首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reversible permeable cells have been used to isolate chromatin structures during the process of chromosome condensation. Analysis of individual structures slipping out from nuclei after reversal of permeabilization revealed that chromosomes of Drosophila cells consist of small units called rodlets. The fluorescent images of chromatin fibers were subjected to computer analysis allowing the computer-aided visualization of chromatin fibers. The zig-zag array of fibers consisting of 12-15 nucleosomes with a length of 270-330 nm (average 300 nm) showed decondensed extended strings, condensed loops, and coiled condensed loops. Theoretical considerations leading to the plectonemic model of chromatin condensation are based on experimental data, and give an explanation how the 30 chromatin fibers are formed and further condensed to the 300 nm chromatin loops in Drosophila cells.  相似文献   

2.
3.
In mammals, genomic DNA that is roughly 2 m long is folded to fit the size of the cell nucleus that has a diameter of about 10 μm. The folding of genomic DNA is mediated via assembly of DNA-protein complex, chromatin. In addition to the reduction of genomic DNA linear dimensions, the assembly of chromatin allows to discriminate and to mark active (transcribed) and repressed (non-transcribed) genes. Consequently, epigenetic regulation of gene expression occurs at the level of DNA packaging in chromatin. Taking into account the increasing attention of scientific community toward epigenetic systems of gene regulation, it is very important to understand how DNA folding in chromatin is related to gene activity. For many years the hierarchical model of DNA folding was the most popular. It was assumed that nucleosome fiber (10-nm fiber) is folded into 30-nm fiber and further on into chromatin loops attached to a nuclear/chromosome scaffold. Recent studies have demonstrated that there is much less regularity in chromatin folding within the cell nucleus. The very existence of 30-nm chromatin fibers in living cells was questioned. On the other hand, it was found that chromosomes are partitioned into self-interacting spatial domains that restrict the area of enhancers action. Thus, TADs can be considered as structural-functional domains of the chromosomes. Here we discuss the modern view of DNA packaging within the cell nucleus in relation to the regulation of gene expression. Special attention is paid to the possible mechanisms of the chromatin fiber self-assembly into TADs. We discuss the model postulating that partitioning of the chromosome into TADs is determined by the distribution of active and inactive chromatin segments along the chromosome.This article was specially invited by the editors and represents work by leading researchers.  相似文献   

4.
Four classes of models have been proposed for the internal structure of eukaryotic chromosome fibers--the solenoid, twisted-ribbon, crossed-linker, and superbead models. We have collected electron image and x-ray scattering data from nuclei, and isolated chromatin fibers of seven different tissues to distinguish between these models. The fiber diameters are related to the linker lengths by the equation: D(N) = 19.3 + 0.23 N, where D(N) is the external diameter (nm) and N is the linker length (base pairs). The number of nucleosomes per unit length of the fibers is also related to linker length. Detailed studies were done on the highly regular chromatin from erythrocytes of Necturus (mud puppy) and sperm of Thyone (sea cucumber). Necturus chromatin fibers (N = 48 bp) have diameters of 31 nm and have 7.5 +/- 1 nucleosomes per 10 nm along the axis. Thyone chromatin fibers (N = 87 bp) have diameters of 39 nm and have 12 +/- 2 nucleosomes per 10 nm along the axis. Fourier transforms of electron micrographs of Necturus fibers showed left-handed helical symmetry with a pitch of 25.8 +/- 0.8 nm and pitch angle of 32 +/- 3 degrees, consistent with a double helix. Comparable conclusions were drawn from the Thyone data. The data do not support the solenoid, twisted-ribbon, or supranucleosomal particle models. The data do support two crossed-linker models having left-handed double-helical symmetry and conserved nucleosome interactions.  相似文献   

5.
The diameters of chromatin fibers from Thyone briareus (sea cucumber) sperm (DNA linker length, n = 87 bp) and Necturus maculosus (mudpuppy) erythrocytes (n = 48 bp) were investigated. Soluble fibers were frozen into vitrified aqueous solutions of physiological ionic strength (124 mM), imaged by cryo-EM, and measured interactively using quantitative computer image-processing techniques. Frozen-hydrated Thyone and Necturus fibers had significantly different mean diameters of 43.5 nm (SD = 4.2 nm; SEM = 0.61 nm) and 32.0 nm (SD = 3.0 nm; SEM = 0.36 nm), respectively. Evaluation of previously published EM data shows that the diameters of chromatin from a large number of sources are proportional to linker length. In addition, the inherent variability in fiber diameter suggests a relationship between fiber structure and the heterogeneity of linker length. The cryo-EM data were in quantitative agreement with space-filling double-helical crossed-linker models of Thyone and Necturus chromatin. The data, however, do not support solenoid or twisted-ribbon models for chromatin that specify a constant 30 nm diameter. To reconcile the concept of solenoidal packing with the data, we propose a variable-diameter solid-solenoid model with a fiber diameter that increases with linker length. In principle, each of the variable diameter models for chromatin can be reconciled with local variations in linker length.  相似文献   

