首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bacterial growth under oxygen‐limited (microaerobic) conditions is often accompanied by phenomena of great interest for fundamental research and industrial application. The microaerobic lifestyle of anoxygenic photosynthetic bacteria like Rhodospirillum rubrum harbors such a phenomenon, as it allows the formation of photosynthetic membranes and related interesting products without light. However, due to the technical difficulties in process control of microaerobic cultivations and the limited sensitivity of available oxygen sensors, the analysis of microaerobic growth and physiology is still underrepresented in current research. The main focus of the present study was to establish an experimental set‐up for the systematic study of physiological processes, associated with the growth of R. rubrum under microaerobic conditions in the dark. For this purpose, we introduce a robust and reliable microaerobic process control strategy, which applies the culture redox potential (CRP) for assessing different degrees of oxygen limitation in bioreactor cultivations. To describe the microaerobic growth behavior of R. rubrum cultures for each of these defined CRP reduction steps, basic growth parameters were experimentally determined. Flux variability analysis provided an insight into the metabolic activity of the TCA cycle and implied its connection to the respiratory capacity of the cells. In this context, our results suggest that microaerobic growth of R. rubrum can be described as an oxygen‐activated cooperative mechanism. The present study thus contributes to the investigation of metabolic and regulatory events responsible for the redox‐sensitive formation of photosynthetic membranes in facultative photosynthetic bacteria. Furthermore, the introduced microaerobic cultivation setup should be generally applicable for any microbial system of interest which can be cultivated in common stirred‐tank bioreactors. Biotechnol. Bioeng. 2013; 110: 573–585. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Summary A 1.9 kb DNA region of Rhizobium leguminosarum biovar viciae strain VF39 capable of promoting microaerobic and symbiotic induction of the Rhizobium meliloti fixN gene was identified by heterologous complementation. Sequence analysis of this DNA region revealed the presence of two complete open reading frames, orf240 and orf114. The deduced amino acid sequence of orf240 showed significant homology to Escherichia coli Fnr and R. meliloti FixK. The major difference between ORF240 and FixK is the presence of 21 N-terminal amino acids in ORF240 that have no counterpart in FixK. A similar protein domain is also present in E. coli Fnr and is essential for the oxygen-regulated activity of this protein. Analysis of the nucleotide sequence upstream of orf240 revealed a motif similar to the NtrA-dependent promoter consensus sequence, as well as two DNA regions resembling the Fnr consensus binding sequence. A Tn5-generated mutant in orf240 lost the ability to induce the R. meliloti fixN-lacZ fusion. Interestingly, this mutant was still capable of nitrogen fixation but showed reduced nitrogenase activity.  相似文献   

3.
Each bacterium has to co‐ordinate its growth with division to ensure genetic stability of the population. Consequently, cell division and growth are tightly regulated phenomena, albeit different bacteria utilise one of several alternative regulatory mechanisms to maintain control. Here we consider GpsB, which is linked to cell growth and division in Gram‐positive bacteria. ΔgpsB mutants of the human pathogen Listeria monocytogenes show severe lysis, division and growth defects due to distortions of cell wall biosynthesis. Consistent with this premise, GpsB interacts both in vitro and in vivo with the major bi‐functional penicillin‐binding protein. We solved the crystal structure of GpsB and the interaction interfaces in both proteins are identified and validated. The inactivation of gpsB results in strongly attenuated virulence in animal experiments, comparable in degree to classical listerial virulence factor mutants. Therefore, GpsB is essential for in vitro and in vivo growth of a highly virulent food‐borne pathogen, suggesting that GpsB could be a target for the future design of novel antibacterials.  相似文献   

4.
Lu H  Zhang G  Dong S 《Bioresource technology》2011,102(8):4968-4973
Contribution and relationship between oxidative phosphorylation and photophosphorylation pathways in purple non-sulfur bacteria (PNSB) wastewater treatment under weak light-micro oxygen condition were studied quantitatively. Results showed that under weak light-anaerobic condition, PNSB followed photophosphorylation with the first-order degradation kinetic constant k3 of 0.0585. Under dark-micro aerobic condition, it followed oxidative phosphorylation with k2 of 0.0896. Under weak light-micro oxygen condition, both pathways existed with k1 of 0.108. When light and oxygen both existed, oxidative phosphorylation had a strong competitiveness, it played a dominative role and counted for 92.7% in pollutants degradation, and meanwhile photophosphorylation was restrained by 81.6%. Theoretical analysis showed the common part from coenzyme Q (CoQ) to cytochrome c2 (Cyt c2) in both respiration and photosynthetic chains might cause the competition. When oxygen existed, respiration electron transport would be enhanced. Other potential explanations included that oxygen might damage the pigment and membrane system vital to photophosphorylation.  相似文献   

