首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some tropical Bignoniaceae form sporophytic apomictic polyploid complexes are similar to better studied temperate plants. Handroanthus ochraceus is a widely distributed Neotropical savanna tree with both monoembryonic/self-sterile, and polyembryonic/apomictic and self-fertile populations, but lacking chromosome number and morphological comparative studies. We tested if monoembryonic/non-apomictic and polyembryonic/apomictic populations differed in ploidy and morphological features, as a basis to understand evolution and biogeography of these plants. Chromosome number and embryo number per seed were investigated, and uni- and multivariate analyses of flower and leaf morphology were done for five populations of H. ochraceus. We found two pure monoembryonic diploid (2n?=?40), and one pure polyembryonic (62–94% of polyembryonic seeds) tetraploid population (2n?=?80). One of the diploid populations presented only one individual with 3.2% polyembryonic seeds and was considered a non-apomictic population. Another population showed predominantly polyembryonic (27–66% of polyembryonic seeds) tetraploid individuals, but one diploid individual with 2% of polyembryonic seeds, and was considered a mixed apomictic and non-apomictic population. Morphological analyses confirmed breeding system clusters, and that stigma width, as well as pollen grain area, was consistently larger in polyembryonic populations. Polyploid plants showed larger cells, as well as larger organs and other distinctive features, which will be useful to identify apomictic populations and to future taxonomic discussions. The species can be considered an agamic complex with apomixis associated with neopolyploidy. This trend is also found in other tropical sporophytic apomictics, contrasting with the usual reports linking diploidy or paleopolyploidy to this kind of apomictics.  相似文献   

2.
Paspalum notatum is a subtropical grass widely distributed in the temperate areas of America. Diploids are sexual while polyploids give rise to clonal seeds through aposporous apomixis. RAPD markers were used to analyze the genetic structure of three natural populations: i) diploids reproducing sexually (R2X); ii) sympatric apomictic tetraploids collected in the vicinity of the diploids (R4X); iii) allopatric apomictic tetraploids growing in isolation (C4X). The apomictic reproduction rate was evaluated by the use of molecular markers in progeny tests, while chromosome-counting allowed the verification of ploidy levels. Data revealed that the R4X group presented a variation considerably higher than that observed for C4X. Jaccards coefficients were used to produce a cluster diagram using the UPGMA method. All but one tetraploid genotypes grouped together and were associated to diploid genotype A21. The possibility of occasional generation of novel tetraploid clones from the interaction between tetraploid and diploid individuals is discussed.  相似文献   

3.
  • Although reproductive assurance has been suggested to be one of the most important factors shaping the differential distributional patterns between sexuals and asexuals (geographic parthenogenesis), it has only rarely been studied in natural populations of vascular plants with autonomous apomixis. Moreover, there are almost no data concerning the putative relationship between the level of apomictic versus sexual plant reproduction on one hand, and reproductive assurance on the other.
  • We assessed the level of sexual versus apomictic reproduction in diploid and triploid plants of Hieracium alpinum across its distributional range using flow cytometric analyses of seeds, and compared the level of potential and realized seed set, i.e. reproductive assurance, between the two cytotypes under field and greenhouse conditions.
  • Flow cytometric screening of embryos and endosperms of more than 4,100 seeds showed that diploids produced solely diploid progeny sexually, while triploids produced triploid progeny by obligate apomixis. Potential fruit set was much the same in diploids and triploids from the field and the greenhouse experiment. While in the pollination‐limited environment in the greenhouse apomictic triploids had considerably higher realized fruit set than sexual diploids, there was no significant difference between cytotypes under natural conditions. In addition, sexuals varied to a significantly larger extent in realized fruit set than asexuals under both natural and greenhouse conditions.
  • Our results indicate that triploid plants reproduce by obligate apomixis, assuring more stable and predictable fruit reproduction when compared to sexual diploids. This advantage could provide apomictic triploids with a superior colonisation ability, mirrored in a strong geographic parthenogenesis pattern observed in this species.
  相似文献   

