首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The continental coasts and remote islands in the high-latitude Southern Hemisphere, including the subantarctic region, are characterized by many endemic species, high abundance of taxa, and intermediate levels of biodiversity. The macroalgal flora of these locations has received relatively little attention. Filamentous green algae are prolific in the intertidal of southern islands, but the taxonomy, distribution, and evolutionary history of these taxa are yet to be fully explored, mostly due to the difficulty of access to some of these locations. In this study, we examined specimens of the order Cladophorales from various locations in the high-latitude Southern Hemisphere including the subantarctic (the Auckland Islands, Bounty Islands, Campbell Island, Macquarie Island, and Kerguelen Islands), as well as mainland New Zealand, the Chatham Islands, Chile, and Tasmania. The analyses of the rDNA sequences of the samples revealed the existence of two new clades in a phylogeny of the Cladophoraceae. One of these clades is described as the novel genus Vandenhoekia gen. nov., which contains three species that are branched or unbranched. The amended genus Rama is reinstated to accommodate the other clade, and contains four species, including the Northern Hemisphere “Cladophora rupestris.” In Rama both branched and unbranched morphologies are found. It is remarkable that gross morphology is not a predictor for generic affiliations in these algae. This study illustrates that much can still be learned about diversity in the Cladophorales and highlights the importance of new collections, especially in novel locations.  相似文献   

2.
    
The Australasian region contains a significant proportion of worldwide Poa diversity, but the evolutionary relationships of taxa from this region are incompletely understood. Most Australasian species have been placed in a monophyletic Poa subgenus, Poa supersection Homalopoa section Brizoides clade, but with limited resolution of relationships. In this study, phylogenetic relationships were reconstructed for Australasian Poa, using three plastid (rbcL and matK genes and the rpl32‐trnL intergenic spacer) and two nuclear [internal/external transcribed spacer (ITS/ETS)] markers. Seventy‐five Poa spp. were represented (including 42 Australian, nine New Guinean, nine New Zealand and three Australian/New Zealand species). Maximum parsimony, maximum likelihood and Bayesian inference criteria were applied for phylogenetic reconstruction. Divergence dates were estimated using Bayesian inference, with a relaxed clock applied and rates sampled from an uncorrelated log‐normal distribution. Australasian Poa spp. are placed in three lineages (section Brizoides, section Parodiochloa and the ‘X clade’), each of which is closely related to non‐Australasian taxa or clades. Section Brizoides subsection Australopoa is polyphyletic as currently circumscribed. In Australasia, Poa has diversified within the last 4.3 Mya, with divergence dating results broadly congruent with fossil data that record the appearance of vegetation with a prominent grassland understorey or shrubland/grassland mosaic vegetation dating from the mid‐Pliocene. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 523–552.  相似文献   

3.
    
Lagenophora (Astereae, Asteraceae) has 14 species in New Zealand, Australia, Asia, southern South America, Gough Island and Tristan da Cunha. Phylogenetic relationships in Lagenophora were inferred using nuclear and plastid DNA regions. Reconstruction of spatio‐temporal evolution was estimated using parsimony, Bayesian inference and likelihood methods, a Bayesian relaxed molecular clock and ancestral area and habitat reconstructions. Our results support a narrow taxonomic concept of Lagenophora including only a core group of species with one clade diversifying in New Zealand and another in South America. The split between the New Zealand and South American Lagenophora dates from 11.2 Mya [6.1–17.4 95% highest posterior density (HPD)]. The inferred ancestral habitats were openings in beech forest and subalpine tussockland. The biogeographical analyses infer a complex ancestral area for Lagenophora involving New Zealand and southern South America. Thus, the estimated divergence times and biogeographical reconstructions provide circumstantial evidence that Antarctica may have served as a corridor for migration until the expansion of the continental ice during the late Cenozoic. The extant distribution of Lagenophora reflects a complex history that could also have involved direct long‐distance dispersal across southern oceans. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 78–95.  相似文献   

4.
    
