首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribosomal functions are vital for all organisms. Bacterial ribosomes are stable 2.4 MDa particles composed of three RNAs and over 50 different proteins. Accumulating damage to ribosomal RNA or proteins can disturb ribosome functioning. Organisms could benefit from degrading or possibly repairing inactive or partially active ribosomes. Reactivation of chemically damaged ribosomes by a process of protein replacement was studied in vitro. Ribosomes were inactivated by chemical modification of Cys residues. Incubation of modified ribosomes with total ribosomal proteins led to reactivation of translational activity. Intriguingly, ribosomal proteins extracted by LiCl are equally active in the restoration of ribosome function. Incubation of 70S ribosomes with isotopically labelled r‐proteins followed by separation of ribosomes was used to identify exchangeable proteins. A similar set of proteins was found to be exchanged in vivo under stress conditions in the stationary phase. We propose that repair of damaged ribosomes might be an important mechanism for maintaining protein synthesis activity following chemical damage.  相似文献   

2.
Ribosomes from Trypanosoma brucei rhodesiense and from Leishmania infantum were isolated and optimal conditions for in vitro translation were established. The effect of ribosome-inactivating proteins extracted from several plants was then assessed in order to identify those suitable for the preparation of immunotoxins against these organisms. Ribosomes from both species were inactivated by some ribosome-inactivating proteins (dianthins, saporins, pokeweed antiviral proteins, and the ribosome-inactivating chain of abrin). The similarity of the effects on the ribosomes from the two species examined indicates that ribosome-inactivating proteins should also be effective in a similar way on ribosomes from other species of Trypanosoma and Leishmania.  相似文献   

3.
Apicomplexan protists such as Plasmodium and Toxoplasma contain a mitochondrion and a relic plastid (apicoplast) that are sites of protein translation. Although there is emerging interest in the partitioning and function of translation factors that participate in apicoplast and mitochondrial peptide synthesis, the composition of organellar ribosomes remains to be elucidated. We carried out an analysis of the complement of core ribosomal protein subunits that are encoded by either the parasite organellar or nuclear genomes, accompanied by a survey of ribosome assembly factors for the apicoplast and mitochondrion. A cross-species comparison with other apicomplexan, algal and diatom species revealed compositional differences in apicomplexan organelle ribosomes and identified considerable reduction and divergence with ribosomes of bacteria or characterized organelle ribosomes from other organisms. We assembled structural models of sections of Plasmodium falciparum organellar ribosomes and predicted interactions with translation inhibitory antibiotics. Differences in predicted drug–ribosome interactions with some of the modelled structures suggested specificity of inhibition between the apicoplast and mitochondrion. Our results indicate that Plasmodium and Toxoplasma organellar ribosomes have a unique composition, resulting from the loss of several large and small subunit proteins accompanied by significant sequence and size divergences in parasite orthologues of ribosomal proteins.  相似文献   

4.
5.
Mitochondrial ribosomes synthesize core subunits of the inner membrane respiratory chain complexes. In mitochondria, translation is regulated by mRNA‐specific activator proteins and occurs on membrane‐associated ribosomes. Mdm38/Letm1 is a conserved membrane receptor for mitochondrial ribosomes and specifically involved in respiratory chain biogenesis. In addition, Mdm38 and its higher eukaryotic homolog Letm1, function as K+/H+ or Ca2+/H+ antiporters in the inner membrane. Here, we identify the conserved ribosome‐binding domain (RBD) of Mdm38 and determine the crystal structure at 2.1 Å resolution. Surprisingly, Mdm38RBD displays a 14‐3‐3‐like fold despite any similarity to 14‐3‐3‐proteins at the primary sequence level and thus represents the first 14‐3‐3‐like protein in mitochondria. The 14‐3‐3‐like domain is critical for respiratory chain assembly through regulation of Cox1 and Cytb translation. We show that this function can be spatially separated from the ion transport activity of the membrane integrated portion of Mdm38. On the basis of the phenotypes observed for mdm38Δ as compared to Mdm38 lacking the RBD, we suggest a model that combining ion transport and translational regulation into one molecule allows for direct coupling of ion flux across the inner membrane, and serves as a signal for the translation of mitochondrial membrane proteins via its direct association with the protein synthesis machinery.  相似文献   

