首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
增温和放牧对高寒草甸凋落物分解及其养分释放的影响不依赖于凋落物品质在放牧生态系统中,增温、放牧和凋落物品质共同决定着凋落物分解和养分释放。然而,在以往的研究中这些因子的效应通常被单独地研究。在本研究中,我们在青藏高原高寒草甸开展了一个昼夜非对称增温和中度放牧两因子的凋落物分解试验。从每个处理中收集了凋落物样品,这些凋落物一部分放在它们的来源处理小区,另一部分放在其他处理小区以此来探究增温、放牧以及凋落物品质对凋落物分解和养分释放的影响。研究结果表明,增温而不是放牧显著增加了凋落物质量的损失、单位面积全碳、全氮以及全磷含量的损失,这主要是因为增温增加了凋落物生物量和分解速率。然而,尽管同时增温放牧处理也加快了凋落物分解速率,但由于降低了凋落物生物量,所以增温放牧处理并没有显著影响单位面积的凋落物碳和养分释放量。相比木质素含量和碳氮比而言,季节性土壤平均温度能够更好地预测凋落物分解速率。增温和放牧对凋落物分解存在交互作用,但它们和凋落物品质对凋落物的影响均不存在交互作用。单位面积的总氮释放的温度敏感性要高于总磷。因此,我们的结果表明,增温对凋落物分解以及养分释放的影响要显著大于凋落物品质变化对其分解的影响。在高寒草甸,氮释放的增加可能会间接导致土壤磷有效性的缺乏。  相似文献   

2.
Intraspecific variation in genotypically determined traits can influence ecosystem processes. Therefore, the impact of climate change on ecosystems may depend, in part, on the distribution of plant genotypes. Here we experimentally assess effects of climate warming and excess nitrogen supply on litter decomposition using 12 genotypes of a cosmopolitan foundation species collected across a 2100 km latitudinal gradient and grown in a common garden. Genotypically determined litter‐chemistry traits varied substantially within and among geographic regions, which strongly affected decomposition and the magnitude of warming effects, as warming accelerated litter mass loss of high‐nutrient, but not low‐nutrient, genotypes. Although increased nitrogen supply alone had no effect on decomposition, it strongly accelerated litter mass loss of all genotypes when combined with warming. Rates of microbial respiration associated with the leaf litter showed nearly identical responses as litter mass loss. These results highlight the importance of interactive effects of environmental factors and suggest that loss or gain of genetic variation associated with key phenotypic traits can buffer, or exacerbate, the impact of global change on ecosystem process rates in the future.  相似文献   

3.
Livestock dung provides an important direct pathway by which carbon and nutrients enter soils in pasture ecosystems and affects carbon and nitrogen cycling indirectly through changes in soil and plant properties. Here, we quantify dung deposition, decomposition, and the effects of dung on soil and plants in a Zoysia japonica grassland in Japan. We determined (1) the distribution of dung, (2) the mass loss rate of dung and the amount of carbon respired as CO2, and (3) changes in soil properties and aboveground biomass of Z. japonica. Dung deposition was 4.0–9.7 g C and 0.4–1.0 g N m?2 year?1 and distributed patchily (Morishita’s I δ  > 1). Most (71 %) of the carbon in dung deposited in June was lost within a single grazing period by aerobic decomposition, more than mass loss rate of Z. japonica litter in the first year (about 50 %), suggesting that grazing and defecation can accelerate carbon cycling compared with the typical litterfall–decomposition regime. Nitrogen in dung mass entered the soil as ammonium nitrogen and was nitrified. The spatiotemporal distribution of these processes corresponded to that of stimulated Z. japonica growth. These results suggested that dung deposition significantly affected the inorganic nitrogen status of soil and, therefore, the growth of Z. japonica. However, these effects were very restricted temporally (July–August) and spatially (within 10 cm from dung edge). Thus, such spatiotemporally restricted effects combined with the patchy distribution of dung may contribute to the heterogeneous structure of pasture ecosystems.  相似文献   