Phylogenetic relationships are inferred from nuclear ribosomal internal transcribed spacer sequences for species belonging to Sophora sect. Edwardsia from South America, New Zealand, Lord Howe Island, Hawai'i, La Réunion, Easter Island, and Raivavae Island (French Polynesia). Results support the monophyly of sect. Edwardsia , but relationships among the species from this section are poorly resolved due to most species having identical sequences. The origin of Sophora sect. Edwardsia is discussed, as competing hypotheses have proposed the group originated in South America from a North American ancestor, or in the north-west Pacific. We suggest sect. Edwardsia may have arisen in the north-west Pacific from a Eurasian ancestor.  © The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 140 , 435–441.  相似文献   

5.
6.
    
Peonies (the Paeoniaceae, Paeonia L.) are famous garden flowers, medicinal plants, and edible oil crops, but their evolutionary history largely remains unknown. To probe into their phylogenetic relationships, evolutionary history, formation of present distribution pattern, and origins of tetraploids, we sequenced 25 fragments belonging to 20 single copy nuclear genes and 14 chloroplast regions of all species in the genus to reconstruct phylogenetic relationships, date the divergence times of lineages, infer the ancestral biogeographical regions, and document the parents of tetraploids. Our results show that Paeoniaceae separated from the other members in Saxifragales in the Campanian of the late Cretaceous and diverged into two clades, woody and herbaceous clades, in the late Oligocene or early Miocene. They survived and early diverged in the Pan-Himalaya where they migrated eastwards to East Asia and further to NW America, and northwards to Middle Asia, and further to Europe. The woody lineage differentiated into two sublineages with accelerated root or floral disk evolution, while the herbaceous lineage diverged into five sublineages. Multiple glacial and interglacial cycles in Europe in the late Pliocene and early Pleistocene created opportunities for the peony species to meet and hybridize in the Mediterranean refugia, giving rise to eight allotetraploid species and four infraspecific tetraploids. Paeonia daurica Andrews, P. obovata Maxim., and P. tenuifolia L. served as the most important parents. The phylogeny of Paeonia L. implies that a new taxonomic system with two subgenera and seven sections should be proposed.  相似文献   

7.
  总被引:2,自引:1,他引:2  
Aim Determine the geographical and temporal origins of New Zealand cicadas. Location New Zealand, eastern Australia and New Caledonia. Methods DNA sequences from 14 species of cicadas from New Zealand, Australia, and New Caledonia were examined. A total of 4628 bp were analysed from whole genome extraction of four mitochondrial genes (cytochrome oxidase subunits I and II, and ribosomal 12S and 16S subunits) and one nuclear gene (elongation factor‐1 alpha). These DNA sequences were aligned and analysed using standard phylogenetic methods based primarily on the maximum likelihood optimality criterion. Dates of divergences between clades were determined using several molecular clock methods. Results New Zealand cicadas form two well‐defined clades. One clade groups with Australian taxa, the other with New Caledonian taxa. The molecular clock analyses indicate that New Zealand genera diverged from the Australian and New Caledonian genera within the last 11.6 Myr. Main conclusions New Zealand was likely colonized by two or more invasions. One NZ lineage has its closest relatives in Australia and the other in New Caledonia. These invasions occurred well after New Zealand became isolated from other land masses, therefore cicadas must have crossed large bodies of water to reach New Zealand.  相似文献   