6.
Fiber diameter, radial distribution of density, and radius of gyration were determined from scanning transmission electron microscopy (STEM) of unstained, frozen-dried chromatin fibers. Chromatin fibers isolated under physiological conditions (ionic strength, 124 mM) from Thyone briareus sperm (DNA linker length, n = 87 bp) and Necturus maculosus erythrocytes (n = 48 bp) were analyzed by objective image-processing techniques. The mean outer diameters were determined to be 38.0 nm (SD = 3.7 nm; SEM = 0.36 nm) and 31.2 nm (SD = 3.6 nm; SEM = 0.32 nm) for Thyone and Necturus, respectively. These data are inconsistent with the twisted-ribbon and solenoid models, which predict constant diameters of approximately 30 nm, independent of DNA linker length. Calculated radial density distributions of chromatin exhibited relatively uniform density with no central hole, although the 4-nm hole in tobacco mosaic virus (TMV) from the same micrographs was visualized clearly. The existence of density at the center of chromatin fibers is in strong disagreement with the hollow-solenoid and hollow-twisted-ribbon models, which predict central holes of 16 and 9 nm for chromatin of 38 and 31 nm diameter, respectively. The cross-sectional radii of gyration were calculated from the radial density distributions and found to be 13.6 nm for Thyone and 11.1 nm for Necturus, in good agreement with x-ray and neutron scattering. The STEM data do not support the solenoid or twisted-ribbon models for chromatin fiber structure. They do, however, support the double-helical crossed-linker models, which exhibit a strong dependence of fiber diameter upon DNA linker length and have linker DNA at the center.  相似文献   

7.
8.
To investigate chromatin organization, we applied the spreading techniques to nuclei isolated from Scolopendrium spermatozoids. Well-dispersed chromatin shows three types of fibers: beaded fibers corresponding to a nucleosomal filament with adjacent nucleosomes in close contact, smooth fibers (14 nm in diameter) associated in a complex network, and knobby fibers constituted by local supercoiling of a very thin (4 nm) smooth filament. Along the knobby fibers, beads of variable size are irregularly spaced. The knobby fibers lie parallel and coalesce in thick bundles. The sperms basic proteins identified by electrophoretic analysis probably promote the supercoiling and the side-to-side attachment of the knobby fibers, which are all the more abundant in spread preparations. These results indicate that knobby fibers are probably located in the outer part of the sperm nucleus in which the chromatin is densely packed. As for the nucleosomal and smooth filaments, they may be situated in the inner part.  相似文献   

9.
10.
When mouse L-cells were treated with a combination of 5-bromodeoxyuridine (BrdUrd) and Hoechst 33258, the metaphase chromosomes revealed undercondensation of the chromatin fibers in the sister centromeres. The application of the osmium-thiocarbohydrazide technique to the air-dried chromosome preparations made it possible to elucidate the ultrastructure of the undercondensed centromeric region at the level of the 30 nm chromatin fiber. Scanning electron microscopy revealed that the undercondensed region consisted of a coiled fiber with a diameter of about 400 nm, and a gyre diameter of approximately 600 nm. The coiled fiber was composed of the 30 nm chromatin fiber loops. These findings indicate that a continuous coiled structure, which is the final higher order structure of the condensed chromatin fiber, exists throughout the entire length of the mouse L-cell metaphase chromosome.  相似文献   

11.
The effects of mechanical bending on tuning the hydrogen storage of titanium functionalised (4,0) carbon nanotube have been assessed using density functional theory calculations with reference to the ultimate targets of the US Department of Energy (DOE). The assessment has been carried out in terms of physisorption, gravimetric capacity, projected densities of states, statistical thermodynamic stability and reaction kinetics. The Ti atom binds at the hollow site of the hexagonal ring. The average adsorption energies (?0.54 eV) per hydrogen molecule meet the DOE target for physisorption (?0.20 to ?0.60 eV). The curvature attributed to the bending angle has no effect on the average adsorption energies per H2 molecule. With no metal clustering, the system gravimetric capacities are expected to be as large as 9.0 wt%. The reactions of the deformed (bent) carbon nanotube have higher probabilities of occurring than those of the un-deformed carbon nanotube. The Gibbs free energies, enthalpies and entropies meet the ultimate targets of the DOE for all temperatures and pressures. The closest reactions to zero free energy occur at (378.15 K/2.961 atm.) and reverse at (340 and 360 K/1 atm.). The translational component is found to exact a dominant effect on the total entropy change with temperature. Favourable kinetics of the reactions at the temperatures targeted by DOE are reported regardless of the applied pressure. The more preferable thermodynamic properties assigned to the bending nanotube imply that hydrogen storage can be improved compared to the nonbending nanotube.  相似文献   