4.
Human activities are decreasing biodiversity and changing the climate worldwide. Both global change drivers have been shown to affect ecosystem functioning, but they may also act in concert in a non‐additive way. We studied early‐stage litter mass loss rates and soil microbial properties (basal respiration and microbial biomass) during the summer season in response to plant species richness and summer drought in a large grassland biodiversity experiment, the Jena Experiment, Germany. In line with our expectations, decreasing plant diversity and summer drought decreased litter mass loss rates and soil microbial properties. In contrast to our hypotheses, however, this was only true for mass loss of standard litter (wheat straw) used in all plots, and not for plant community‐specific litter mass loss. We found no interactive effects between global change drivers, that is, drought reduced litter mass loss rates and soil microbial properties irrespective of plant diversity. High mass loss rates of plant community‐specific litter and low responsiveness to drought relative to the standard litter indicate that soil microbial communities were adapted to decomposing community‐specific plant litter material including lower susceptibility to dry conditions during summer months. Moreover, higher microbial enzymatic diversity at high plant diversity may have caused elevated mass loss of standard litter. Our results indicate that plant diversity loss and summer drought independently impede soil processes. However, soil decomposer communities may be highly adapted to decomposing plant community‐specific litter material, even in situations of environmental stress. Results of standard litter mass loss moreover suggest that decomposer communities under diverse plant communities are able to cope with a greater variety of plant inputs possibly making them less responsive to biotic changes.  相似文献   

5.
Terrestrial carbon cycle feedbacks to global warming are major uncertainties in climate models. For in‐depth understanding of changes in soil organic carbon (SOC) after soil warming, long‐term responses of SOC stabilization mechanisms such as aggregation, organo‐mineral interactions and chemical recalcitrance need to be addressed. This study investigated the effect of 6 years of geothermal soil warming on different SOC fractions in an unmanaged grassland in Iceland. Along an extreme warming gradient of +0 to ~+40 °C, we isolated five fractions of SOC that varied conceptually in turnover rate from active to passive in the following order: particulate organic matter (POM), dissolved organic carbon (DOC), SOC in sand and stable aggregates (SA), SOC in silt and clay (SC‐rSOC) and resistant SOC (rSOC). Soil warming of 0.6 °C increased bulk SOC by 22 ± 43% (0–10 cm soil layer) and 27 ± 54% (20–30 cm), while further warming led to exponential SOC depletion of up to 79 ± 14% (0–10 cm) and 74 ± 8% (20–30) in the most warmed plots (~+40 °C). Only the SA fraction was more sensitive than the bulk soil, with 93 ± 6% (0–10 cm) and 86 ± 13% (20–30 cm) SOC losses and the highest relative enrichment in 13C as an indicator for the degree of decomposition (+1.6 ± 1.5‰ in 0–10 cm and +1.3 ± 0.8‰ in 20–30 cm). The SA fraction mass also declined along the warming gradient, while the SC fraction mass increased. This was explained by deactivation of aggregate‐binding mechanisms. There was no difference between the responses of SC‐rSOC (slow‐cycling) and rSOC (passive) to warming, and 13C enrichment in rSOC was equal to that in bulk soil. We concluded that the sensitivity of SOC to warming was not a function of age or chemical recalcitrance, but triggered by changes in biophysical stabilization mechanisms, such as aggregation.  相似文献   

6.
Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface‐incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open‐top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures.  相似文献   