8.
  总被引:1,自引:0,他引:1  
Aim To report analyses and propose hypotheses of adaptive radiation that explain distributional patterns of the alpine genus Pachycladon Hook.f. – a morphologically diverse genus from New Zealand closely related to Arabidopsis thaliana. Location South Island, New Zealand. Methods Morphological and nrDNA ITS sequence phylogenies were generated for Pachycladon. An analysis is presented of species distributional patterns and attributes. Results Phylogenetic analyses of morphological characters and nrDNA ITS sequence data were found to be congruent in supporting three New Zealand clades for Pachycladon. Monophyletic groups identified within the genus are geographically distinct and are associated with different geological parent materials. Distribution maps, latitude and altitude range, and data on geological parent material are presented for the nine named and one unnamed species of Pachycladon from New Zealand. Main conclusions (a) Panbiogeographic hypotheses accounting for the origin and present‐day distribution of Pachycladon in New Zealand are not supported.
(b) Species diversity and distributions of Pachycladon are explained by a Late Tertiary–Quaternary adaptive radiation associated with increasing specialization to geological substrates. Pachycladon cheesemanii Heenan & A.D.Mitch. is morphologically similar to the closest overseas relatives. It is a geological generalist and has wide latitudinal and altitudinal ranges, and we suggest it resembles the ancestral form of the genus in New Zealand. Pachycladon novae‐zelandiae (Hook.f.) Hook.f. and P. wallii (Carse) Heenan & A.D.Mitch. are a southern South Island group that predominantly occurs on Haast Schist, are polycarpic, have lobed leaves, and lateral inflorescences. Pachycladon enysii (Cheeseman) Heenan & A.D.Mitch., P. fastigiata (Hook.f.) Heenan & A.D.Mitch., and P. stellata (Allan) Heenan & A.D.Mitch. are restricted to greywacke in the eastern South Island, and are facultatively monocarpic, have serrate leaves, and stout terminal inflorescenes.
(c) Present distributions of Pachycladon species may relate to Pleistocene climate change. Pachycladon enysii reaches the highest altitude of New Zealand species of Pachycladon and is most common in the Southern Alps in Canterbury. We propose that this species survived on nunataks at the height of the last glaciation. In contrast, P. fastigiata grows at a lower altitude and is absent from the high mountains of the Southern Alps. We suggest it was extirpated from this area during the last glaciation.  相似文献   

9.
  总被引:1,自引:0,他引:1  
Aim Determine the phylogeny and dispersal patterns of the cicada genus Kikihia in New Zealand and the origin of the Norfolk, Kermadec, and Chatham Island cicadas. Location New Zealand, Norfolk Island, Kermadec Islands and Chatham Island. Methods DNA sequences from 16 species and four soon to be described species of cicadas from New Zealand and Norfolk Island (Australia) were examined. A total of 1401 base pairs were analysed from whole genome extraction of three mitochondrial genes (cytochrome oxidase subunit II, ATPase6 and ATPase8). These DNA sequences were aligned and analysed using standard likelihood approaches to phylogenetic analysis. Dates of divergences between clades were determined using a molecular clock based on Bayesian statistics. Results Most species in the genus Kikihia diverged between 3 and 5 million years ago (Ma) coincident with a period of rapid mountain building in New Zealand. Cicada species on the Kermadec and Norfolk Islands invaded recently from New Zealand and are closely related to the New Zealand North Island species Kikihia cutora. Main conclusions Speciation in the genus Kikihia was likely due in large part to the appearance of new habitats associated with the rise of the Southern Alps, starting c. 5 Ma. Dispersal of Kikihia species within mainland New Zealand probably occurred gradually rather than through long‐distance jumps. However, invasion of Norfolk, the Kermadecs and Chatham Islands had to have occurred through long‐distance dispersal.  相似文献   

10.
    
Molecular phylogeny and evolutionary history of Cervus, the most successful and widespread cervid genus, have been extensively addressed in Europe, fairly in eastern Asia, but scarcely in central Asia, where some populations have never been phylogenetically investigated with DNA‐based methods. Here, we applied a coalescent Bayesian approach to most Cervus taxa using complete mitochondrial cytochrome b gene and control region to provide a temporal framework for species differentiation and dispersal, with special emphasis on the central Asian populations from the Tarim Basin (C. elaphus bactrianus, C. elaphus yarkandensis) and Indian Kashmir (C. elaphus hanglu) aiming at assessing their phylogenetic and phylogeographic patterns. Red deer (C. elaphus), wapiti (C. canadensis) and sika deer (C. nippon) are confirmed as highly differentiated taxa, with genetic distances, divergence times and phylogenetic positions compatible with the rank of species. Similarly, the red deer of the Tarim group, hitherto considered as subspecies of C. elaphus, showed a comparable pattern of genetic distinction in the phylogeny and, according to our results, are thus worthy of being raised to the species level. The systematic position of the endangered red deer from Indian Kashmir is assessed here for the first time, and implications for its conservation are also outlined. Based on phylogeny and divergence time estimates, we propose a novel evolutionary pattern for the genus Cervus during the Mio/Pliocene, in the light of palaeo‐climatological information.  相似文献   