4.
Paspalum simplex is a grass distributed throughout the phytogeographic Chaco region in South America from which sexual diploid and apomictic tetraploid races have been reported. We analysed native populations to determine their homogeneity of ploidy level, and the relationship between geographic distribution, ploidy levels, and reproductive systems. The ploidy level was established for 379 plants from 32 wild populations. Tetraploidy and apomixis constitute the most common combination for this species all over the Chaco region. Apomictic hexaploid plants were found associated with 4x populations. Diploids were confined to a small sector of the region. One sexual triploid plant arose from seed harvested in a pure 2x population, and one apomictic 3x plant was found in a mixed 2x-4x population. The results suggest that P. simplex is a core agamic complex characteristic of the Chaco region from which other apomictic polyploid species of the subgenus Anachyris could have evolved. Received July 24, 2002; accepted September 12, 2002 Published online: December 11, 2002  相似文献   

5.
Of the 340 genera in the Brassicaceae, apomictic reproduction is found only in the North American genus Boechera. We investigated phylogenetic relationships, ability to hybridize, mating system, and ploidy levels of 92 lines sampled from 85 populations and representing 19 Boechera species. Phylogenetic analyses based on chloroplast DNA sequences identified three lineages in the genus. Reciprocal crosses of each line were made to a common sexual diploid B. stricta tester. The resulting F(1) progeny were analyzed for the inheritance of polymorphic microsatellite loci, genome size, and seed production. Intraspecific B. stricta crosses confirmed that this species is mostly diploid and sexual. Interspecific crosses revealed many other species were diploid and sexual and could be successfully hybridized with the tester. We also found obligate and facultative apomictic diploid and triploid lines. De novo F(1) polyploids (either triploids or tetraploids) were derived from the union of nonreduced (from an apomictic parent) and reduced (from the tester) gametes. However, seed production of these F(1) plants was generally low, suggesting a failure in the transmission of apomixis. The creation of a wide array of segregating genetic populations will facilitate future research on the evolution and inheritance of quantitative variation in Boechera.  相似文献   

6.
Vicia cracca diploids and autotetraploids are highly parapatric in Europe; tetraploids reside in western and northern part, whereas diploids occupy much drier south-eastern part. They meet together in a Central European contact zone. This distribution pattern raised questions about a transformative effect of polyploidization on plant performance and environmental tolerances. We investigated plant survival, growth, and seed production in two water regimes in a common garden experiment using seeds collected from five localities in the Central European contact zone where diploids and tetraploids occur in sympatry. Obtained data imply that tetraploids of V. cracca are not generally superior in performance to diploids. Significantly larger seeds from tetraploid mother plants collected in the field were not correlated with greater stature of the seedlings. Nonetheless, tetraploids might have a potential to out-compete diploids in the long run due to the tetraploids’ ability of greater growth which manifested in the second year of cultivation. Considering the response of diploids and tetraploids to water supply, drought stressed tetraploids but not diploids produced a higher proportion of aborted seeds than watered ones, which implies that tetraploids are more drought susceptible than diploids. On the other hand, decreased plant height in drought stresses tetraploids, which simultaneously increased total seed production, may suggest that tetraploids have a greater ability to avoid local extinction under unfavourable conditions by enhancing biomass allocation into production of seeds at the cost of lower growth. The significant interaction between ploidy level and locality in several traits suggests possible polyfyletic origin of tetraploids and the necessity to clarify the history of the tetraploids in Europe.  相似文献   

