首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: To compare an ultra‐rapid hand dryer against warm air dryers, with regard to: (A) bacterial transfer after drying and (B) the impact on bacterial numbers of rubbing hands during dryer use. Methods and Results: The Airblade? dryer (Dyson Ltd) uses two air ‘knives’ to strip water from still hands, whereas conventional dryers use warm air to evaporate moisture whilst hands are rubbed together. These approaches were compared using 14 volunteers; the Airblade? and two types of warm air dryer. In study (A), hands were contaminated by handling meat and then washed in a standardized manner. After dryer use, fingers were pressed onto foil and transfer of residual bacteria enumerated. Transfers of 0–107 CFU per five fingers were observed. For a drying time of 10 s, the Airblade? led to significantly less bacterial transfer than the other dryers (P < 0·05; range 0·0003–0·0015). When the latter were used for 30–35 s, the trend was for the Airblade to still perform better, but differences were not significant (P > 0·05, range 0·1317–0·4099). In study (B), drying was performed ± hand rubbing. Contact plates enumerated bacteria transferred from palms, fingers and fingertips before and after drying. When keeping hands still, there was no statistical difference between dryers, and reduction in the numbers released was almost as high as with paper towels. Rubbing when using the warm air dryers inhibited an overall reduction in bacterial numbers on the skin (P < 0·05). Conclusions: Effective hand drying is important for reducing transfer of commensals or remaining contaminants to surfaces. Rubbing hands during warm air drying can counteract the reduction in bacterial numbers accrued during handwashing. Significance and Impact of the Study: The Airblade? was superior to the warm air dryers for reducing bacterial transfer. Its short, 10 s drying time should encourage greater compliance with hand drying and thus help reduce the spread of infectious agents via hands.  相似文献   

2.
3.
AIMS: To determine the transfer efficiency of micro-organisms from fomites to hands and the subsequent transfer from the fingertip to the lip. METHODS AND RESULTS: Volunteers hands were sampled after the normal usage of fomites seeded with a pooled culture of a Gram-positive bacterium (Micrococcus luteus), a Gram-negative bacterium (Serratia rubidea) and phage PRD-1 (Period A). Activities included wringing out a dishcloth/sponge, turning on/off a kitchen faucet, cutting up a carrot, making hamburger patties, holding a phone receiver, and removing laundry from the washing machine. Transfer efficiencies were 38.47% to 65.80% and 27.59% to 40.03% for the phone receiver and faucet, respectively. Transfer efficiencies from porous fomites were <0.01%. In most cases, M.luteus was transferred most efficiently, followed by phage PRD-1 and S. rubidea. When the volunteers' fingertips were inoculated with the pooled organisms and held to the lip area (Period B), transfer rates of 40.99%, 33.97%, and 33.90% occurred with M. luteus, S. rubidea, and PRD-1, respectively. CONCLUSIONS: The highest bacteral transfer rates from fomites to the hands were seen with the hard, non-porous surfaces. Even with low transfer rates, the numbers of bacteria transferred to the hands were still high (up to 10(6) cells). Transfer of bacteria from the fingertip to the lip is similar to that observed from hard surfaces to hands. SIGNIFICANCE AND IMPACT OF THE STUDY: Infectious doses of pathogens may be transferred to the mouth after handling an everyday contaminated household object.  相似文献   

4.
Virus filtration can provide a robust method for removal of adventitious parvoviruses in the production of biotherapeutics. Although virus filtration is typically thought to function by a purely size‐based removal mechanism, there is limited data in the literature indicating that virus retention is a function of solution conditions. The objective of this work was to examine the effect of solution pH and ionic strength on virus retention by the Viresolve® NFP membrane. Data were obtained using the bacteriophage ?X174 as a model virus, with retention data complemented by the use of confocal microscopy to directly visualize capture of fluorescently labeled ?X174 within the filter. Virus retention was greatest at low pH and low ionic strength, conditions under which there was an attractive electrostatic interaction between the negatively charged membrane and the positively charged phage. In addition, the transient increase in virus transmission seen in response to a pressure disruption at pH 7.8 and 10 was completely absent at pH 4.9, suggesting that the trapped virus are unable to overcome the electrostatic attraction and diffuse out of the pores when the pressure is released. Further confirmation of this physical picture was provided by confocal microscopy. Images obtained at pH 10 showed the migration of previously captured phage; this phenomenon was absent at pH 4.9. These results provide important new insights into the factors governing virus retention using virus filtration membranes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1280–1286, 2015  相似文献   