6.
Mammalian spermatozoa contain a complex population of mRNAs, some of which have been demonstrated to be translated de novo by mitochondrial‐type ribosomes using D‐chloramphenicol (CP), a specific inhibitor of mitochondrial translation. However, little is known about the functions of these mRNAs in mature sperm. In the present study, differential proteomic approaches were applied to study sperm protein profiles translated by mitochondrial‐type ribosomes using the inhibitor CP and 44 proteins were identified with lower expression in CP‐treated sperm in comparison to capacitated sperm (ratio ≥ 1.5, p<0.05). Results of Western blot and real‐time PCR suggest that four proteins were translated by mitochondrial‐type ribosomes. Bioinformatics analysis indicated that 26 of 44 proteins were involved in some critical processes correlated to sperm–egg interaction event. In addition, Mups, whose functions in reproduction have never been studied, were chosen for further study. Our results showed that Mups proteins were localized to the acrosome and flagellum of precapacitated sperm, and were also expressed in the equatorial segment of capacitated sperm. The depletion of Mups using neutralizing antibodies significantly inhibited capacitation in a dose‐dependent manner, subsequently inhibited acrosome reaction and sperm–egg fusion. In summary, mitochondrial translation during capacitation can store proteins beneficial for sperm–egg interaction.  相似文献   

7.
Chloroplast ribosome-binding sites were identified on the plastidrbcL andpsbA mRNAs using toeprint analysis. TherbcL translation initiation domain is highly conserved and contains a prokaryotic Shine-Dalgarno (SD) sequence (GGAGG) located 4 to 12 nucleotides upstream of the initiator AUG. Toeprint analysis ofrbcL mRNA associated with plastid polysomes revealed strong toeprint signals 15 nucleotides downstream from the AUG indicating ribosome binding at the translation initiation site.Escherichia coli 30S ribosomes generated similar toeprint signals when mixed withrbcL mRNA in the presence of initiator tRNA. These results indicate that plastid SD sequences are functional in chloroplast translation initiation. ThepsbA initiator region lacks a SD sequence within 12 nucleotides of the initiator AUG. However, toeprint analysis of soluble and membrane polysome-associatedpsbA mRNA revealed ribosomes bound to the initiator region.E. coli 30S ribosomes did not associate with thepsbA translation initiation region.E. coli and chloroplast ribosomes bind to an upstream region which contains a conserved SD-like sequence. Therefore, translation initiation onpsbA mRNA may involve the transient binding of chloroplast ribosomes to this upstream SD-like sequence followed by scanning to localize the initiator AUG. Illumination 8-day-old dark-grown barley seedlings caused an increase in polysome-associatedpsbA mRNA and the abundance of initiation complexes bound topsbA mRNA. These results demonstrate that light modulates D1 translation initiation in plastids of older dark-grown barley seedlings.  相似文献   

8.
9.
10.
The cold-shock response, characterized by a specific pattern of gene expression, is induced upon a downshift in temperature and in the presence of inhibitors of ribosomal function. Here, we demonstrate that RbfA of Escherichia coli, considered to be involved in ribosomal maturation and/or initiation of translation, is a cold-shock protein. Shifting the rbfA mutant to a lower temperature resulted in a constitutive induction of the cold-shock response accompanied by slower growth at low temperatures, while shifting the rbfA mutant that overproduces wild-type RbfA resulted in an increase in total protein synthesis accompanied by faster growth adaptation to the lower temperature. Furthermore, the cold-shock response was also constitutively induced in a cold-sensitive 16S rRNA mutant at low temperatures. Accompanying the transient induction of the cold-shock response, we also report that shifting E. coli from 37°C to 15°C resulted in a temporary inhibition of initiation of translation, as evidenced by the transient decrease in polysomes accompanied by the transient increase in 70S monosomes. The accumulative data indicate that the inducing signal for the cold-shock response is the increase in the level of cold-unadapted non-translatable ribo-somes which are converted to cold-adapted translatable ribosomes by the association of cold-shock proteins such as RbfA. Therefore, the expression of the cold-shock response, and thus cellular adaptation to low temperature, is regulated at the level of translation. The data also indicate that cold-shock proteins can be translated by ribosomes under conditions that are not translatable for most mRNAs.  相似文献   