5.
Bradyrhizobium japonicum is a Gram-negative soil bacterium symbiotically associated with soya bean plants, which is also able to denitrify under free-living and symbiotic conditions. In B. japonicum, the napEDABC, nirK, norCBQD and nosRZDYFLX genes which encode reductases for nitrate, nitrite, nitric oxide and nitrous oxide respectively are required for denitrification. Similar to many other denitrifiers, expression of denitrification genes in B. japonicum requires both oxygen limitation and the presence of nitrate or a derived nitrogen oxide. In B. japonicum, a sophisticated regulatory network consisting of two linked regulatory cascades co-ordinates the expression of genes required for microaerobic respiration (the FixLJ/FixK2 cascade) and for nitrogen fixation (the RegSR/NifA cascade). The involvement of the FixLJ/FixK2 regulatory cascade in the microaerobic induction of the denitrification genes is well established. In addition, the FNR (fumarase and nitrate reduction regulator)/CRP(cAMP receptor protein)-type regulator NnrR expands the FixLJ/FixK2 regulatory cascade by an additional control level. A role for NifA is suggested in this process by recent experiments which have shown that it is required for full expression of denitrification genes in B. japonicum. The present review summarizes the current understanding of the regulatory network of denitrification in B. japonicum.  相似文献   

6.
Photosynthetic bradyrhizobia are nitrogen-fixing symbionts colonizing the stem and roots of some leguminous plants like Aeschynomene. The effect of oxygen and light on the formation of the photosynthetic apparatus of Bradyrhizobium sp. C7T1 strain is described here. Oxygen is required for growth, but at high concentration inhibits the synthesis of bacteriochlorophyll (BChl) and of the photosynthetic apparatus. However, we show that in vitro, aerobic photosynthetic electron transport occurred leading to ADP photophosphorylation. The expression of the photosynthetic apparatus was regulated by oxygen in a manner which did not agree with earlier results in other photosynthetic bradyrhizobia since BChl accumulation was the highest under microaerobic conditions. This strain produces photosynthetic pigments when grown under cyclic illumination or darkness. However, under continuous white light illumination, a Northern blot analysis of the puf operon showed that, the expression of the photosynthetic genes of the antenna was considerable. Under latter conditions BChl accumulation in the cells was dependent on the oxygen concentration. It was not detectable at high oxygen tensions but became accumulated under low oxygen (microaerobiosis). It is known that in photosynthetic bradyrhizobia bacteriophytochrome photoreceptor (BphP) partially controls the synthesis of the photosystem in response to light. In C7T1 strain far-red light illumination did not stimulate the synthesis of the photosynthetic apparatus suggesting the presence of a non-functional BphP-mediated light regulatory mechanism.  相似文献   

7.
Facultative phototrophs such as Rhodobacter sphaeroides can switch between heterotrophic and photosynthetic growth. This transition is governed by oxygen tension and involves the large‐scale production of bacteriochlorophyll, which shares a biosynthetic pathway with haem up to protoporphyrin IX. Here, the pathways diverge with the insertion of Fe2+ or Mg2+ into protoporphyrin by ferrochelatase or magnesium chelatase, respectively. Tight regulation of this branchpoint is essential, but the mechanisms for switching between respiratory and photosynthetic growth are poorly understood. We show that PufQ governs the haem/bacteriochlorophyll switch; pufQ is found within the oxygen‐regulated pufQBALMX operon encoding the reaction centre–light‐harvesting photosystem complex. A pufQ deletion strain synthesises low levels of bacteriochlorophyll and accumulates the biosynthetic precursor coproporphyrinogen III; a suppressor mutant of this strain harbours a mutation in the hemH gene encoding ferrochelatase, substantially reducing ferrochelatase activity and increasing cellular bacteriochlorophyll levels. FLAG‐immunoprecipitation experiments retrieve a ferrochelatase‐PufQ‐carotenoid complex, proposed to regulate the haem/bacteriochlorophyll branchpoint by directing porphyrin flux toward bacteriochlorophyll production under oxygen‐limiting conditions. The co‐location of pufQ and the photosystem genes in the same operon ensures that switching of tetrapyrrole metabolism toward bacteriochlorophyll is coordinated with the production of reaction centre and light‐harvesting polypeptides.  相似文献   

