首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Salmonella Enteritidis is a highly prevalent and persistent foodborne pathogen and is therefore a leading cause of nontyphoidal gastrointestinal disease worldwide. A variety of stresses are endured throughout its infection cycle, including high concentrations of propionate (PA) within food processing systems and within the gut of infected hosts. Prolonged PA exposure experienced in such milieus may have a drastic effect on the proteome of Salmonella Enteritidis subjected to this stress.  相似文献   

2.
A defence pathway contributing to non‐host resistance to biotrophic fungi in Arabidopsis involves the synthesis and targeted delivery of the tryptophan (trp)‐derived metabolites indol glucosinolates (IGs) and camalexin at pathogen contact sites. We have examined whether these metabolites are also rate‐limiting for colonization by necrotrophic fungi. Inoculation of Arabidopsis with adapted or non‐adapted isolates of the ascomycete Plectosphaerella cucumerina triggers the accumulation of trp‐derived metabolites. We found that their depletion in cyp79B2 cyp79B3 mutants renders Arabidopsis fully susceptible to each of three tested non‐adapted P. cucumerina isolates, and super‐susceptible to an adapted P. cucumerina isolate. This assigns a key role to trp‐derived secondary metabolites in limiting the growth of both non‐adapted and adapted necrotrophic fungi. However, 4‐methoxy‐indol‐3‐ylmethylglucosinolate, which is generated by the P450 monooxygenase CYP81F2, and hydrolyzed by PEN2 myrosinase, together with the antimicrobial camalexin play a minor role in restricting the growth of the non‐adapted necrotrophs. This contrasts with a major role of these two trp‐derived phytochemicals in limiting invasive growth of non‐adapted biotrophic powdery mildew fungi, thereby implying the existence of other unknown trp‐derived metabolites in resistance responses to non‐adapted necrotrophic P. cucumerina. Impaired defence to non‐adapted P. cucumerina, but not to the non‐adapted biotrophic fungus Erysiphe pisi, on cyp79B2 cyp79B3 plants is largely restored in the irx1 background, which shows a constitutive accumulation of antimicrobial peptides. Our findings imply differential contributions of antimicrobials in non‐host resistance to necrotrophic and biotrophic pathogens.  相似文献   

3.
The aim of this work was to optimize acid stress conditions for induction of acid tolerance response (ATR) in the biocontrol agent Pantoea agglomerans and study the effect of ATR induced on the ability to survive under acidic conditions. Initially, Pantoea agglomerans was grown in mild acidic conditions (pH 6.0, 5.5, 5.0 and 4.0) in order to induce ATR. The highest ATR was induced at initial pH of 5 using malic or citric acid. A first in vitro experiment was carried out. Thus, basal liquid medium at different pHs (3.0, 3.5, 4.0 and non-acidified) were then inoculated with acid-adapted and non-adapted inocula of P. agglomerans and survivals were examined during incubation at 25 or 4 °C. It was found that acid adaptation enhanced the survivals of Pantoea agglomerans CPA-2 cells at pH levels at which the cells were unable to grow (<3.5 and 4.0, at 25 and 4 °C, respectively). In contrast, in pH levels at which the cells were able to grow (pH 4.0 at 25 °C and non-acidified medium at 25 and 4 °C) no-differences were found between adapted and non-adapted cells. In in vivo tests, adapted and non-adapted cells were inoculated in wounds on mandarins and pome fruits. No differences were found between adapted and non-adapted cells and biocontrol efficacy was maintained. The present study demonstrated that exposure of Pantoea agglomerans to mild acidic conditions could induce acid resistance in this biocontrol agent.  相似文献   

4.
Host–parasite co‐evolution can lead to genetic differentiation among isolated host–parasite populations and local adaptation between parasites and their hosts. However, tests of local adaptation rarely consider multiple fitness‐related traits although focus on a single component of fitness can be misleading. Here, we concomitantly examined genetic structure and co‐divergence patterns of the trematode Coitocaecum parvum and its crustacean host Paracalliope fluviatilis among isolated populations using the mitochondrial cytochrome oxidase I gene (COI). We then performed experimental cross‐infections between two genetically divergent host–parasite populations. Both hosts and parasites displayed genetic differentiation among populations, although genetic structure was less pronounced in the parasite. Data also supported a co‐divergence scenario between C. parvum and P. fluviatilis potentially related to local co‐adaptation. Results from cross‐infections indicated that some parasite lineages seemed to be locally adapted to their sympatric (home) hosts in which they achieved higher infection and survival rates than in allopatric (away) amphipods. However, local, intrinsic host and parasite characteristics (host behavioural or immunological resistance to infections, parasite infectivity or growth rate) also influenced patterns of host–parasite interactions. For example, overall host vulnerability to C. parvum varied between populations, regardless of parasite origin (local vs. foreign), potentially swamping apparent local co‐adaptation effects. Furthermore, local adaptation effects seemed trait specific; different components of parasite fitness (infection and survival rates, growth) responded differently to cross‐infections. Overall, data show that genetic differentiation is not inevitably coupled with local adaptation, and that the latter must be interpreted with caution in a multi‐trait context.  相似文献   