11.
12.
The chironomid fauna living in running waters in the Southern Alps was investigated from an ecological and biogeographical point of view: 202 species were identified (not including terrestrial species). It must be emphasised that species identification is tentative within some genera, especially those awaiting revision (e.g., Boreoheptagyia, Chaetocladius). Although much taxonomic work was done in the past on the chironomid Alpine fauna, there are still many unsolved problems. Most of the species found are widespread in the Palearctic Region, with no evidence of bio-geographical barriers separating different Alpine sectors. Really a relatively high number of species reported from the northern and western side (France, Switzerland, Austria) of the Alps was not captured on the southern side (Italy), whereas most species found on the southern side are also present on the northern one. Very few species are reported from southern side only. Lack of sampling, imperfect taxonomic knowledge and different environmental conditions between the northern and southern sides may be responsible of this result. A comparison of the fauna of the southern Alps with the fauna of the Apennines suggests that the differences are probably more related to ecological conditions (lack of glaciers in the Apennines) than to biogeographical barriers. Different chironomid assemblages colonise manifold habitat types: strict cold-stenothermal species tolerating high current velocity (e.g., Diamesa latitarsissteinboecki group) are almost the sole inhabitants of kryal biotopes, while other cold-stenothermal species are restricted to cold springs (Diamesa dampfi, D. incallida, Tokunagaia rectangularis, T. tonollii), there are also species characteristic of hygropetric habitats (Syndiamesa edwardsi, S. nigra) or restricted to lacustrine habitats (Corynoneura lacustris, Paratanytarsus austriacus). It must be emphasised that different responses to environmental factors can be observed between species belonging to the same genus (e.g., Diamesa, Eukiefferiella, Orthocladius , Paratrichocladius), so species identification is really needed for a good ecological work. Water temperature, current velocity, substrate type are the most critical factors, sometime chironomid species appear to be rather opportunistic and their presence or absence cannot be clearly related to a well defined range of values of environmental variables: be it a lack of knowledge or a real datum will be the task of future studies. The waters of the Alps are still relatively unpolluted, but hydraulic stress due to river damming and canalization is a serious problem for macrofauna conservation, and as the glaciers retreat, the species confined to the glacial snouts are at risk of extinction, some of them possibly even before their existence be discovered. *The complete database with detailed taxonomical, ecological and biogeographical information can be obtained by the senior author to request (e-mail: bruno.rossaro@unimi.it). A table with species response to environmental variables is also available at the web site: http://users.unimi.it/~roma1999/rossaro.html, downloading file CHIRDB.)  相似文献   

13.
    
Aim To assess the geological evolution and biogeographical implications of low mountain passes. In particular, we question the common biogeographical belief that major mountain belts form impervious physical barriers to biological dispersal, and that related taxa found on opposites sides of mountains are necessarily a result of vicariant tectonic processes. Location The Southern Alps of New Zealand form a long (500 km) narrow mountain belt at the oblique collisional Pacific–Australian tectonic plate boundary. High mountains were uplifted during the Pliocene (2–5 Ma) and uplift has continued to the present day. Methods We integrate previous work from several disciplines to obtain an overview of inter‐relationships between plate tectonic processes, geomorphology and biogeography along the main mountain barrier in New Zealand, and then extend this approach to other major mountain belts. Results The Southern Alps initially formed a barrier to at least some biological dispersal, including vicariant formation of separate species of freshwater non‐migratory galaxiid fish on either side. However, the high mountain barrier was breached in several places when passive transport of topography occurred, from the low‐erosion rain shadow on the eastern side towards the high‐erosion, high‐rainfall western side. This tectonic transport resulted in the capture of eastern rivers by west‐draining rivers, leaving low passes at the topographic divide. These low‐elevation corridors permitted biological dispersal across the mountains, although continued uplift raises these passes. A new set of passes has formed in the northern part of the mountains where younger faults are cutting across the older mountain topography. These potential dispersal corridors are becoming lower with continued erosion, and more common as the defining structures migrate southwards. Main conclusions Biological dispersal across the Southern Alps may be facilitated by numerous mountain passes, especially via the new passes formed by cross‐cutting faults. More low‐lying corridors existed than is readily apparent now, as old river capture‐related passes have been blocked by ongoing uplift. The dynamic mountain‐building and erosional environment typified by the Southern Alps occurs in all the world’s collisional mountain belts, such as the Andes, Himalayas, European Alps and North American Cordillera. Sister taxa occurring across mountain belts are not necessarily a result of vicariance driven by the rise of the mountains, as numerous passes may have permitted intermittent dispersal. The evolution of low passes may have been more prevalent than is currently appreciated, suggesting that topographically complex mountain ranges might be more effectively viewed as dynamic filters within a probability landscape rather than as static and impervious high‐altitude barriers to all but the rarest of biological dispersal events. In some cases, the biological disjunctions observed across mountains may more directly reflect habitat differentiation driven by orographic mountain development that has limited the probability of trans‐alpine dispersal success.  相似文献   