7.
In order to investigate the relative impacts of increases in day and night temperature on tree carbon relations, we measured night‐time respiration and daytime photosynthesis of leaves in canopies of 4‐m‐tall cottonwood (Populus deltoides Bartr. ex Marsh) trees experiencing three daytime temperatures (25, 28 or 31 °C) and either (i) a constant nocturnal temperature of 20 °C or (ii) increasing nocturnal temperatures (15, 20 or 25 °C). In the first (day warming only) experiment, rates of night‐time leaf dark respiration (Rdark) remained constant and leaves displayed a modest increase (11%) in light‐saturated photosynthetic capacity (Amax) during the day (1000–1300 h) over the 6 °C range. In the second (dual night and day warming) experiment, Rdark increased by 77% when nocturnal temperatures were increased from 15 °C (0·36 µmol m?2 s?1) to 25 °C (0·64 µmol m?2 s?1). Amax responded positively to the additional nocturnal warming, and increased by 38 and 64% in the 20/28 and 25/31 °C treatments, respectively, compared with the 15/25 °C treatment. These increases in photosynthetic capacity were associated with strong increases in the maximum carboxylation rate of rubisco (Vcmax) and ribulose‐1,5‐bisphosphate (RuBP) regeneration capacity mediated by maximum electron transport rate (Jmax). Leaf soluble sugar and starch concentration, measured at sunrise, declined significantly as nocturnal temperature increased. The nocturnal temperature manipulation resulted in a significant inverse relationship between Amax and pre‐dawn leaf carbohydrate status. Independent measurements of the temperature response of photosynthesis indicated that the optimum temperature (Topt) acclimated fully to the 6 °C range of temperature imposed in the daytime warming. Our findings are consistent with the hypothesis that elevated night‐time temperature increases photosynthetic capacity during the following light period through a respiratory‐driven reduction in leaf carbohydrate concentration. These responses indicate that predicted increases in night‐time minimum temperatures may have a significant influence on net plant carbon uptake.  相似文献   

8.
We investigated the independent and combined effects of experimental warming and grazing on plant species diversity on the north‐eastern Tibetan Plateau, a region highly vulnerable to ongoing climate and land use changes. Experimental warming caused a 26–36% decrease in species richness, a response that was generally dampened by experimental grazing. Higher species losses occurred at the drier sites where N was less available. Moreover, we observed an indirect effect of climate change on species richness as mediated by plant–plant interactions. Heat stress and warming‐induced litter accumulation are potential explanations for the species’ responses to experimental warming. This is the first reported experimental evidence that climate warming could cause dramatic declines in plant species diversity in high elevation ecosystems over short time frames and supports model predictions of species losses with anthropogenic climate change.  相似文献   

9.
增温和放牧对高寒草甸植物细根的分解和养分丧失具有叠加效应 细根的分解是调控生态系统碳循环,影响养分循环以及土壤肥力的关键过程。然而,在自然生态系统中关于增温和放牧影响细根分解的研究十分匮乏。本研究利用非对称增温(即:昼夜和季节性不对称)和适度放牧(约50%饲草利用率)的两因素野外控制试验,探讨增温和放牧对青藏高原高寒草甸为期两年的细根分解和养分丧失的影响。增温和放牧通过提高细根分解促进了碳的循环,并影响了元素循环,但各元素的循环特征各自不同。增温和放牧对细根分解和养分丧失的影响是叠加的。试验两年期间,增温和放牧显著提高了细根累积生物量和总有机碳的丧失量。仅增温并放牧处理显著降低了氮元素百分率丧失量,而无论放牧与否,增温显著降低了磷元素苞粉率丧失量。与对照比较,仅增温或放牧提高了钾、钠、钙、镁的百分率丧失量。增温和放牧对细根分解和养分丧失未呈现交互影响。降低磷丧失较减低氮丧失对温度更加敏感。在未来变暖情景下,细根分解产生的不同养分百分率丧失对温度的敏感性差异可能调整不同养分在土壤中的有效率,进而影响生态系统的结构和功能。  相似文献   