5.
Aims: To evaluate the interaction of fluconazole (FLC) and honokiol (HNK) in vitro and vivo against azole‐resistant (azole‐R) clinical isolates of Candida albicans. Methods and Results: A checkerboard microdilution method was used to study the in vitro interaction of FLC and HNK in 24 azole‐R clinical isolates of C. albicans. In vivo antifungal activity was performed to further analyse the interaction between FLC and HNK. In the in vitro study, synergism was observed in all 24 FLC‐resistant strains tested as determined by fractional inhibitory concentration index (FICI), and in 22 strains by ΔE models. No antagonistic activity was observed in any of the strains tested. These positive interactions were also confirmed by using the time‐killing test for the selected strain C. albicans YL371, which shows strong susceptible to the combination of HNK and FLC. In the in vivo study, the mice with candidiasis were treated successfully by a combination therapy of HNK with FLC, the results showed a decrease of the colony forming unit in infected and treated animals compared to the controls, at the conditions of the treatment used in this study. Conclusions: Synergistic activity of HNK and FLC against clinical isolates of FLC‐resistant C. albicans was observed in vitro and in vivo. Significance and Impact of the Study: This report might provide a potential therapeutic method to overcome the problem of drug‐resistance in C. albicans.  相似文献   

6.
Aim: To investigate the efficacy of steam pasteurization for reducing Salmonella serotype Enteritidis on raw almond surfaces. Methods and Results: Nonpareil almonds were inoculated to 107–8 CFU g?1 with a Salm. Enteritidis cocktail (Salm. Enteritidis 43353, ME‐13, ME‐14) or Salm. Enteritidis phage type 30, dried overnight and subjected to steam treatments through a pilot‐sized vertical pasteurization machine for 5, 15, 25, 35, 45, 55 and 65 s to investigate the effect of steam on a single layer of almond. Survival of Salm. Enteritidis was evaluated with tryptic soy agar and xylose lysine desoxycholate overlay for total and healthy cells, respectively. No significant differences (P > 0·05) in reduction were observed between the Salm. Enteritidis cocktail and Salm. Enteritidis PT 30 inoculum. Reduction of Salm. Enteritidis increased as a function of treatment time, with 25 s being sufficient to achieve a 5‐log reduction. Discolouration and visible formation of wrinkles were observed following steam pasteurization of more than 35 s. Conclusions: Steam pasteurization of 25 s is sufficient to achieve a 5‐log reduction of Salm. Enteritidis inoculated on raw almonds without visual quality degradation. Significance and Impact of the Study: Steam pasteurization is an effective alternative to reduce or prevent Salm. Enteritidis contamination on raw almonds.  相似文献   

7.
Antagonistic co‐evolution between hosts and parasites (reciprocal selection for resistance and infectivity) is hypothesized to play an important role in host range expansion by selecting for novel infectivity alleles, but tests are lacking. Here, we determine whether experimental co‐evolution between a bacterium (Pseudomonas fluorescens SBW25) and a phage (SBW25Φ2) affects interstrain host range: the ability to infect different strains of P. fluorescens other than SBW25. We identified and tested a genetically and phenotypically diverse suite of co‐evolved phage variants of SBW25Φ2 against both sympatric and allopatric co‐evolving hosts (P. fluorescens SBW25) and a large set of other P. fluorescens strains. Although all co‐evolved phage had a greater host range than the ancestral phage and could differentially infect co‐evolved variants of P. fluorescens SBW25, none could infect any of the alternative P. fluorescens strains. Thus, parasite generalism at one genetic scale does not appear to affect generalism at other scales, suggesting fundamental genetic constraints on parasite adaptation for this virus.  相似文献   