7.
Apomixis, asexual reproduction through seeds, occurs in over 40 plant families. This widespread phenomenon can lead to the fixation of successful genotypes, resulting in a fitness advantage. On the other hand, apomicts are expected to lose their fitness advantage if the environment changes because of their limited evolutionary potential, which is due to low genetic variability and the potential accumulation of deleterious somatic mutations. Nonetheless, some apomicts have been extremely successful, for example certain apomictic accessions of Hieracium pilosella L. from New Zealand, where the plant is invasive. Here, we investigate whether the success of these apomictic accessions could be due to a fitness advantage by comparing the vegetative competitiveness of apomictic H. pilosella from New Zealand with sexual accessions of H. pilosella from Europe. Sexual and apomictic plants were grown either (A) alone (no competition), (B) in competition with the other type (intra-specific competition), (C) in competition with the grass Bromus erectus (inter-specific competition), and (D) in competition with the other type and the grass B. erectus (intra- and inter-specific competition). To distinguish effects of apomixis and the region of origin, different H. pilosella lineages were compared. Furthermore, experiments were carried out to investigate effects of the ploidy level. We show that sexual plants are better inter-specific competitors than apomicts in terms of vegetative reproduction (number of stolons) and vegetative spread (stolon length), while apomicts do better than sexuals in intra-specific competition. The magnitude of the effect was in some cases dependent on the ploidy levels of the plants. Furthermore, apomicts always produced more stolons than sexuals, suggesting potential displacement of sexuals by apomicts where they co-occur.  相似文献   

8.
The isolation of genes associated with apomixis would improve understanding of the molecular mechanism of this mode of reproduction in plants as well as open the possibility of transfer of apomixis to sexual plants, enabling cloning of crops through seeds. Brachiaria brizantha is a highly apomictic grass species with 274 tetraploid apomicts accessions and only one diploid sexual. In this study we have compared gene expression in ovaries at megasporogenesis and megagametogenesis of sexual and apomictic accessions of B. brizantha by differential display (DD-PCR), with 60 primer combinations. Specificity of 65 cloned fragments, checked by reverse northern blot analysis, showed that 11 clones were differentially expressed, 6 in apomictic ovaries, 2 in sexual and 3 in apomictic and sexual, but at different stages. Of the 6 sequences isolated that were preferentially expressed in the apomictic accession: one sequence was from ovaries at megasporogenesis stage; three were from megagametogenesis stage; two were from both stages. Of the two sequences isolated from the sexual accessions, one showed expression in ovaries at megagametogenesis, while the other sequence was shown to be specific to both stages. Three sequences were from megasporogenesis stage in apomicts but were also detected at megagametogenesis in sexual plants. Sequence analysis showed that 5 of the 11 clones had no apparent homologues in the protein database. Some of the clones identified as apomictic-specific shared homology with known genes enabling their functional annotation. The relationships of these functions to the generation of the apomictic trait are discussed.  相似文献   

9.

Background and Aims

Apomictic plants maintain functional pollen, and via pollination the genetic factors controlling apomixis can be potentially transferred to congeneric sexual populations. In contrast, the sexual individuals do not fertilize apomictic plants which produce seeds without fertilization of the egg cells. This unidirectional introgressive hybridization is expected finally to replace sexuality by apomixis and is thought to be a causal factor for the wide geographical distribution of apomictic complexes. Nevertheless, this process may be inhibited by induced selfing (mentor effects) of otherwise self-incompatible sexual individuals. Here whether mentor effects or actual cross-fertilization takes place between diploid sexual and polyploid apomictic cytotypes in the Ranunculus auricomus complex was tested via experimental crosses.

Methods

Diploid sexual mother plants were pollinated with tetra- and hexaploid apomictic pollen donators by hand, and the amount of well-developed seed compared with aborted seed was evaluated. The reproductive pathways were assessed in the well-developed seed via flow cytometric seed screen (FCSS).

Key Results

The majority of seed was aborted; the well-developed seeds have resulted from both mentor effects and cross-fertilization at very low frequencies (1·3 and 1·6 % of achenes, respectively). Pollination by 4x apomictic pollen plants results more frequently in cross-fertilization, whereas pollen from 6x plants more frequently induced mentor effects.