5.
Rhinoviruses can survive on environmental surfaces for several hours under ambient conditions. Hands can readily become contaminated after contact with such surfaces, and self-inoculation may lead to infection. Whereas hand washing is crucial in preventing the spread of rhinovirus colds, proper disinfection of environmental surfaces may further reduce rhinovirus transmission. In this study, the capacities of Lysol Disinfectant Spray (0.1% o-phenylphenol and 79% ethanol), a domestic bleach (6% sodium hypochlorite diluted to give 800 ppm of free chlorine), a quaternary ammonium-based product (7.05% quaternary ammonium diluted 1:128 in tap water), and a phenol-based product (14.7% phenol diluted 1:256 in tap water) were compared in interrupting the transfer of rhinovirus type 14 from stainless steel disks to fingerpads of human volunteers upon a 10-s contact at a pressure of 1 kg/cm2. Ten microliters of the virus, suspended in bovine mucin (5 mg/ml), was placed on each disk, and the inoculum was dried under ambient conditions; the input number on each disk ranged from 0.5 x 10(5) to 2.1 x 10(6) PFU. The dried virus was exposed to 20 microliters of the test disinfectant. The Lysol spray was able to reduce virus infectivity by > 99.99% after a contact of either 1 or 10 min, and no detectable virus was transferred to fingerpads from Lysol-treated disks. The bleach (800 ppm of free chlorine) reduced the virus titer by 99.7% after a contact time of 10 min, and again no virus was transferred from the disks treated with it.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Contamination of food contact surfaces with pathogens is considered an important vehicle for the indirect transmission of food-borne diseases. Five different cleaning cloths were assessed for the ability to remove viruses from food contact surfaces (stainless steel surface and nonporous solid surface) and to transfer viruses back to these surfaces. Cleaning cloths evaluated include two different cellulose/cotton cloths, one microfiber cloth, one nonwoven cloth, and one cotton terry bar towel. Four viral surrogates (murine norovirus [MNV], feline calicivirus [FCV], bacteriophages PRD1 and MS2) were included. Removal of FCV from stainless steel was significantly greater (P ≤ 0.05) than that from nonporous solid surface, and overall removal of MNV from both surfaces was significantly less (P ≤ 0.05) than that of FCV and PRD1. Additionally, the terry towel removed significantly fewer total viruses (P ≤ 0.05) than the microfiber and one of the cotton/cellulose cloths. The cleaning cloth experiments were repeated with human norovirus. For transfer of viruses from cloth to surface, both cellulose/cotton cloths and microfiber transferred an average of 3.4 and 8.5 total PFU, respectively, to both surfaces, and the amounts transferred were significantly different (P ≤ 0.05) from those for the nonwoven cloth and terry towel (309 and 331 total PFU, respectively). There was no statistically significant difference (P > 0.05) in the amount of virus transfer between surfaces. These data indicate that while the cleaning cloths assessed here can remove viruses from surfaces, some cloths may also transfer a significant amount of viruses back to food contact surfaces.  相似文献   

7.
Aims: To produce surfaces of defined linear topographical features which reflect those found on worn and new stainless steel, to monitor the effect of feature dimensions on the retention of Listeria monocytogenes and Staphylococcus sciuri. Methods and Results: Surfaces were fabricated with parallel linear features of 30 microns or of microbial dimensions (1·02 and 0·59 μm width) and used in microbial retention assays with Staph. sciuri and L. monocytogenes. Retained cells were distributed uniformly across the smooth 30 micron featured surfaces but were retained in high numbers on microtopographies at the ‘peaks’ between the wide grooves. On smaller features, retention was attributed to the maximum area of contact between cells and substratum being attained, with cocci being embedded in 1·02‐μm‐width grooves, and rods aligned along (and across) the densely packed parallel 0·59‐μm grooves. Conclusions: The dimensions of surface features may enhance or impede cell retention. This phenomenon is also related to the size and shape of the microbial cell. Significance and Impact of Study: Findings may help describe and evaluate properties of hygienic and easily cleanable surfaces.  相似文献   

8.
Aim: To investigate the potential health hazard from infectious viruses where coliphages, or viruses by polymerase chain reaction (PCR), have been detected in groundwater. Two aspects were investigated: the relationship between infectivity and detection by PCR and the stability of coliphage compared to human viruses. Methods and Results: Virus decay (1 year) and detection (2 years) studies were undertaken on groundwater at 12°C. The order of virus stability from most to least stable in groundwater, based on first‐order inactivation, was: coliphage ΦX174 (0·5 d?1) > adenovirus 2 > coliphage PRD1 > poliovirus 3 > coxsackie virus B1 (0·13 d?1). The order for PCR results was: norovirus genotype II > adenovirus > norovirus genotype I > enterovirus. Conclusions: Enterovirus and adenovirus detection by PCR and the duration of infectivity in groundwater followed similar trends over the time period studied. Adenovirus might be a better method for assessing groundwater contamination than using enterovirus; norovirus detection would provide information on a significant human health hazard. Bacteriophage is a good alternative indicator. Significance and Impact of the Study: PCR is a useful tool for identifying the health hazard from faecal contamination in groundwater where conditions are conducive to the survival of viruses and their nucleic acid.  相似文献   