8.
Aims: Several bacteriocins (BCNs) that were identified from chicken commensal bacteria dramatically reduced Campylobacter colonization in poultry and are being directed toward on‐farm control of this important foodborne human pathogen. A recent study has shown that BCN resistance in Campylobacter jejuni is very difficult to develop in vitro. In this study, in vivo development and stability of BCN resistance in Campylobacter was examined. Methods and Results: Chickens infected with Camp. jejuni NCTC 11168 were treated with BCN E‐760 at the dose of 5 mg kg?1 body weight day?1 via oral gavages for three consecutive days, which selected BCN‐resistant (BCNr) mutants in the treated birds. However, all the in vivo‐selected mutants only displayed low levels of resistance to BCN (MIC = 2–8 mg l?1) when compared to parent strain (MIC = 0·5 mg l?1). Inactivation of CmeABC efflux pump of the BCNr mutants led to increased susceptibility to BCN (8–32 fold MIC reduction). Three different BCNrCampylobacter strains (in vitro‐ or in vivo‐derived) were examined for the stability of BCN resistance using both in vitro and in vivo systems. The low level of BCN resistance in these strains was not stable in vitro or in vivo in the absence of BCN selection pressure. Conclusions: Usage of BCN E‐760 only selected low‐level BCNrCamp. jejuni mutants in vivo, and the low‐level BCN resistance was not stable in vitro and in vivo. Significance and Impact of the Study: The study provides helpful information for risk assessment of the future practical application of the anti‐Campylobacter BCNs in animals.  相似文献   

9.
We explored the antifungal activity of thanatin, a 21 amino acid synthetic peptide from the hemipteran spined soldier bug Podisus maculiventris, against the mycotoxin‐producing plant pathogenic ascomycete Fusarium graminearum. In vitro germination assays showed complete inhibition of macroconidia germination and mycelia growth by >10 μm thanatin. Moreover, detached leaves of thanatin‐expressing Arabidopsis thaliana plants displayed enhanced resistance towards colonization with F. graminearum. Consistent with this, the plants showed also enhanced resistance of detached leaves to colonization with Botrytis cinerea. The results demonstrate a potential of thanatin for use in plant protection.  相似文献   

10.
Proteins Associated with Adaptation of Cultured Tobacco Cells to NaCl   总被引:20,自引:8,他引:12       下载免费PDF全文
Cultured tobacco cells (Nicotiana tabacum L. cv Wisconsin 38) adapted to grow in medium containing high levels of NaCl or polyethylene glycol (PEG) produce several new or enhanced polypeptide bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The intensities of some of the polypeptide bands (molecular weights of 58, 37, 35.5, 34, 26, 21, 19.5, and 18 kilodaltons) increase with increasing levels of NaCl adaptation, while the intensities of other polypeptide bands (54, 52, 17.5, and 16.5 kilodaltons) are reduced. Enhanced levels of 43- and 26-kilodalton polypeptides are present in both NaCl and PEG-induced water stress adapted cells but are not detectable in unadapted cells. In addition, PEG adapted cells have enhanced levels of 29-, 17.5-, 16.5-, and 11-kilodalton polypeptides and reduced levels of 58-, 54-, 52-, 37-, 35.5-, 34-, 21-, 19.5-, and 18-kilodalton polypeptide bands.

Synthesis of 26-kilodalton polypeptide(s) occurs at two different periods during culture growth of NaCl adapted cells. Unadapted cells also incorporate 35S into a 26-kilodalton polypeptide during the later stage of culture growth beginning at midlog phase. The 26-kilodalton polypeptides from adapted and unadapted cells have similar partial proteolysis peptide maps and are immunologically cross-reactive. During adaptation to NaCl, unadapted cells synthesize and accumulate a major 26-kilodalton polypeptide, and the beginning of synthesis corresponds to the period of osmotic adjustment and culture growth. From our results, we suggest an involvement of the 26-kilodalton polypeptide in the adaptation of cultured tobacco cells to NaCl and water stress.

  相似文献   

11.
The amount of sesquiterpene lactones and the lactone profile of Arnica montana L. in flowering and seed formation stages in vitro and in vivo propagated from seeds of German, Ukrainian, and Austrian origin and grown in two experimental fields were studied. It was found that in vitro propagated 2‐year plants in full flowering stage accumulated higher amount of lactones in comparison to in vivo propagated 3‐year plants and to the seed formation stage, respectively. Helenalins predominated in in vivo propagated 2‐year or in vitro propagated 3‐year plants. 2‐Methylbutyrate (2MeBu) was the principal ester in the samples with prevalence of helenalins, while isobutyrate (iBu) was the major one in the samples with predominance of 11,13‐dihydrohelenalins. The results revealed that the environmental conditions on Vitosha Mt. are more suitable for cultivation of Amontana giving higher content of lactones.  相似文献   