10.
Cold water woodland streams, where terrestrially derived organic matter fuels aquatic food webs, can be affected by increases in atmospheric CO2 concentrations, as these are predicted to lead to increases in water temperature and decreases in organic matter quality. In fact, elevated CO2 (580 ppm) decreased the initial phosphorus concentration of birch litter by 30% compared with litter grown under ambient conditions (380 ppm). Here, we first assessed the effect of differences in litter quality on mass loss, microbial colonization and conditioned litter quality after submersion in a mountain stream for 2 weeks. Leaching did not change the relative differences between litter types, while fungal biomass was two fold higher in elevated litter. We then offered this litter (conditioned ambient and elevated) to a stream detritivore that was kept at 10 and 15 °C to assess the individual and interactive effects of increased temperature and decreased litter quality on invertebrate performance. When given a choice, the detritivore preferred elevated litter, but only at 10 °C. When fed litter types singularly, there was no effect of litter quality on consumption rates; however, the effect of temperature depended on individual size and time of collection. Growth rates were higher in individuals fed ambient litter at 10 °C when compared with individuals fed elevated litter at 15 °C. Mortality did not differ between litter types, but was higher at 15 °C than at 10 °C. Increases in temperature led to alterations in the individual body elemental composition and interacted with litter type. The performance of the detritivore was therefore more affected by increases in temperature than by small decreases in litter quality. However, it seems conceivable that in a future global warming scenario the simultaneous increases in water temperature and decreases in litter quality might affect detritivores performance more than predicted from the effects of both factors considered individually.  相似文献   

11.
The effects of radioactive contamination from Chernobyl on decomposition of plant material still remain unknown. We predicted that decomposition rate would be reduced in the most contaminated sites due to an absence or reduced densities of soil invertebrates. If microorganisms were the main agents responsible for decomposition, exclusion of large soil invertebrates should not affect decomposition. In September 2007 we deposited 572 bags with uncontaminated dry leaf litter from four species of trees in the leaf litter layer at 20 forest sites around Chernobyl that varied in background radiation by more than a factor 2,600. Approximately one quarter of these bags were made of a fine mesh that prevented access to litter by soil invertebrates. These bags were retrieved in June 2008, dried and weighed to estimate litter mass loss. Litter mass loss was 40 % lower in the most contaminated sites relative to sites with a normal background radiation level for Ukraine. Similar reductions in litter mass loss were estimated for individual litter bags, litter bags at different sites, and differences between litter bags at pairs of neighboring sites differing in level of radioactive contamination. Litter mass loss was slightly greater in the presence of large soil invertebrates than in their absence. The thickness of the forest floor increased with the level of radiation and decreased with proportional loss of mass from all litter bags. These findings suggest that radioactive contamination has reduced the rate of litter mass loss, increased accumulation of litter, and affected growth conditions for plants.  相似文献   

12.
Infrared heater arrays for warming ecosystem field plots   总被引:2,自引:0,他引:2  
There is a need for methodology to warm open‐field plots in order to study the likely effects of global warming on ecosystems in the future. Herein, we describe the development of arrays of more powerful and efficient infrared heaters with ceramic heating elements. By tilting the heaters at 45° from horizontal and combining six of them in a hexagonal array, good uniformity of warming was achieved across 3‐m‐diameter plots. Moreover, there do not appear to be obstacles (other than financial) to scaling to larger plots. The efficiency [ηh (%); thermal radiation out per electrical energy in] of these heaters was higher than that of the heaters used in most previous infrared heater experiments and can be described by: ηh= 10 + 25exp(? 0.17 u), where u is wind speed at 2 m height (m s? 1). Graphs are presented to estimate operating costs from degrees of warming, two types of plant canopy, and site windiness. Four such arrays were deployed over plots of grass at Haibei, Qinghai, China and another at Cheyenne, Wyoming, USA, along with corresponding reference plots with dummy heaters. Proportional integral derivative systems with infrared thermometers to sense canopy temperatures of the heated and reference plots were used to control the heater outputs. Over month‐long periods at both sites, about 75% of canopy temperature observations were within 0.5 °C of the set‐point temperature differences between heated and reference plots. Electrical power consumption per 3‐m‐diameter plot averaged 58 and 80 kW h day? 1 for Haibei and Cheyenne, respectively. However, the desired temperature differences were set lower at Haibei (1.2 °C daytime, 1.7 °C night) than Cheyenne (1.5 °C daytime, 3.0 °C night), and Cheyenne is a windier site. Thus, we conclude that these hexagonal arrays of ceramic infrared heaters can be a successful temperature free‐air‐controlled enhancement (T‐FACE) system for warming ecosystem field plots.  相似文献   