14.
Platymantis is a group of neobatrachian frogs that occurs from the Philippines to New Guinea – an area situated at the interface between the Australian and Asian biogeographical region that is highly fragmented by stretches of open sea. Partial sequences of the mitochondrial 12S rRNA gene are herein used to infer the relationships of species from the Indonesian part of New Guinea (Papua and West Papua Province). The phylogenetic trees reveal a deep bifurcation between the Asian and Western New Guinean clades being consistent with phylogeographic patterns observed in various other faunal groups. While most species are well differentiated in the examined locus, low interspecific genetic distances between one and three percent were observed in the New Guinean species Platymantis papuensis and P. cryptotis as well as P. pelewensis from Palau. Platymantis papuensis and P. pelewensis are geographically separated from each other by a 1100 km stretch of open sea. The minor degree of genetic differentiation between both species points to a recent event of transmarine dispersal as causation for the occurrence of P. pelewensis on Palau. The low genetic differentiation between P. cryptotis and the sympatric P. papuensis, two species that are bioacoustically and morphologically distinct, may indicate its possibly recent evolutionary origin or, alternatively, yet undetected hybridization between the two species. The same may also hold true for frogs from Yapen that exhibit calls different from the sympatric P. papuensis. Tentatively referred to as Platymantis spec., these frogs are also genetically not well differentiated. It is furthermore concluded that the partly low genetic differentiation of the New Guinean Platymantis species render this group one of the cases in which DNA barcoding would likely fail to produce reliable results.  相似文献   

15.
  总被引:3,自引:1,他引:3  
Aim To compare the phylogeny of the eucalypt and melaleuca groups with geological events and ages of fossils to discover the time frame of clade divergences. Location Australia, New Caledonia, New Guinea, Indonesian Archipelago. Methods We compare published molecular phylogenies of the eucalypt and melaleuca groups of the plant family Myrtaceae with geological history and known fossil records from the Cretaceous and Cenozoic. Results The Australasian eucalypt group includes seven genera, of which some are relictual rain forest taxa of restricted distribution and others are species‐rich and widespread in drier environments. Based on molecular and morphological data, phylogenetic analyses of the eucalypt group have identified two major clades. The monotypic Arillastrum endemic to New Caledonia is related in one clade to the more species‐rich Angophora, Corymbia and Eucalyptus that dominate the sclerophyll vegetation of Australia. Based on the time of rifting of New Caledonia from eastern Gondwana and the age of fossil eucalypt pollen, we argue that this clade extends back to the Late Cretaceous. The second clade includes three relictual rain forest taxa, with Allosyncarpia from Arnhem Land the sister taxon to Eucalyptopsis of New Guinea and the eastern Indonesian archipelago, and Stockwellia from the Atherton Tableland in north‐east Queensland. As monsoonal, drier conditions evolved in northern Australia, Arnhem Land was isolated from the wet tropics to the east and north during the Oligocene, segregating ancestral rain forest biota. It is argued also that the distribution of species in Eucalyptopsis and Eucalyptus subgenus Symphyomyrtus endemic in areas north of the stable edge of the Australian continent, as far as Sulawesi and the southern Philippines, is related to the geological history of south‐east Asia‐Australasia. Colonization (dispersal) may have been aided by rafting on micro‐continental fragments, by accretion of arc terranes onto New Guinea and by land brought into closer proximity during periods of low sea‐level, from the Late Miocene and Pliocene. The phylogenetic position of the few northern, non‐Australian species of Eucalyptus subgenus Symphyomyrtus suggests rapid radiation in the large Australian sister group(s) during this time frame. A similar pattern, connecting Australia and New Caledonia, is emerging from phylogenetic analysis of the Melaleuca group (Beaufortia suballiance) within Myrtaceae, with Melaleuca being polyphyletic. Main conclusion The eucalypt group is an old lineage extending back to the Late Cretaceous. Differentiation of clades is related to major geological and climatic events, including rifting of New Caledonia from eastern Gondwana, development of monsoonal and drier climates, collision of the northern edge of the Australian craton with island arcs and periods of low sea level. Vicariance events involve dispersal of biota.  相似文献   