12.
Summary Growth reduction or cessation is an initial response of Atriplex nummularia L. cells to NaCl. However, A. nummularia L. cells that are adapted to 342 and 428 mM NaCl are capable of sustained growth in the presence of salt. Cells that are adapted to NaCl exhibit a reduced rate of division compared to unadapted cells. Unlike salt adapted cells of the glycophyte Nicotiana tabacum L., A. nummularia L. cells do not exhibit reduced rate of cell expansion after adaptation. However, the cell expansion rate of unadapted A. nummularia L. cells is considerably slower than that of unadapted glycophyte cells and this normally low rate of cell expansion may contribute to the enhanced capacity of the halophyte to tolerate salt. Turgor of NaCl adapted cells was equivalent to unadapted cells indicating that the cells of the halophyte do not respond to salt by osmotic over adjustment as reported for the glycophyte tobacco (Binzel et al. 1985, Plant Physiol. 79:118–125).  相似文献   

13.
Increasing antibiotic resistance urges for new technologies for studying microbes and antimicrobial mechanism of action. We adapted thermal proteome profiling (TPP) to probe the thermostability of Escherichia coli proteins in vivo. E. coli had a more thermostable proteome than human cells, with protein thermostability depending on subcellular location—forming a high‐to‐low gradient from the cell surface to the cytoplasm. While subunits of protein complexes residing in one compartment melted similarly, protein complexes spanning compartments often had their subunits melting in a location‐wise manner. Monitoring the E. coli meltome and proteome at different growth phases captured changes in metabolism. Cells lacking TolC, a component of multiple efflux pumps, exhibited major physiological changes, including differential thermostability and levels of its interaction partners, signaling cascades, and periplasmic quality control. Finally, we combined in vitro and in vivo TPP to identify targets of known antimicrobial drugs and to map their downstream effects. In conclusion, we demonstrate that TPP can be used in bacteria to probe protein complex architecture, metabolic pathways, and intracellular drug target engagement.  相似文献   

14.
Temperature is one of the leading factors that drive adaptation of organisms and ecosystems. Remarkably, many closely related species share the same habitat because of their different temporal or micro‐spatial thermal adaptation. In this study, we seek to find the underlying molecular mechanisms of the cold‐tolerant phenotype of closely related yeast species adapted to grow at different temperatures, namely S. kudriavzevii CA111 (cryo‐tolerant) and S. cerevisiae 96.2 (thermo‐tolerant). Using two different systems approaches, i. thermodynamic‐based analysis of a genome‐scale metabolic model of S. cerevisiae and ii. large‐scale competition experiment of the yeast heterozygote mutant collection, genes and pathways important for the growth at low temperature were identified. In particular, defects in lipid metabolism, oxidoreductase and vitamin pathways affected yeast fitness at cold. Combining the data from both studies, a list of candidate genes was generated and mutants for two predicted cold‐favouring genes, GUT2 and ADH3, were created in two natural isolates. Compared with the parental strains, these mutants showed lower fitness at cold temperatures, with S. kudriavzevii displaying the strongest defect. Strikingly, in S. kudriavzevii, these mutations also significantly improve the growth at warm temperatures. In addition, overexpression of ADH3 in S. cerevisiae increased its fitness at cold. These results suggest that temperature‐induced redox imbalances could be compensated by increased glycerol accumulation or production of cytosolic acetaldehyde through the deletion of GUT2 or ADH3, respectively.  相似文献   

15.
Locally adapted parasites have higher infectivity and/or fitness on sympatric than on allopatric hosts. We tested local adaptation of a holoparasitic plant, Cuscuta europaea, to its host plant, Urtica dioica. We infected hosts from five sites with holoparasites from the same five sites and measured local adaptation in terms of infectivity and parasite performance (biomass) in a reciprocal cross‐infection experiment. The virulence of the parasite did not differ between sympatric and allopatric hosts. Overall, parasites had higher infectivity on sympatric hosts but infectivity and parasite performance varied among populations. Parasites from one of the populations showed local adaptation in terms of performance, whereas parasites from one of the populations had higher infectivity on allopatric hosts compared with sympatric hosts. This among‐population variation may be explained by random variation in parasite adaptation to host populations or by time‐lagged co‐evolutionary oscillations that lead to fluctuations in the level of local adaptation.  相似文献   