13.
Because soil macroinvertebrates strongly modify decomposition processes, it is important to know how their abundance will respond to global change. We investigated in laboratory microcosms, the effects of elevated temperatures and reduced leaf litter quality on the life‐history traits of a saprophagous macroarthropod (development time, growth, survival and reproduction). Millipedes (Polydesmus angustus) from an Atlantic temperate forest were reared throughout their life cycle (≥16 months) under two temperature regimes differing on average by 3.3 °C; in a factorial design, they were fed either on Atlantic leaf litter or on Mediterranean leaf litter with a higher C : N ratio; humidity was consistently high. The components of the population growth rate (r) were affected positively by the temperature rise and negatively by the switch from Atlantic to Mediterranean leaf litter. When both treatments were combined, litter effects offset temperature effects. These results show that the short‐term response of saprophagous macroarthropods to warming is positive but depends on the availability of high‐quality litter, which is difficult to predict in the global change context. In a parallel experiment, conspecific millipedes from a Mediterranean population, which have evolved for a long time in a warmer climate and on poor‐quality litter, were reared at elevated temperatures on Mediterranean leaf litter. All components of r were higher than in the Atlantic population under the same conditions. This suggests that in the longer term, macroarthropods can overcome detrimental trophic interactions. Based on our study and the literature, we conclude that for decades the positive effects of warming on saprophagous macrofauna should exceed the negative effects of changes in litter quality. The abundance of those organisms in temperate forests could increase, which is confirmed by latitudinal patterns in Europe. Studies aimed at predicting the impacts of global change on decomposition will need to consider interactions with soil macroinvertebrates.  相似文献   

14.
The mossHylocomium splendens shows a very wide distribution in the Northern Hemisphere and may be useful as an indicator of climatic change on a global scale. We aimed to establish a convenient method to estimate the annual rate of litter mass loss of this species. The rate was calculated from the annual litter production rate and the amount of litter accumulated in the field. The litter production rate was estimated by analysis of the moss shoot growth. The rates calculated by this method tended to be larger than estimates obtained by the litter bag method. Using this method, we examined the difference in the litter mass loss rate along the altitudinal and latitudinal temperature gradients. The moss samples were collected from three boreal forests in Canada and four subalpine forests in Japan. At the subalpine sites, the annual rate of litter mass loss was within the range of 10–24% and tended to be smaller with increasing altitude. The rates in the boreal sites were similar to those in the subalpine sites despite lower mean annual temperatures. A significant log-linear relationship was observed between the annual mass loss rate and the cumulative value of monthly mean air temperatures higher than 0°C (CMT). Nitrogen concentration of the litter was positively correlated with mean annual air temperature. Site to site variation in the annual mass loss rate was largely explained by CMT and nitrogen concentration of the litter.  相似文献   