Conclusions

It is concluded that introgression of apomixis into sexual populations is limited by ploidy barriers in the R. auricomus complex, and to a minor extent by mentor effects. In mixed populations, sexuality cannot be replaced by apomixis because the higher fertility of sexual populations still compensates the low frequencies of potential introgression of apomixis.Key words: Apomixis, Ranunculus auricomus, evolution, geographical parthenogenesis, crossing experiments, flow cytometry  相似文献   

10.
The genus Taraxacum Wigg. (Asteraceae) forms a polyploid complex within which there are strong links between the ploidy level and the mode of reproduction. Diploids are obligate sexual, whereas polyploids are usually apomictic. The paper reports on a comparative study of the ovary and especially the ovule anatomy in the diploid dandelion T. linearisquameum and the triploid T. gentile. Observations with light and electron microscopy revealed no essential differences in the anatomy of both the ovary and ovule in the examined species. Dandelion ovules are anatropous, unitegmic and tenuinucellate. In both sexual and apomictic species, a zonal differentiation of the integument is characteristic of the ovule. In the integumentary layers situated next to the endothelium, the cell walls are extremely thick and PAS positive. Data obtained from TEM indicate that these special walls have an open spongy structure and their cytoplasm shows evidence of gradual degeneration. Increased deposition of wall material in the integumentary cells surrounding the endothelium takes place especially around the chalazal pole of the embryo sac as well as around the central cell. In contrast, the integumentary cells surrounding the micropylar region have thin walls and exhibit a high metabolic activity. The role of the thick-walled integumentary layers in the dandelion ovule is discussed. We also consider whether this may be a feature of taxonomic importance.  相似文献   

11.
 Imprinting in the endosperm of angiosperms, a phenomena by which expression of alleles differs depending on whether they originate from the male or female parent, has been shown to explain most failure of interploidy or interspecific crosses in plants. Because of imprinting, seeds develop normally only if a specific dosage is represented in the endosperm, with the relative contributions of genomes in the ratio of two maternal doses to one paternal dose (2m:1p). In Tripsacum, a wild relative of maize, all polyploids reproduce through the diplosporous type of apomixis. Diplospory results from meiotic failure in megasporocytes that develop into eight-nucleate unreduced female gametophytes. The male gametophytes remain unaffected. Flow cytometry was used to determine ploidy levels in the endosperm of both apomictic and sexual Tripsacum accessions. In both cases, fertilization appeared to involve only one sperm nucleus. Therefore, endosperm of apomictic Tripsacum develops normally even though the ratio of genomic contributions deviates from the normal 2m:1p ratio. Ratios of 2:1, 4:1, 4:2, 8:1 and 8:2 were observed, depending on both the ploidy level of the parents and the mode of reproduction. Thus, specific dosage effects are seemingly not required for endosperm development in Tripsacum. These findings suggest that evolution of diplosporous apomixis might have been restricted to species with few or no imprinting requirements, and the findings have strong implications regarding the transfer of apomixis to sexually reproducing crops. Received: 17 February 1997 / Revision accepted: 7 July 1997  相似文献   

12.

Background and aims

Non-native Phragmites australis (haplotype M) is an invasive grass that decreases biodiversity and produces dense stands. We hypothesized that seeds of Phragmites carry microbes that improve seedling growth, defend against pathogens and maximize capacity of seedlings to compete with other plants.

Methods

We isolated bacteria from seeds of Phragmites, then evaluated representatives for their capacities to become intracellular in root cells, and their effects on: 1.) germination rates and seedling growth, 2.) susceptibility to damping-off disease, and 3.) mortality and growth of competitor plant seedlings (dandelion (Taraxacum officionale F. H. Wigg) and curly dock (Rumex crispus L.)).

Results

Ten strains (of 23 total) were identified and characterized; seven were identified as Pseudomonas spp. Strains Sandy LB4 (Pseudomonas fluorescens) and West 9 (Pseudomonas sp.) entered root meristems and became intracellular. These bacteria improved seed germination in Phragmites and increased seedling root branching in Poa annua. They increased plant growth and protected plants from damping off disease. Sandy LB4 increased mortality and reduced growth rates in seedlings of dandelion and curly dock.