11.
The reduced genomes of the apicoplast and mitochondrion of the malaria parasite Plasmodium falciparum are actively translated and antibiotic‐mediated translation inhibition is detrimental to parasite survival. In order to understand recycling of organellar ribosomes, a critical step in protein translation, we identified ribosome recycling factors (RRF) encoded by the parasite nuclear genome. Targeting of PfRRF1 and PfRRF2 to the apicoplast and mitochondrion respectively was established by localization of leader sequence–GFP fusions. Unlike any RRF characterized thus far, PfRRF2 formed dimers with disulphide interaction(s) and additionally localized in the cytoplasm, thus suggesting adjunct functions for the factor. PfRRF1 carries a large 108‐amino‐acid insertion in the functionally critical hinge region between the head and tail domains of the protein, yet complemented Escherichia coli RRF in the LJ14frrts mutant and disassembled surrogate E. coli 70S ribosomes in the presence of apicoplast‐targeted EF‐G. Recombinant PfRRF2 bound E. coli ribosomes and could split monosomes in the presence of the relevant mitochondrial EF‐G but failed to complement the LJ14frrts mutant. Although proteins comprising subunits of P. falciparum organellar ribosomes are predicted to differ from bacterial and mitoribosomal counterparts, our results indicate that the essential interactions required for recycling are conserved in parasite organelles.  相似文献   

12.
Proteomic studies have addressed the composition of plant chloroplast ribosomes and 70S ribosomes from the unicellular organism Chlamydomonas reinhardtii But comprehensive characterization of cytoplasmic 80S ribosomes from higher plants has been lacking. We have used two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to analyse the cytoplasmic 80S ribosomes from the model flowering plant Arabidopsis thaliana. Of the 80 ribosomal protein families predicted to comprise the cytoplasmic 80S ribosome, we have confirmed the presence of 61; specifically, 27 (84%) of the small 40S subunit and 34 (71%) of the large 60S subunit. Nearly half (45%) of the ribosomal proteins identified are represented by two or more distinct spots in the 2-DE gel indicating that these proteins are either post-translationally modified or present as different isoforms. Consistently, MS-based protein identification revealed that at least one-third (34%) of the identified ribosomal protein families showed expression of two or more family members. In addition, we have identified a number of non-ribosomal proteins that co-migrate with the plant 80S ribosomes during gradient centrifugation suggesting their possible association with the 80S ribosomes. Among them, RACK1 has recently been proposed to be a ribosome-associated protein that promotes efficient translation in yeast. The study, thus provides the basis for further investigation into the function of the other identified non-ribosomal proteins as well as the biological meaning of the various ribosomal protein isoforms.Patrick Giavalisco, Daniel Wilson are contributed equally to this work.  相似文献   

13.
Protein L7 is involved in translational control in eucaryotic cells as indicated by its association with ribosomes, its capability to inhibit specifically the cell-free translation of distinct mRNAs, and its interference with the synthesis of two major nucleus-associated proteins in L7 cDNA-transfected Jurkat T-lymphoma cells [F. Neumannet al.(1995)Nucleic Acids Res.23, 195]. In this report we show that the constitutive expression of protein L7 in Jurkat cells leads to an arrest in G1of the cell cycle and induces apoptosis as a consequence of cell-to-cell contact. Treatment of the L7 transfectants with the inhibitor of translation cycloheximide, at doses which do not affect untransfected cells, enhances their sensitivity to the induction of apoptosis. These results suggest that L7 can interfere with the translation of proteins which control cell cycle progression and/or the initiation of the apoptotic pathway.  相似文献   

14.
15.
The stalk, a characteristic structure of the large ribosomal subunit, is directly involved in the interaction with the soluble factors during translation. In the Mediterranean mussel Mytilus galloprovincialis, the stalk consists of one 32 kDa protein, MgP0, and two smaller, 12 kDa acidic proteins, MgP1 and MgP2, of pI 3.0 and 4.0, respectively, as revealed by analysis of purified ribosomes with electrophoresis and Western blot with a specific monoclonal antibody. Treatment of the ribosomes with alkaline phosphatase showed movement of the bands corresponding to the acidic MgP1 and MgP2 proteins to more basic pH after isoelectrofocusing, implying phosphorylation. The cDNA molecules of M. galloprovincialis ribosomal proteins MgP0, MgP1 and MgP2 and superoxide dismutase (MgSOD) were isolated from a cDNA library or constructed by RT-PCR, cloned in expression vectors and expressed in Escherichia coli. The recombinant proteins were purified with immobilized metal ion affinity chromatography (IMAC) and identified with immunoblotting. Exposure of mussels at cadmium and sorbitol and analysis of gill tissue extracts showed over expression of MgP0 protein.  相似文献   