9.
Fomites can serve as routes of transmission for both enteric and respiratory pathogens. The present study examined the effect of low and high relative humidity on fomite-to-finger transfer efficiency of five model organisms from several common inanimate surfaces (fomites). Nine fomites representing porous and nonporous surfaces of different compositions were studied. Escherichia coli, Staphylococcus aureus, Bacillus thuringiensis, MS2 coliphage, and poliovirus 1 were placed on fomites in 10-μl drops and allowed to dry for 30 min under low (15% to 32%) or high (40% to 65%) relative humidity. Fomite-to-finger transfers were performed using 1.0 kg/cm2 of pressure for 10 s. Transfer efficiencies were greater under high relative humidity for both porous and nonporous surfaces. Most organisms on average had greater transfer efficiencies under high relative humidity than under low relative humidity. Nonporous surfaces had a greater transfer efficiency (up to 57%) than porous surfaces (<6.8%) under low relative humidity, as well as under high relative humidity (nonporous, up to 79.5%; porous, <13.4%). Transfer efficiency also varied with fomite material and organism type. The data generated can be used in quantitative microbial risk assessment models to assess the risk of infection from fomite-transmitted human pathogens and the relative levels of exposure to different types of fomites and microorganisms.  相似文献   

10.
Necrotic spots or small rings develop after 3–4 days in leaves of Nicotiana tabacum cv. Xanthi-nc inoculated with potato mop-top virus and kept at 14 °C in continuous light (4320 lux); a series of concentric necrotic rings of increasing diameter then form at 2- to 3-day intervals around each initial lesion. Successive rings take longer to appear when either the light intensity or the photoperiod is decreased. Virus accumulation is much decreased and lesions rarely develop either at 14· in darkness or at 22° in light. Virus accumulates rapidly when plants are transferred from these conditions to 14° in light (4320 lux), and necrotic spots or rings develop whose size depends on the interval between inoculation and transfer, and on the conditions during this period. In such plants, necrosis seems to occur only when conditions become favourable for virus synthesis, it is confined to recently infected cells and it does not prevent virus spread to further healthy cells. From the sizes of the necrotic rings, the virus is estimated to invade tissue in light (4320 lux) at c. 38 μm/h at 22° and c. 16 μm/h at 14°. Invasion in darkness at either temperature is very slow. Necrotic rings develop, and the rate of virus accumulation increases when inoculated plants are transferred from 22° in light (4320 lux) to 14° in darkness, but no lesions appear when the order of the treatments is reversed. The process of lesion formation thus includes an early phase requiring light and a later phase requiring low temperature. The light-requiring phase takes about a day at 14° but less at 22°. The later phase takes about 2 days in light (4320 lux) or 3 days in darkness.  相似文献   

11.
Batch sorption experiments were carried out with the bacteriophages MS2 and X174. Two types of reactor vessels, polypropylene and glass, were used. Consistently lower concentrations of MS2 were found in the liquid phase in the absence of soil (control blanks) than in the presence of soil after mixing. High levels of MS2 inactivation (~99.9%) were observed in control tubes made of polypropylene (PP), with comparatively little loss of virus seen in PP tubes when soil was present. Minimal inactivation of MS2 was observed when the air-water interface was completely eliminated from PP control blanks during mixing. All batch experiments performed with reactor tubes made of glass demonstrated no substantial inactivation of MS2. In similar experiments, bacteriophage X174 did not undergo inactivation in either PP or glass control blanks, implying that this virus is not affected by the same factors which led to inactivation of MS2 in the PP control tubes. When possible, phage adsorption to soil was calculated by the Freundlich isotherm. Our data suggest that forces associated with the air-water-solid interface (where the solid is a hydrophobic surface) are responsible for inactivation of MS2 in the PP control tubes. The influence of air-water interfacial forces should be carefully considered when batch sorption experiments are conducted with certain viruses.  相似文献   