Conclusions

Phragmites plants associate with endophytes to increase growth and disease resistance, and release bacteria into the soil to create an environment that is favorable to their seedlings and less favorable to competitor plants.
  相似文献   

13.
The ecological and evolutionary opportunities of apomixis in the short and the long term are considered, based on two closely related apomictic genera: Taraxacum (dandelion) and Chondrilla (skeleton weed). In both genera apomicts have a wider geographical distribution than sexuals, illustrating the short-term ecological success of apomixis. Allozymes and DNA markers indicate that apomictic populations are highly polyclonal. In Taraxacum, clonal diversity can be generated by rare hybridization between sexuals and apomicts, the latter acting as pollen donors. Less extensive clonal diversity is generated by mutations within clonal lineages. Clonal diversity may be maintained by frequency-dependent selection, caused by biological interactions (e.g. competitors and pathogens). Some clones are geographically widespread and probably represent phenotypically plastic 'general-purpose genotypes'. The long-term evolutionary success of apomictic clones may be limited by lack of adaptive potential and the accumulation of deleterious mutations. Although apomictic clones may be considered as 'evolutionary dead ends', the genes controlling apomixis can escape from degeneration and extinction via pollen in crosses between sexuals and apomicts. In this way, apomixis genes are transferred to a new genetic background, potentially adaptive and cleansed from linked deleterious mutations. Consequently, apomixis genes can be much older than the clones they are currently contained in. The close phylogenetic relationship between Taraxacum and Chondrilla and the similarity of their apomixis mechanisms suggest that apomixis in these two genera could be of common ancestry.  相似文献   

14.
It is generally accepted that polyploids have downsized basic genomes rather than additive values with respect to their related diploids. Changes in genome size have been reported in correlation with several biological characteristics. About 75 % of around 350 species recognized for Paspalum (Poaceae) are polyploid and most polyploids are apomictic. Multiploid species are common with most of them bearing sexual diploid and apomictic tetraploid or other ploidy levels. DNA content in the embryo and the endosperm was measured by flow cytometry in a seed-by-seed analysis of 47 species including 77 different entities. The relative DNA content of the embryo informed the genome size of the accession while the embryo:endosperm ratio of DNA content revealed its reproductive mode. The genome sizes (2C-value) varied from 0.5 to 6.5 pg and for 29 species were measured for the first time. Flow cytometry provided new information on the reproductive mode for 12 species and one botanical variety and supplied new data for 10 species concerning cytotypes reported for the first time. There was no significant difference between the mean basic genome sizes (1Cx-values) of 32 sexual and 45 apomictic entities. Seventeen entities were diploid and 60 were polyploids with different degrees. There were no clear patterns of changes in 1Cx-values due to polyploidy or reproductive systems, and the existing variations are in concordance with subgeneric taxonomical grouping.  相似文献   

15.
Negative reproductive interactions are likely to be strongest between close relatives and may be important in limiting local coexistence. In plants, interspecific pollen flow is common between co‐occurring close relatives and may serve as the key mechanism of reproductive interference. Agamic complexes, systems in which some populations reproduce through asexual seeds (apomixis), while others reproduce sexually, provide an opportunity to examine effects of reproductive interference in limiting coexistence. Apomictic populations experience little or no reproductive interference, because apomictic ovules cannot receive pollen from nearby sexuals. Oppositely, apomicts produce some viable pollen and can exert reproductive interference on sexuals by siring hybrids. In the Crepis agamic complex, sexuals co‐occur less often with other members of the complex, but apomicts appear to freely co‐occur with one another. We identified a mixed population and conducted a crossing experiment between sexual diploid C. atribarba and apomictic polyploid C. barbigera using pollen from sexual diploids and apomictic polyploids. Seed set was high for all treatments, and as predicted, diploid–diploid crosses produced all diploid offspring. Diploid–polyploid crosses, however, produced mainly polyploidy offspring, suggesting that non‐diploid hybrids can be formed when the two taxa meet. Furthermore, a small proportion of seeds produced in open‐pollinated flowers was also polyploid, indicating that polyploid hybrids are produced under natural conditions. Our results provide evidence for asymmetric reproductive interference, with pollen from polyploid apomicts contributing to reduce the recruitment of sexual diploids in subsequent generations. Existing models suggest that these mixed sexual–asexual populations are likely to be transient, eventually leading to eradication of sexual individuals from the population.  相似文献   