15.
高山/亚高山森林灌木层植物凋落物的分解对于系统物质循环等过程具有重要意义, 并可能受到冬季不同厚度雪被斑块下冻融格局的影响。该文采用凋落物分解袋法, 研究了高山森林典型灌层植物华西箭竹(Fargesia nitida)和康定柳(Salix paraplesia)凋落物在沿林窗-林下形成的冬季雪被厚度梯度(厚型雪被斑块、较厚型雪被斑块、中型雪被斑块、薄型雪被斑块、无雪被斑块)上在第一年不同关键时期(冻结初期、冻结期、融化期、生长季节初期和生长季节后期)的质量损失特征。在整个冻融季节, 华西箭竹和康定柳凋落叶的平均质量损失分别占全年的(48.78 ± 2.35)%和(46.60 ± 5.02)%。冻融季节雪被覆盖斑块下凋落叶的失重率表现出厚型雪被斑块大于薄型雪被斑块的趋势,而生长季节无雪被斑块的失重率明显较高。尽管如此, 华西箭竹凋落物第一年分解表现出随冬季雪被厚度增加而增加的趋势, 但康定柳凋落物第一年失重率以薄型雪被斑块最高, 而无雪被斑块最低。同时, 相关分析表明冻融季节凋落叶的失重率与平均温度和负积温呈极显著正相关, 生长季节凋落叶的失重率与所调查的温度因子并无显著相关关系, 但全年凋落物失重率与平均温度和正/负积温均显著相关。这些结果清晰地表明, 未来冬季变暖情境下高山森林冬季雪被格局的改变将显著影响灌层植物凋落物分解, 影响趋势随着物种的差异具有明显差异。  相似文献   

16.
Decomposition of leaf litter and its incorporation into the mineral soil are key components of the C cycle in forest soils. In a 13C tracer experiment, we quantified the pathways of C from decomposing leaf litter in calcareous soils of a mixed beech forest in the Swiss Jura. Moreover, we assessed how important the cold season is for the decomposition of freshly fallen leaves. The annual C loss from the litter layer of 69–77% resulted mainly from the C mineralization (29–34% of the initial litter C) and from the transfer of litter material to the deeper mineral soil (>4 cm) by soil fauna (30%). Although only 4–5% of the initial litter C was leached as dissolved organic carbon (DOC), this pathway could be important for the C sequestration in soils in the long term: The DOC leached from the litter layer was mostly retained (95%) in the first 5 cm of the mineral soil by both physico-chemical sorption and biodegradation and, thus, it might have contributed significantly to the litter-derived C recovered in the heavy fraction (>1.6 g cm?3) at 0–4 cm depth (4% of the initial litter C). About 80% of the annual DOC leaching from the litter layer occurred during the cold season (Nov–April) due to an initial DOC flush of water-soluble substances. In contrast, the litter mineralization in winter accounted for only 25% of the annual C losses through CO2 release from the labelled litter. Nevertheless, the highest contributions (45–60%) of litter decay to the heterotrophic soil respiration were observed on warm winter days when the mineral soil was still cold and the labile litter pool only partly mineralized. Our 13C tracing also revealed that: (1) the fresh litter C only marginally primed the mineralization of older SOM (>1 year); and (2) non-litter C, such as throughfall DOC, contributed significantly to the C fluxes from the litter layer since the microbial biomass and the DOC leached from the litter layer contained 20–30% and up to 60% of unlabelled C, respectively. In summary, our study shows that significant amounts of recent leaf litter C (<1 year) are incorporated into mineral soils and that the cold season is clearly less important for the litter turnover than the warm season in this beech forest ecosystem.  相似文献   

17.
Global warming is diurnally asymmetric, leading to a less cold, rather than warmer, climate. We investigated the effects of asymmetric experimental warming on plant phenology by testing the hypothesis that daytime warming is more effective in advancing bud break than night‐time warming. Bud break was monitored daily in Picea mariana seedlings belonging to 20 provenances from Eastern Canada and subjected to daytime and night‐time warming in growth chambers at temperatures varying between 8 and 16 °C. The higher advancements of bud break and shorter times required to complete the phenological phases occurred with daytime warming. Seedlings responded to night‐time warming, but still with less advancement of bud break than under daytime warming. No advancement was observed when night‐time warming was associated with a daytime cooling. The effect of the treatments was uniform across provenances. Our observations realized under controlled conditions allowed to experimentally demonstrate that bud break can advance under night‐time warming, but to a lesser extent than under daytime warming. Prediction models using daily timescales could neglect the diverging influence of asymmetric warming and should be recalibrated for higher temporal resolutions.  相似文献   