16.
17.
Terpene volatiles play an important role in the interactions between specialized pathogens and fruits. Citrus black spot (CBS), caused by the fungus Phyllosticta citricarpa, is associated with crop losses in different citrus‐growing areas worldwide. The pathogen may infect the fruit for 20–24 weeks after petal fall, but the typical hard spot symptoms appear when the fruit have almost reached maturity, caused by fungal colonization and the induction of cell lysis around essential oil cavities. d ‐Limonene represents approximately 95% of the total oil gland content in mature orange fruit. Herein, we investigated whether orange fruit with reduced d ‐limonene content in peel oil glands via an antisense (AS) approach may affect fruit interaction with P. citricarpa relative to empty vector (EV) controls. AS fruit showed enhanced resistance to the fungus relative to EV fruit. Because of the reduced d ‐limonene content, an over‐accumulation of linalool and other monoterpene alcohols was found in AS relative to EV fruit. A global gene expression analysis at 2 h and 8 days after inoculation with P. citricarpa revealed the activation of defence responses in AS fruit via the up‐regulation of different pathogenesis‐related (PR) protein genes, probably as a result of enhanced constitutive accumulation of linalool and other alcohols. When assayed in vitro and in vivo, monoterpene alcohols at the concentrations present in AS fruit showed strong antifungal activity. We show here that terpene engineering in fruit peels could be a promising method for the development of new strategies to obtain resistance to fruit diseases.  相似文献   

18.
Salmonella enterica serovar Enteritidis has developed the potential to contaminate table eggs internally, by colonization of the chicken reproductive tract and internalization in the forming egg. The serotype Enteritidis has developed mechanisms to colonize the chicken oviduct more successfully than other serotypes. Until now, the strategies exploited by Salmonella Enteritidis to do so have remained largely unknown. For that reason, a microarray-based transposon library screen was used to identify genes that are essential for the persistence of Salmonella Enteritidis inside primary chicken oviduct gland cells in vitro and inside the reproductive tract in vivo. A total of 81 genes with a potential role in persistence in both the oviduct cells and the oviduct tissue were identified. Major groups of importance include the Salmonella pathogenicity islands 1 and 2, genes involved in stress responses, cell wall, and lipopolysaccharide structure, and the region-of-difference genomic islands 9, 21, and 40.  相似文献   

19.
Advances in tomato breeding for pest resistance have been achieved via gene introgression from wild Solanum (section Lycopersicon) species (Solanaceae). Ninety‐nine F3 families derived from an interspecific cross using as parental lines Solanum lycopersicum L. ‘LAM‐148' (susceptible standard) and Solanum pimpinellifolium L. ‘TO‐937‐15’ (multiple pest resistance accession with type IV glandular trichomes and acylsugar accumulation) were evaluated for their resistance against the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B in free‐choice and no‐choice tests for oviposition and adult colonization. The parental lines and eight F3 families with contrasting levels of resistance against the whitefly were selected and investigated in additional assays, which included the estimation of trichome densities and foliar acylsugar levels. The F3 families BTR‐302 and BTR‐331 exhibited low amounts of eggs of whitefly and transgressive segregation for type IV glandular trichome density with values greater than that of TO‐937‐15 plants. However, the tested families did not surpass the total foliar acylsugar content found in TO‐937‐15. BTR‐331 exhibited low colonization in the free‐choice test and it was the least preferred F3 family in the no‐choice test. The higher resistance levels of BTR‐331 were associated with a positive combination of higher type IV trichome density and higher acylsugar levels. Some F3 families displayed reduced fruit set due to the presence of flowers with style exertion of the antheridial‐cone. Fruit weight at harvest stage of the selected families (from 4.9 to 14.5 g) was lower than that of LAM‐148 (139.5 g) but higher than that of TO‐937‐15 plants (1.3 g). Therefore, although difficult to reach due to the simultaneous segregation of many polygenic traits, the combination of high B. tabaci resistance levels with superior horticultural traits is feasible. These results confirm TO‐937‐15 as a source of biotype B resistance. From the breeding standpoint, the genetic similarity between S. lycopersicum and S. pimpinellifolium would allow a more efficient resistance introgression by facilitating recombination and minimizing the potentially undesirable linkage drag associated with this trait.  相似文献   

20.
In‐vivo multicolor photoacoustic (PA) flow cytometry for ultrasensitive molecular detection of the CD44+ circulating tumor cells (CTCs) is demonstrated on a mouse model of human breast cancer. Targeting of CTCs with stem‐like phenotype, which are naturally shed from parent tumors, was performed with functionalized gold and magnetic nanoparticles. Results in vivo were verified in vitro with a multifunctional microscope, which integrates PA, photothermal (PT), fluorescent and transmission modules. Magnet‐induced clustering of magnetic nanoparticles in individual cells significantly amplified PT and PA signals. The novel noninvasive platform, which integrates multispectral PA detection and PT therapy with a potential for multiplex targeting of many cancer biomarkers using multicolor nanoparticles, may prospectively solve grand challenges in cancer research for diagnosis and purging of undetectable yet tumor‐initiating cells in circulation before they form metastasis. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号