16.
Polyploidy is one of the most important evolutionary processes in plants. In natural populations, polyploids usually emerge from unreduced gametes which either fuse with reduced ones, resulting in triploid offspring (triploid bridge), or with other unreduced gametes, resulting in tetraploid embryos. The frequencies of these two pathways, and male versus female gamete contributions, however, are largely unexplored. Ranunculus kuepferi occurs with diploid, triploid and autotetraploid cytotypes in the Alps, whereby diploids are mostly sexual, while tetraploids are facultative apomicts. To test for the occurrence of polyploidization events by triploid bridge, we investigated 551 plants of natural populations via flow cytometric seed screening. We assessed ploidy shifts in the embryo to reconstruct female versus male gamete contributions to polyploid embryo and/or endosperm formation. Seed formation via unreduced egg cells (BIII hybrids) occurred in all three cytotypes, while only in one case both gametes were unreduced. Polyploids further formed seeds with reduced, unfertilized egg cells (polyhaploids and aneuploids). Pollen was highly variable in diameter, but only pollen >27 μm was viable, whereby diploids produced higher proportions of well-developed pollen. Pollen size was not informative for the formation of unreduced pollen. These results suggest that a female triploid bridge via unreduced egg cells is the major pathway toward polyploidization in R. kuepferi, maybe as a consequence of constraints of endosperm development. Triploids resulting from unreduced male gametes were not observed, which explains the lack of obligate sexual tetraploid individuals and populations. Unreduced egg cell formation in diploids represents the first step toward apomixis.  相似文献   

17.

Background and Aims

Intraspecific reproductive differentiation into sexual and apomictic cytotypes of differing ploidy is a common phenomenon. However, mechanisms enabling the maintenance of both reproductive modes and integrity of cytotypes in sympatry are as yet poorly understood. This study examined the association of sexual and apomictic seed formation with ploidy as well as gene flow towards sexuals within populations of purely polyploid Potentilla puberula.

Methods

The study is based on 22 populations representing various combinations of five polyploid cytotypes (tetraploid–octoploid) from East Tyrol, Austria. Embryo ploidy and the endosperm/embryo ploidy ratio obtained by a flow cytometric seed screen were used to infer reproductive modes of seed formation and to calculate the male and female genomic contributions to the embryo and endosperm. Self-incompatibility (SI) patterns were assessed and a new indirect approach was used to test for the occurrence of intercytotype matings based on the variation in the male genomic contribution to sexually derived embryos on the level of developed seed.

Key Results

Tetraploids formed seeds almost exclusively via sexual reproduction, whereas penta- to octoploids were preferentially apomictic. Non-random distribution of reproductive modes within maternal plants further revealed a tendency to separate the sexual from the apomictic mode among individuals. Self-incompatibility of sexuals indicated functionality of the gametophytic SI system despite tetraploidy of the nuclear genome. We found no indication for significant cross-fertilization of tetraploids by the high polyploids.

Conclusions

The study revealed a rare example of intraspecific differentiation into sexual and apomictic cytotypes at the polyploid level. The integrity of the sexual tetraploids was maintained due to reproductive isolation from the apomictic higher polyploids. Functionality of the gametophytic SI system suggested that the tetraploids are functional diploids.  相似文献   