18.
The carbon (C) storage capacity of northern latitude ecosystems may diminish as warming air temperatures increase permafrost thaw and stimulate decomposition of previously frozen soil organic C. However, warming may also enhance plant growth so that photosynthetic carbon dioxide (CO2) uptake may, in part, offset respiratory losses. To determine the effects of air and soil warming on CO2 exchange in tundra, we established an ecosystem warming experiment – the Carbon in Permafrost Experimental Heating Research (CiPEHR) project – in the northern foothills of the Alaska Range in Interior Alaska. We used snow fences coupled with spring snow removal to increase deep soil temperatures and thaw depth (winter warming) and open‐top chambers to increase growing season air temperatures (summer warming). Winter warming increased soil temperature (integrated 5–40 cm depth) by 1.5 °C, which resulted in a 10% increase in growing season thaw depth. Surprisingly, the additional 2 kg of thawed soil C m?2 in the winter warming plots did not result in significant changes in cumulative growing season respiration, which may have been inhibited by soil saturation at the base of the active layer. In contrast to the limited effects on growing‐season C dynamics, winter warming caused drastic changes in winter respiration and altered the annual C balance of this ecosystem by doubling the net loss of CO2 to the atmosphere. While most changes to the abiotic environment at CiPEHR were driven by winter warming, summer warming effects on plant and soil processes resulted in 20% increases in both gross primary productivity and growing season ecosystem respiration and significantly altered the age and sources of CO2 respired from this ecosystem. These results demonstrate the vulnerability of organic C stored in near surface permafrost to increasing temperatures and the strong potential for warming tundra to serve as a positive feedback to global climate change.  相似文献   

19.
Winter regulation of tundra litter carbon and nitrogen dynamics   总被引:7,自引:3,他引:4  
Mass and nitrogen (N) dynamics of leaf litter measured in Alaskan tussock tundra differed greatly from measurements of these processes made in temperate ecosystems. Nearly all litter mass and N loss occurred during the winter when soils were mostly frozen. Litter lost mass during the first summer, but during the subsequent two summers when biological activity was presumably higher than it is during winter, litter mass remained constant and litter immobilized N. By contrast, litter lost significant mass and N over both winters of measurement. Mass loss and N dynamics were unaffected by microsite variation in soil temperature and moisture. Whether wintertime mass and N loss resulted from biological activity during winter or from physical processes (e.g., fragmentation or leaching) associated with freeze-thaw is unknown, but has implications for how future climate warming will alter carbon (C) and N cycling in tundra. We hypothesize that spring runoff over permafrost as soils melt results in significant losses of C and N from litter, consistent with the observed influx of terrestrial organic matter to tundra lakes and streams after snow melt and the strong N limitation of terrestrial primary production.  相似文献   

20.
Grazing exclusion is widely used globally to restore degraded grasslands. Plant diversity has important impacts on grassland ecosystem functions, including grassland productivity and carbon storage. In this study, we selected a Kobresia meadow on the Qinghai–Tibetan Plateau to investigate how grazing exclusion affects plant diversity. Inorganic nitrogen (NH4 + and NO3 ?) was also measured because its availability impacts plant growth. We found that plant diversity in the meadow was significantly lower under grazing exclusion (fenced meadow) for 9 years compared with moderate grazing. Accumulated litter was significantly higher under grazing exclusion (386.41 g m?2) compared with grazing (58.77 g m?2). Soil inorganic nitrogen at 0–5 cm depth was significantly higher under grazing exclusion (13.60 × 10?2 g kg?1) than under grazing (9.40 × 10?2 g kg?1). The composition of the four functional groups (grasses, sedges, legumes, and forbs) might alter in response to significant changes in the amount of litter and soil available nitrogen content under grazing exclusion compared with grazing. However, the enhanced soil available nitrogen content showed weak feedbacks on plant diversity. In conclusion, light limitation induced by increased amounts of litter may be the main factor causing decreased plant diversity in grazing-excluded meadows compared with moderately grazed meadows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号