of the effects of temperature on plant phenology, suggest that future changes in the atmosphere and climate could alter plant phenology with unknown or unpredictable consequences. We assessed the effects of simulated climatic warming and atmospheric CO2 enrichment on the spring and autumn phenology of maple trees (Acer rubrum and A. saccharum) growing for four years in open‐top field chambers. CO2 enrichment (+300 ppm) had no consistent effects on the timing of budbreak and leaf unfolding in the spring or leaf abscission in the autumn. Warming (+4°C) usually had predictable effects: in two of the three years of assessment, budbreak occurred earlier in warm chambers than in ambient temperature chambers, and leaf abscission always occurred later. The lengthening of the growing season could contribute to increased productivity, although effects of temperature on other physiological processes can concurrently have negative effects on productivity. In 1995, budbreak was unexpectedly delayed in the warmer chambers, apparently the result of advanced budbreak leading to injury from a late‐spring frost. Likewise, there was increased risk associated with longer leaf retention in the autumn: in 1994, leaves in the warm chambers were killed by freezing temperatures before they had senesced. These observations support the premise that global warming could increase the length of the growing season. Phenological responses should, therefore, be part of any assessment of the possible consequences of global change, but our results also suggest that those responses may not always have positive effects on production.  相似文献   

13.
Climate change induces multiple abiotic and biotic risks to forests and forestry. Risks in different spatial and temporal scales must be considered to ensure preconditions for sustainable multifunctional management of forests for different ecosystem services. For this purpose, the present review article summarizes the most recent findings on major abiotic and biotic risks to boreal forests in Finland under the current and changing climate, with the focus on windstorms, heavy snow loading, drought and forest fires and major insect pests and pathogens of trees. In general, the forest growth is projected to increase mainly in northern Finland. In the south, the growing conditions may become suboptimal, particularly for Norway spruce. Although the wind climate does not change remarkably, wind damage risk will increase especially in the south, because of the shortening of the soil frost period. The risk of snow damage is anticipated to increase in the north and decrease in the south. Increasing drought in summer will boost the risk of large‐scale forest fires. Also, the warmer climate increases the risk of bark beetle outbreaks and the wood decay by Heterobasidion root rot in coniferous forests. The probability of detrimental cascading events, such as those caused by a large‐scale wind damage followed by a widespread bark beetle outbreak, will increase remarkably in the future. Therefore, the simultaneous consideration of the biotic and abiotic risks is essential.  相似文献   

14.
Local adaptations to environmental conditions are of high ecological importance as they determine distribution ranges and likely affect species responses to climate change. Increased environmental stress (warming, extreme drought) due to climate change in combination with decreased genetic mixing due to isolation may lead to stronger local adaptations of geographically marginal than central populations. We experimentally observed local adaptations of three marginal and four central populations of Fagus sylvatica L., the dominant native forest tree, to frost over winter and in spring (late frost). We determined frost hardiness of buds and roots by the relative electrolyte leakage in two common garden experiments. The experiment at the cold site included a continuous warming treatment; the experiment at the warm site included a preceding summer drought manipulation. In both experiments, we found evidence for local adaptation to frost, with stronger signs of local adaptation in marginal populations. Winter frost killed many of the potted individuals at the cold site, with higher survival in the warming treatment and in those populations originating from colder environments. However, we found no difference in winter frost tolerance of buds among populations, implying that bud survival was not the main cue for mortality. Bud late frost tolerance in April differed between populations at the warm site, mainly because of phenological differences in bud break. Increased spring frost tolerance of plants which had experienced drought stress in the preceding summer could also be explained by shifts in phenology. Stronger local adaptations to climate in geographically marginal than central populations imply the potential for adaptation to climate at range edges. In times of climate change, however, it needs to be tested whether locally adapted populations at range margins can successfully adapt further to changing conditions.  相似文献   

15.
Both traits and the plasticity of these traits are subject to evolutionary change and therefore affect the long‐term persistence of populations and their role in local communities. We subjected clones from 12 different populations of Alnus glutinosa, located along a latitudinal gradient, to two different temperature treatments, to disentangle the distribution of genetic variation in timing of bud burst and bud burst plasticity within and among genotypes, populations, and regions. We calculated heritability and evolvability estimates for bud burst and bud burst plasticity and assessed the influence of divergent selection relative to neutral drift. We observed higher levels of heritability and evolvability for bud burst than for its plasticity, whereas the total phenological heritability and evolvability (i.e. combining timing of bud burst and bud burst plasticity) suggest substantial evolutionary potential with respect to phenology. Earlier bud burst was observed for the low‐latitudinal populations than for the populations from higher latitudes, whereas the high‐latitudinal populations did not show the expected delayed bud burst. This countergradient variation can be due to evolution towards increased phenological plasticity at higher latitudes. However, because we found little evidence for adaptive differences in phenological plasticity across the latitudinal gradient, we suggest differential frost tolerance as the most likely explanation for the observed phenological patterns in A. glutinosa.  相似文献   