12.
Inanimate surfaces, or fomites, can serve as routes of transmission of enteric and respiratory pathogens. No previous studies have evaluated the impact of surface disinfection on the level of pathogen transfer from fomites to fingers. Thus, the present study investigated the change in microbial transfer from contaminated fomites to fingers following disinfecting wipe use. Escherichia coli (108 to 109 CFU/ml), Staphylococcus aureus (109 CFU/ml), Bacillus thuringiensis spores (107 to 108 CFU/ml), and poliovirus 1 (108 PFU/ml) were seeded on ceramic tile, laminate, and granite in 10-μl drops and allowed to dry for 30 min at a relative humidity of 15 to 32%. The seeded fomites were treated with a disinfectant wipe and allowed to dry for an additional 10 min. Fomite-to-finger transfer trials were conducted to measure concentrations of transferred microorganisms on the fingers after the disinfectant wipe intervention. The mean log10 reduction of the test microorganisms on fomites by the disinfectant wipe treatment varied from 1.9 to 5.0, depending on the microorganism and the fomite. Microbial transfer from disinfectant-wipe-treated fomites was lower (up to <0.1% on average) than from nontreated surfaces (up to 36.3% on average, reported in our previous study) for all types of microorganisms and fomites. This is the first study quantifying microbial transfer from contaminated fomites to fingers after the use of disinfectant wipe intervention. The data generated in the present study can be used in quantitative microbial risk assessment models to predict the effect of disinfectant wipes in reducing microbial exposure.  相似文献   

13.
The goal of good toilet hygiene is minimizing the potential for pathogen transmission. Control of odours is also socially important and believed to be a societal measure of cleanliness. Understanding the need for good cleaning and disinfecting is even more important today considering the potential spread of emerging pathogens such as SARS-CoV-2 virus. While the flush toilet was a major advancement in achieving these objectives, exposure to pathogens can occur from failure to clean and disinfect areas within a restroom, as well as poor hand hygiene. The build-up of biofilm within a toilet bowl/urinal including sink can result in the persistence of pathogens and odours. During flushing, pathogens can be ejected from the toilet bowl/urinal/sink and be transmitted by inhalation and contaminated fomites. Use of automatic toilet bowl cleaners can reduce the number of microorganisms ejected during a flush. Salmonella bacteria can colonize the underside of the rim of toilets and persist up to 50 days. Pathogenic enteric bacteria appear in greater numbers in the biofilm found in toilets than in the water. Source tracking of bacteria in homes has demonstrated that during cleaning enteric bacteria are transferred from the toilet to the bathroom sinks and that these same bacteria colonize cleaning tools used in the restroom. Quantitative microbial risk assessment has shown that significant risks exist from both aerosols and fomites in restrooms. Cleaning with soaps and detergents without the use of disinfectants in public restrooms may spread bacteria and viruses throughout the restroom. Odours in restrooms are largely controlled by ventilation and flushing volume in toilet/urinals. However, this results in increased energy and water usage. Contamination of both the air and surfaces in restrooms is well documented. Better quantification of the risks of infection are needed as this will help determine what interventions will minimize these risks.  相似文献   

14.
It is well established that the contamination sources of cholera causing bacteria, Vibrio cholerae, are water and food, but little is known about the transmission role of the fomites (surfaces that can carry pathogens) commonly used in households. In the absence of appropriate nutrients or growth conditions on fomites, bacteria have been known to assume a viable but non-culturable (VBNC) state after a given period of time. To investigate whether and when V. cholerae O1 assumes such a state, this study investigated the survival and viable quantification on a range of fomites such as paper, wood, glass, plastic, cloth and several types of metals under laboratory conditions. The fomites were inoculated with an outbreak strain of V. cholerae and its culturability was examined by drop plate count method at 30 min intervals for up to 6 h. For molecular detection, the viable/dead stain ethidium monoazide (EMA) which inhibits amplification of DNA from dead cells was used in combination with real-time polymerase chain reaction (EMA-qPCR) for direct quantitative analyses of viable V. cholerae at 2, 4, 6, 24 h and 7 day time intervals. Results showed that V. cholerae on glass and aluminum surfaces lost culturability within one hour after inoculation but remained culturable on cloth and wood for up to four hours. VBNC V. cholerae on dry fomite surfaces was detected and quantified by EMA-qPCR even 7 days after inoculation. In conclusion, the prolonged survival of V. cholerae on various household fomites may play vital role in cholera transmission and needs to be further investigated.  相似文献   