8.
The rates of carboxylation, photophosphorylation and acetate incorporation have been compared in the intact and broken chloroplasts of Hydrilla verticillata Royle leaves in the presence and absence of certain inhibitors and metabolites. The intact chloroplasts showed low rates of photophosphorylation, high rates of carboxylation, and exhibited normal capacity for fatty acid biosynthesis. In broken chloroplasts a drastic decrease was observed in the rates of carboxylation and acetate incorporation. However, the rate of photophosphorylation was considerably increased. In the presence of light, inhibitors such as iodoacetamide, arsenite and sodium azide decreased the photophosphorylation rate. F-1,6-di-P and PGA stimulated CO2 fixation rate. In the absence of artificial light, inhibitors such as sodium arsenite, gluconate-6-phosphate, sodium azide and iodoacetamide decreased the rate of CO2 fixation. CoA, ATP, G-6-P, F-1,6-di-P Stimulated the synthesis of fatty acids. Exogenous supply of ADP. NADH, NADP and NADPH did not stimulate fatty acid biosynthesis probably because these compounds could not gain entry into the chloroplasts. Light was necessary for the in vitro fatty acid biosynthesis.  相似文献   

9.
Genetic regulation of nitrogen fixation in rhizobia.   总被引:33,自引:5,他引:28       下载免费PDF全文
  相似文献   

10.
The influence of temperature on yields of cell protein and bacteriochlorophyll as well as on the rates of growth and bacteriochlorophyll synthesis was studied with Rhodospirillum rubrum and Rhodopseudomonas sphaeroides. Under chemotrophic conditions net cell-protein production increased in cultures of both species along with temperature from 14°C up to the optimum at 33°C. Under phototrophic conditions cell-protein yields were largely constant within the range from 21°C to 33°C. At temperatures below 21°C and above 33°C yields decreased. These results are interpreted in terms of coupling between energy yielding or redox equivalent providing metabolisms and cell biosynthesis. Upon adaptation from chemotrophic to phototrophic conditions a direct relationship between temperature increase and bacteriochlorophyll level was observed. Arrhenius plots of both, specific growth rates and rates of bacteriochlorophyll synthesis, revealed discontinuities at about 20°C. Temperature coefficients either above or below those discontinuities were similar in both species. In R. rubrum temperature coefficients of the synthesis of total bacteriochlorophyll were also representative of the synthesis of photochemical reaction center and light harvesting bacteriochlorophylls. But in R. sphaeroides significant differences were observed between temperature coefficients of the syntheses of bacteriochlorophylls of the costantly composed reaction centerlight harvesting complex on one hand and of both, total and the quantitatively variable light harvesting bacteriochlorophylls on the other. The results are interpreted in light of hypotheses on the regulation (a) of cellular bacteriochlorophyll levels as well as (b) of the ratio of functionally different bacteriochlorophylls in the photosynthetic apparatus.Abbreviation Bchl bacteriochlorophyll  相似文献   

11.
12.
Several genera of N2-fixing bacteria establish symbiotic associations with plants. Among these, the genus Rhizobium has the most significant contribution, in terms of yield, in many important crop plants. The establishment of the Rhizobium-legume symbiosis is a very complex process involving many genes which need to be co-ordinately regulated. In the first instance, plant signal molecules, known to be flavonoids, trigger the expression of host-specific genes in the bacterial partner through the action of the regulatory NodD protein. In response to these signals, Rhizobium bacteria synthesize lipo-oligosaccharide molecules which in turn cause cell differentiation and nodule development. Once the nodule has formed, Rhizobium cells differentiate into bacteroids and another set of genes is activated. These genes, designated nif and fix, are responsible for N2 fixation. In this system, several regulatory proteins are involved in a complex manner, the most important being NifA and a two component (FixK and FixL) regulatory system. Our knowledge about the establishment of these symbioses has advanced recently, although there are many questions yet to be solved.  相似文献   

13.
14.
15.
16.
Exopolysaccharides, either succinoglycan or galactoglucan, are essential for the establishment of the symbiosis between Sinorhizobium meliloti and Medicago sativa (alfalfa). The ExoS/ChvI two‐component regulatory system is known as a regulator of succinoglycan production but the genes that are directly regulated by ChvI have not been determined. Difficulty isolating exoS and chvI null mutants has prompted the suggestion that these genes are essential for S. meliloti viability. We have successfully isolated exoS and chvI null mutants using a merodiploid‐facilitated strategy. We present evidence that the S. meliloti ExoS/ChvI two‐component regulatory system is essential for symbiosis with alfalfa. Phenotypic analyses of exoS and chvI null mutant strains demonstrate that ExoS/ChvI controls both succinoglycan and galactoglucan production and is required for growth on over 21 different carbon sources. These new findings suggest that the ExoS/ChvI regulatory targets might not be the exo genes that are specific for succinoglycan biosynthesis but rather genes that have common influence on both succinoglycan and galactoglucan production. Other studied alpha‐proteobacteria ExoS/ChvI orthologues are required for the bacteria to invade or persist in host cells and thus we present more evidence that this two‐component regulatory system is essential for alpha‐proteobacterial host interaction.  相似文献   