16.
Arctic amplification, the accelerated climate warming in the polar regions, is causing a more rapid advancement of the onset of spring in the Arctic than in temperate regions. Consequently, the arrival of many migratory birds in the Arctic is thought to become increasingly mismatched with the onset of local spring, consequently reducing individual fitness and potentially even population levels. We used a dynamic state variable model to study whether Arctic long‐distance migrants can advance their migratory schedules under climate warming scenarios which include Arctic amplification, and whether such an advancement is constrained by fuel accumulation or the ability to anticipate climatic changes. Our model predicts that barnacle geese Branta leucopsis suffer from considerably reduced reproductive success with increasing Arctic amplification through mistimed arrival, when they cannot anticipate a more rapid progress of Arctic spring from their wintering grounds. When geese are able to anticipate a more rapid progress of Arctic spring, they are predicted to advance their spring arrival under Arctic amplification up to 44 days without any reproductive costs in terms of optimal condition or timing of breeding. Negative effects of mistimed arrival on reproduction are predicted to be somewhat mitigated by increasing summer length under warming in the Arctic, as late arriving geese can still breed successfully. We conclude that adaptation to Arctic amplification may rather be constrained by the (un)predictability of changes in the Arctic spring than by the time available for fuel accumulation. Social migrants like geese tend to have a high behavioural plasticity regarding stopover site choice and migration schedule, giving them the potential to adapt to future climate changes on their flyway.  相似文献   

17.
In a warming climate, the ability to accurately predict and track shifting environmental conditions will be fundamental for plant survival. Environmental cues define the transitions between growth and dormancy as plants synchronise development with favourable environmental conditions, however these cues are predicted to change under future climate projections which may have profound impacts on tree survival and growth. Here, we use a quantitative genetic approach to estimate the genetic basis of spring and autumn phenology in Populus trichocarpa to determine this species capacity for climate adaptation. We measured bud burst, leaf coloration, and leaf senescence traits across two years (2017–2018) and combine these observations with measures of lifetime growth to determine how genetic correlations between phenology and growth may facilitate or constrain adaptation. Timing of transitions differed between years, although we found strong cross year genetic correlations in all traits, suggesting that genotypes respond in consistent ways to seasonal cues. Spring and autumn phenology were correlated with lifetime growth, where genotypes that burst leaves early and shed them late had the highest lifetime growth. We also identified substantial heritable variation in the timing of all phenological transitions (h2 = 0.5–0.8) and in lifetime growth (h2 = 0.8). The combination of additive variation and favourable genetic correlations in phenology traits suggests that populations of cultivated varieties of P. Trichocarpa may have the capability to adapt their phenology to climatic changes without negative impacts on growth.Subject terms: Plant breeding, Forest ecology, Evolutionary genetics  相似文献   

18.
Global warming is expected to result in earlier emergence of tree seedlings that may experience higher damages and mortality due to late frost in spring. We monitored emergence, characteristics, and survival of seedlings across ten tree species in temperate mixed deciduous forests of Central Europe over one and a half year. We tested whether the timing of emergence represents a trade‐off for seedling survival between minimizing frost risk and maximizing the length of the growing period. Almost two‐thirds of the seedlings died during the first growing period. The timing of emergence was decisive for seedling survival. Although seedlings that emerged early faced a severe late frost event, they benefited from a longer growing period resulting in increased overall survival. Larger seedling height and higher number of leaves positively influenced survival. Seedlings growing on moss had higher survival compared to mineral soil, litter, or herbaceous vegetation. Synthesis. Our findings demonstrate the importance of emergence time for survival of tree seedlings, with early‐emerging seedlings more likely surviving the first growing period.  相似文献   

19.
Silver birch (Betula pendula Roth.) is a widespread species with a high potential for aiding sustainability and multifunctionality of European forests, as evidenced in Finland and the Baltics. However, under increasing relevance of climate change for tree growth, the meteorological sensitivity of the species is largely unknown, presuming it to be weather tolerant (low sensitivity). Considering local adaptations of populations of widespread species, climatic changes are subjecting trees to extreme conditions, thus testing their adaptability. Accordingly, information on the plasticity (variability) of responses across a gradient of meteorological conditions is crucial for reliable predictions of tree growth. Tree-ring width network was established to assess the plasticity of growth responses of silver birch to meteorological conditions across the eastern Baltic climatic gradient. Time series analysis in combination with generalized additive modelling were applied to assess responses of birch from 21 naturally regenerated conventionally managed stands scattered from southern Finland to northern Germany. Despite the presumed tolerance, explicit meteorological sensitivity of silver birch was estimated. A gradient of local linear weather-growth relationships was estimated, as growth limitation shifted from temperature during the dormancy to water availability during vegetation period in southern Finland and northern Germany, respectively. However, these relationships were nonstationary, as the effect of summer water shortage was intensifying and sensitivity to it has likely been subjected to local adaptation. The regional generalization revealed presence of stationary, yet nonlinear and plastic growth responses, implying disproportional effects of climatic changes. Such responses also explained the nonstationarities, as the local climates shifted along the regional gradient. At the regional scale, summer water shortage was the main driver of increment, while winter conditions had a secondary role; temperature of the preceding vegetation season also had an effect on increment. Accordingly, increased variability of increment of silver birch is expected under changing climate; still, sensitivity and plasticity of increment can be considered as an adaptation to shifting environments.  相似文献   

20.
Timing of plant phenophases is a useful biological indicator which shows how nature responds to the variation in climate. Thus, long phenological observation series help to estimate the impact of changing climate on forest plants. We investigated whether phenological patterns of downy birch Betula pubescens respond to warming climate and whether the intensity of the responses varies among phytogeographical zones. We studied data collected by the Finnish National Phenological Network from 30 observation sites across Finland during 1997–2006. The advancement in the timing of the earliest phenophase, bud burst, ranged from 0.7 days/year in southern boreal zone to 1.4 days/year in middle and northern boreal zones. Timing of bud burst was most clearly dependent on mean May temperatures. The intensity of the response to temperature increased from south to north. The advancement of bud burst resulted into a significant lengthening of the growth period by 1.2–1.6 days per year in northern and middle boreal zones, respectively, whereas the lengthening was not significant in the southern boreal zone. No trend was observed in the timing of autumn phenophases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号