16.
A new homologous, cell-free system for protein synthesis has been devised for use with ribosomes and elongation factors fromAspergillus nidulans. Ribosome preparations from strains with either the suaAlO1 orsuaCl09 mutations have a higher misreading ratio (non-cognate:cognate amino acid incorporation) in the presence of hygromycin than controls. They can be classed as fidelity mutants. These results also prove that the mutations must be in genes coding for ribosomal proteins or enzymes which modify ribosomal proteins post-translationally. Alternatively, the genes could code for translation factors.  相似文献   

17.
Following translation termination, ribosomal subunits dissociate to become available for subsequent rounds of protein synthesis. In many translation‐inhibiting stress conditions, e.g. glucose starvation in yeast, free ribosomal subunits reassociate to form a large pool of non‐translating 80S ribosomes stabilized by the ‘clamping’ Stm1 factor. The subunits of these inactive ribosomes need to be mobilized for translation restart upon stress relief. The Dom34‐Hbs1 complex, together with the Rli1 NTPase (also known as ABCE1), have been shown to split ribosomes stuck on mRNAs in the context of RNA quality control mechanisms. Here, using in vitro and in vivo methods, we report a new role for the Dom34‐Hbs1 complex and Rli1 in dissociating inactive ribosomes, thereby facilitating translation restart in yeast recovering from glucose starvation stress. Interestingly, we found that this new role is not restricted to stress conditions, indicating that in growing yeast there is a dynamic pool of inactive ribosomes that needs to be split by Dom34‐Hbs1 and Rli1 to participate in protein synthesis. We propose that this provides a new level of translation regulation.  相似文献   

18.
19.
The N-terminal region of a 60 kDa, jasmonate-induced protein of barley leaves (JIP60) is shown to be homologous to the catalytic domains of plant ribosome-inactivating proteins (RIP). Western blotting of leaf extracts and in vitro reconstitution experiments indicate that JIP60 is synthesized as a precursor which is processed in vivo. This is in keeping with in vitro translation experiments indicating that a deletion derivative of the N-terminal region, but not the putative precursor, strongly inhibits protein synthesis on reticulocyte ribosomes. The inhibition of ribosome function is associated with depurination of 26S rRNA, characteristic of plant RIPs. This indicates that JIP60 is a novel ribosome-inactivating protein requiring at least two processing events for full activation. JIP60 derivatives do not significantly inhibit in vitro protein synthesis on wheat germ ribosomes. These and other results suggest that JIP60 may be involved in plant defence.  相似文献   

20.
Mitochondrial ribosomes of Trypanosoma brucei are composed of 9S and 12S rRNAs, eubacterial‐type ribosomal proteins, polypeptides lacking discernible motifs and approximately 20 pentatricopeptide repeat (PPR) RNA binding proteins. Several PPRs also populate the polyadenylation complex; among these, KPAF1 and KPAF2 function as general mRNA 3′ adenylation/uridylation factors. The A/U‐tail enables mRNA binding to the small ribosomal subunit and is essential for translation. The presence of A/U‐tail also correlates with requirement for translation of certain mRNAs in mammalian and insect parasite stages. Here, we inquired whether additional PPRs activate translation of individual mRNAs. Proteomic analysis identified KRIPP1 and KRIPP8 as components of the small ribosomal subunit in mammalian and insect forms, but also revealed their association with the polyadenylation complex in the latter. RNAi knockdowns demonstrated essential functions of KRIPP1 and KRIPP8 in the actively respiring insect stage, but not in the mammalian stage. In the KRIPP1 knockdown, A/U‐tailed mRNA encoding cytochrome c oxidase subunit 1 declined concomitantly with the de novo synthesis of this subunit whereas polyadenylation and translation of cyb mRNA were unaffected. In contrast, the KRIPP8 knockdown inhibited A/U‐tailing and translation of both CO1 and cyb mRNAs. Our findings indicate that ribosome‐associated PPRs may selectively activate mRNAs for translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号