18.
? Premise of the study: The evolution of asexual seed production (apomixis) from sexual relatives is a great enigma of plant biology. The genus Boechera is ideal for studying apomixis because of its close relation to Arabidopsis and the occurrence of sexual and apomictic species at low ploidy levels (diploid and triploid). Apomixis is characterized by three components: unreduced embryo-sac formation (apomeiosis), fertilization-independent embryogenesis (parthenogenesis), and functional endosperm formation (pseudogamy or autonomous endosperm formation). Understanding the variation in these traits within and between species has been hindered by the laborious histological analyses required to analyze large numbers of samples. ? Methods: To quantify variability for the different components of apomictic seed development, we developed a high-throughput flow cytometric seed screen technique to measure embryo:endosperm ploidy in over 22000 single seeds derived from 71 accessions of diploid and triploid Boechera. ? Key results: Three interrelated features were identified within and among Boechera species: (1) variation for most traits associated with apomictic seed formation, (2) three levels of apomeiosis expression (low, high, obligate), and (3) correlations between apomeiosis and parthenogenesis/pseudogamy. ? Conclusions: The data presented here provide a framework for choosing specific genotypes for correlations with large "omics" data sets being collected for Boechera to study population structure, gene flow, and evolution of specific traits. We hypothesize that low levels of apomeiosis represent an ancestral condition of Boechera, whereas high apomeiosis levels may have been induced by global gene regulatory changes associated with hybridization.  相似文献   

19.
Background and Aims Allopolyploidy and intraspecific heteroploid crosses are associated, in certain groups, with changes in the mating system. The genus Sorbus represents an appropriate model to study the relationships between ploidy and reproductive mode variations. Diploid S. aria and tetraploid apomictic S. austriaca were screened for ploidy and mating system variations within pure and sympatric populations in order to gain insights into their putative causalities.Methods Flow cytometry was used to assess genome size and ploidy level among 380 S. aria s.l. and S. austriaca individuals from Bosnia and Herzegovina, with 303 single-seed flow cytometric seed screenings being performed to identify their mating system. Pollen viability and seed set were also determined.Key Results Flow cytometry confirmed the presence of di-, tri- and tetraploid cytotype mixtures in mixed-ploidy populations of S. aria and S. austriaca. No ploidy variation was detected in single-species populations. Diploid S. aria mother plants always produced sexually originated seeds, whereas tetraploid S. austriaca as well as triploid S. aria were obligate apomicts. Tetraploid S. aria preserved sexuality in a low portion of plants. A tendency towards a balanced 2m : 1p parental genome contribution to the endosperm was shared by diploids and tetraploids, regardless of their sexual or asexual origin. In contrast, most triploids apparently tolerated endosperm imbalance.Conclusions Coexistence of apomictic tetraploids and sexual diploids drives the production of novel polyploid cytotypes with predominantly apomictic reproductive modes. The data suggest that processes governing cytotype diversity and mating system variation in Sorbus from Bosnia and Herzegovina are probably parallel to those in other diversity hotspots of this genus. The results represent a solid contribution to knowledge of the reproduction of Sorbus and will inform future investigations of the molecular and genetic mechanisms involved in triggering and regulating cytotype diversity and alteration of reproductive modes.  相似文献   

20.
Apomictic plants often produce pollen that can function in crosses with related sexuals. Moreover, facultative apomicts can produce some sexual offspring. In dandelions, Taraxacum, a sexual-asexual cycle between diploid sexuals and triploid apomicts, has been described, based on experimental crosses and population genetic studies. Little is known about the actual hybridization processes in nature. We therefore studied the sexual-asexual cycle in a mixed dandelion population in the Netherlands. In this population, the frequencies of sexual diploids and triploids were 0.31 and 0.68, respectively. In addition, less than 1% tetraploids were detected. Diploids were strict sexuals, triploids were obligate apomicts, but tetraploids were most often only partly apomictic, lacking certain elements of apomixis. Tetraploid seed fertility in the field was significantly lower than that of apomictic triploids. Field-pollinated sexual diploids produced on average less than 2% polyploid offspring, implying that the effect of hybridization in the 2x-3x cycle in Taraxacum will be low. Until now, 2x-3x crosses were assumed to be the main pathway of new formation of triploid apomicts in the sexual-asexual cycle in Taraxacum. However, tetraploid pollen donors produced 28 times more triploid offspring in experimental crosses with diploid sexuals than triploid pollen donors. Rare tetraploids may therefore act as an important bridge in the formation of new triploid apomicts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号