15.
We have developed a new method for mounting nucleic acids and nucleic acidprotein complexes for high-resolution electron microscopy, and have used it to characterize the interaction between ribosomal protein S1 and single-stranded nucleic acids. We find that SI unwinds most, but not all of the secondary structure present in MS2 RNA and øX174 viral DNA. The binding of S1 to DNA and RNA is not highly co-operative, and has a stoichiometry of one S1 per 10 to 15 nucleotides. We have not observed any tendency for S1 nucleic acid complexes to form aggregates in either 0·01 m-Na+ or 0·1 m-Na+. An analogous protein isolated from the 30 S ribosomal subunit of Caulobacter crescentus is indistinguishable from Escherichia coli S1 in these studies. The mono-N-ethylmaleimide derivative of E. coli S1 will bind to both MS2 RNA and øX174 viral DNA with a stoichiometry of one N-ethylmaleimide-S1 per 10 to 15 nucleotides, but will not unwind the secondary structure of either of them.  相似文献   

16.

Background

The majority of influenza transmission occurs in homes, schools and workplaces, where many frequently touched communal items are situated. However the importance of transmission via fomites is unclear since few data exist on the survival of virus on commonly touched surfaces. We therefore measured the viability over time of two H1N1 influenza strains applied to a variety of materials commonly found in households and workplaces.

Methodology and Principal Findings

Influenza A/PuertoRico/8/34 (PR8) or A/Cambridge/AHO4/2009 (pandemic H1N1) viruses were inoculated onto a wide range of surfaces used in home and work environments, then sampled at set times following incubation at stabilised temperature and humidity. Virus genome was measured by RT-PCR; plaque assay (for PR8) or fluorescent focus formation (for pandemic H1N1) was used to assess the survival of viable virus.

Conclusions/Significance

The genome of either virus could be detected on most surfaces 24 h after application with relatively little drop in copy number, with the exception of unsealed wood surfaces. In contrast, virus viability dropped much more rapidly. Live virus was recovered from most surfaces tested four hours after application and from some non-porous materials after nine hours, but had fallen below the level of detection from all surfaces at 24 h. We conclude that influenza A transmission via fomites is possible but unlikely to occur for long periods after surface contamination (unless re-inoculation occurs). In situations involving a high probability of influenza transmission, our data suggest a hierarchy of priorities for surface decontamination in the multi-surface environments of home and hospitals.  相似文献   

17.
18.
Bacteriophages have been widely used as surrogates for human enteric viruses in many studies on virus transport and fate. In this investigation, the fates of three bacteriophages, MS2, R17, and phiX174, were studied in a series of dynamic batch experiments. Both MS2 and R17 readily underwent inactivation in batch experiments where solutions of each phage were percolated through tubes packed with varying ratios of glass and Teflon beads. MS2 and R17 inactivation was the result of exposure to destructive forces at the dynamic air-water-solid interface. phiX174, however, did not undergo inactivation in similar studies, suggesting that this phage does not accumulate at air-water interfaces or is not affected by interfacial forces in the same manner. Other batch experiments showed that MS2 and R17 were increasingly inactivated during mixing in polypropylene tubes as the ionic strength of the solution was raised (phiX174 was not affected). By the addition of Tween 80 to suspensions of MS2 and R17, phage inactivation was prevented. Our data suggest that viral inactivation in simple dynamic batch experiments is dependent upon (i) the presence of a dynamic air-water-solid interface (where the solid is a hydrophobic surface), (ii) the ionic strength of the solution, (iii) the concentration of surface active compounds in the solution, and (iv) the type of virus used.  相似文献   

19.
Aim: To measure the sanitizing effect of mesophilic (37°C) anaerobic digestion in high ammonia concentrations produced in situ. Methods and Results: Indicator organisms and salmonella were transferred to small‐scale anaerobic batch cultures and D‐values were calculated. Batch cultures were started with material from two biogas processes operating at high (46 mmol l?1) and low (1·6 mmol l?1) ammonia concentration. D‐values were shortened from c. 3 days to <1 day for the bacteria. MS2 had the same D‐value (1·3 days) independent of ammonia concentration whereas ΦX174 and 28B were faster inactivated in the control (1·1 and 7·9 days) than in the high ammonia (8·9 and 39 days) batch cultures. Conclusion: Running biogas processes at high levels of ammonia shortens the time to meet EU regulation concerning reduction of salmonella and enterococci (5 log). Unless a minimum retention time of 2 days, post‐treatment digestion is needed to achieve sufficient sanitation in continuous biogas processes. Significance and Impact of the Study: Running mesophilic biogas processes at high ammonia level produces residue with a high fertilizer value. With some stipulations concerning management parameters, such processes provide a method of bacterial sanitation without preceding pasteurization of the incoming organic waste.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号