16.
Jamieson  C. D. 《Hydrobiologia》1998,367(1-3):189-197
The distribution of four calanoid copepod species of Boeckella in New Zealand are mapped and described. An explanation of their distribution patterns based on panbiogeographic methods is compared to an explanation based on dispersalist concepts. The panbiogeographic explanation is simpler, and is consistent with explanation of distribution patterns among other genera of plants, invertebrates, amphibians and birds. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
    
Sophora tomentosa , the type species of the genus Sophora , is shown by phylogenetic analyses of rbc L and ITS sequence data to be sister to Sophora sect. Edwardsia . S. tomentosa and most of the species from sect. Edwardsia share hypogeal germination, exstipulate leaves, and terete filaments. These species have buoyant seeds, and are distributed by ocean currents throughout the pantropics ( S. tomentosa ) and around southern temperate oceanic islands (sect. Edwardsia ). S. tomentosa differs from the species of sect. Edwardsia by its frutescent growth habit, terminal elongate inflorescence and smooth-walled legume. S. macrocarpa is unusual in sect. Edwardsia as its leaves have stipules, the filaments are winged, and the legume is smooth-walled.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 146 , 439–446.  相似文献   

18.
The formation and maintenance of the Nothofagus beech gap in the South Island, New Zealand, has been the focus of biogeographical debate since the 1920s. We examine the historical process of gap formation by investigating the population genetics of fungus beetles: Brachynopus scutellaris (Staphylinidae) inhabits logs and is absent from the beech gap, and Hisparonia hystrix (Nitidulidae) is contiguous through the gap and is found commonly on sooty mould growing on several plant species. Both species show distinctive northern and southern haplotype distributions while H. hystrix recolonized the gap as shown by definitive mixing. B. scutellaris shows two major haplotype clades with strong geographical concordance, and unlike H. hystrix, has clearly defined lineages that can be partitioned for molecular dating. Based on coalescence dating methods, disjunct lineages of B. scutellaris indicate that the gap was formed less than 200 000 years ago. Phylogenetic imprints from both species reveal similar patterns of population divergence corresponding to recent glacial cycles, favouring a glacial explanation for the origin of the gap. Post-gap colonization by H. hystrix may have been facilitated by the spread of Leptospermum scoparium host trees to the area, and they may be better at dispersing than B. scutellaris which may be constrained by fungal host and/or microhabitat. The gap-excluded species B. scutellaris is found in both beech and podocarp-broadleaf forests flanking the Westland gap and its absence in the gap may be related to incomplete recolonization following glacial retreat. We also discuss species status and an ancient polymorphism within B. scutellaris .  相似文献   

19.
20.
Global surface temperatures are expected to increase by several degrees in the next century, with potentially large but poorly understood impacts on ecological interactions. Here we propose potential effects of increased temperatures on ecologically dominant New Zealand grasses (Chionochloa spp.) that mass flower and mast seed. Twenty-two years’ data from five masting Chionochloa species in New Zealand showed that the cue for heavy flowering was unusually high temperature in the summer of the year before flowering. Attack by predispersal insect seed predators was much reduced in mast years, apparently because predator populations were satiated. Increased temperatures would greatly decrease interannual variation in Chionochloa flowering, allowing seed predator populations to increase and potentially to devastate the seed crop annually. Similar responses are likely in masting species worldwide. This previously unrecognized effect of global warming could have widespread impacts on temperate ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号