17.
18.
Thermophilic green sulfur bacteria of the genus Chlorobium were isolated from certain acidic high sulfide New Zealand hot springs. Cells were Gram-negative nonmotile rods of variable length and contained bacteriochlorophyll c and chlorosomes. Cultures of thermophilic chlorobia grew only under anaerobic, phototrophic conditions, either photoautotrophically or photoheterotrophically. The optimum growth temperature for the strains of thermophilic green sulfur bacteria isolated was 47–48°C with generation times of about 2 h being observed. The upper temperature limit for growth was about 52°C. Thiosulfate was a major electron donor for photoautotrophic growth while sulfide alone was only poorly used. N2 fixation was observed at 48°C and cell suspensions readily reduced acetylene to ethylene. The G+C content of DNA from strains of thermophilic chlorobia was 56.5–58.2 mol% and the organisms positioned phylogenetically within the green sulfur bacterial branch of the domain Bacteria. The new phototrophs are described as a new species of the genus Chlorobium, Chlorobium tepidum.This paper is dedicated to Professor Norbert Pfennig on the occasion of his 65th birthday  相似文献   

19.
Fatty acid derivatives are of central importance for plant immunity against insect herbivores; however, major regulatory genes and the signals that modulate these defense metabolites are vastly understudied, especially in important agro‐economic monocot species. Here we show that products and signals derived from a single Zea mays (maize) lipoxygenase (LOX), ZmLOX10, are critical for both direct and indirect defenses to herbivory. We provide genetic evidence that two 13‐LOXs, ZmLOX10 and ZmLOX8, specialize in providing substrate for the green leaf volatile (GLV) and jasmonate (JA) biosynthesis pathways, respectively. Supporting the specialization of these LOX isoforms, LOX8 and LOX10 are localized to two distinct cellular compartments, indicating that the JA and GLV biosynthesis pathways are physically separated in maize. Reduced expression of JA biosynthesis genes and diminished levels of JA in lox10 mutants indicate that LOX10‐derived signaling is required for LOX8‐mediated JA. The possible role of GLVs in JA signaling is supported by their ability to partially restore wound‐induced JA levels in lox10 mutants. The impaired ability of lox10 mutants to produce GLVs and JA led to dramatic reductions in herbivore‐induced plant volatiles (HIPVs) and attractiveness to parasitoid wasps. Because LOX10 is under circadian rhythm regulation, this study provides a mechanistic link to the diurnal regulation of GLVs and HIPVs. GLV‐, JA‐ and HIPV‐deficient lox10 mutants display compromised resistance to insect feeding, both under laboratory and field conditions, which is strong evidence that LOX10‐dependent metabolites confer immunity against insect attack. Hence, this comprehensive gene to agro‐ecosystem study reveals the broad implications of a single LOX isoform in herbivore defense.  相似文献   

20.
Bacteria use biofilm structures to colonize surfaces and to survive in hostile conditions, and numerous bacteria produce cellulose as a biofilm matrix polymer. Hence, expression of the bcs operon, responsible for cellulose biosynthesis, must be finely regulated in order to allow bacteria to adopt the proper surface‐associated behaviours. Here we show that in the phytopathogenic bacterium, Dickeya dadantii, production of cellulose is required for pellicle–biofilm formation and resistance to chlorine treatments. Expression of the bcs operon is growth phase‐regulated and is stimulated in biofilms. Furthermore, we unexpectedly found that the nucleoid‐associated protein and global regulator of virulence functions, Fis, directly represses bcs operon expression by interacting with an operator that is absent from the bcs operon of animal pathogenic bacteria and the plant pathogenic bacterium Pectobacterium. Moreover, production of cellulose enhances plant surface colonization by D. dadantii. Overall, these data suggest that cellulose production and biofilm formation may be important factors for surface colonization by D. dadantii and its subsequent survival in hostile environments. This report also presents a new example of how bacteria can modulate the action of a global regulator to co‐ordinate basic metabolism, virulence and modifications of lifestyle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号