12.
13.
Monte Carlo computer software, called DNAbreak, has recently been developed to analyze observed non-random clustering of DNA double strand breaks in chromatin after exposure to densely ionizing radiation. The software models coarse-grained configurations of chromatin and radiation tracks, small-scale details being suppressed in order to obtain statistical results for larger scales, up to the size of a whole chromosome. We here give an analytic counterpart of the numerical model, useful for benchmarks, for elucidating the numerical results, for analyzing the assumptions of a more general but less mechanistic “randomly-located-clusters” formalism, and, potentially, for speeding up the calculations. The equations characterize multi-track DNA fragment-size distributions in terms of one-track action; an important step in extrapolating high-dose laboratory results to the much lower doses of main interest in environmental or occupational risk estimation. The approach can utilize the experimental information on DNA fragment-size distributions to draw inferences about large-scale chromatin geometry during cell-cycle interphase. Received: 2 March 2000 / Revised version: 2 February 2001 / Published online: 21 August 2001  相似文献   

14.
15.
J A Subirana 《FEBS letters》1992,302(2):105-107
The tendency of DNA to form fibers upon condensation with counterions is reviewed. It is shown that chromatin fibers may acquire a relatively constant diameter of about 30 nm simply as an optimal size achieved upon neutralization of DNA, without requiring a repetitive internal structure. Thus the size of chromatin fibers would not be determined by any specific spatial interaction between DNA and histones. The driving force for the formation of fibers in chromatin would be similar to that found in proteins when they acquire a compact globular shape.  相似文献   

16.
Periodicity of DNA folding in higher order chromatin structures.   总被引:14,自引:2,他引:12       下载免费PDF全文
Each level of DNA folding in cells corresponds to a distinct chromatin structure. The basic chromatin units, nucleosomes, are arranged into solenoids which form chromatin loops. To characterize better the loop organization of chromatin we have assumed that the accessibility of DNA inside these structures is lower than on the outside and examined the size distribution of high mol. wt DNA fragments obtained from cells and isolated nuclei after digestion with endogenous nuclease or topoisomerase II. The largest discrete fragments obtained contain 300 kbp of DNA. Their further degradation proceeds through another discrete size step of 50 kbp. This suggests that chromatin loops contain approximately 50 kbp of DNA and that they are grouped into hexameric rosettes at the next higher level of chromatin structure. Based upon these observations a model by which the 30 nm chromatin fibre can be folded up into compact metaphase chromosomes is also described.  相似文献   

17.
Organization within the mammalian kinetochore   总被引:7,自引:0,他引:7  
J. B. Rattner 《Chromosoma》1986,93(6):515-520
The organization within the mammalian kinetochore was examined using whole-mount electron microscopic techniques on chromosomes digested with restriction enzymes or micrococcal nuclease. These preparations revealed that a portion of the kinetochore is highly resistant to nuclease digestion and can be visualized as a discrete structure. The relationship of this structure to the remainder of the chromosome suggests that it represents the outer kinetochore plate. The plate is composed of a series of fibrillar loops that are arranged in a parallel array along the plane of the plate. These fibers are 25–30 nm in diameter. The morphology, particulate substructure, and ultimate susceptibility to nuclease digestion suggest that these fibers contain DNA. A model is presented that suggests that the outer plate contains the apexes of chromatin loops that originate within the body of the primary constriction.  相似文献   

18.
Meiotic chromosomes consist of proteinaceous axial structures from which chromatin loops emerge. Although we know that loop density along the meiotic chromosome axis is conserved in organisms with different genome sizes, the basis for the regular spacing of chromatin loops and their organization is largely unknown. We use two mouse model systems in which the postreplicative meiotic chromosome axes in the mutant oocytes are either longer or shorter than in wild-type oocytes. We observe a strict correlation between chromosome axis extension and a general and reciprocal shortening of chromatin loop size. However, in oocytes with a shorter chromosome axis, only a subset of the chromatin loops is extended. We find that the changes in chromatin loop size observed in oocytes with shorter or longer chromosome axes depend on the structural maintenance of chromosomes 1β (Smc1β), a mammalian chromosome–associated meiosis-specific cohesin. Our results suggest that in addition to its role in sister chromatid cohesion, Smc1β determines meiotic chromatin loop organization.  相似文献   

19.
The mitotic chromosome structure of 45S rDNA site gaps in Lolium perenne was studied by atomic force microscope (AFM) combining with fluorescence in situ hybridization (FISH) analysis in the present study. FISH on the mitotic chromosomes showed that 45S rDNA gaps were completely broken or local despiralizations of the chromatid which had the appearance of one or a few thin DNA fiber threads. Topography imaging using AFM confirmed these observations. In addition, AFM imaging showed that the broken end of the chromosome fragment lacking the 45S rDNA was sharper, suggesting high condensation. In contrast, the broken ends containing the 45S rDNA or thin 45S rDNA fibers exhibited lower density and were uncompacted. Higher magnification visualization by AFM of the terminals of decondensed 45S rDNA chromatin indicated that both ends containing the 45S rDNA also exhibited lower density zones. The measured height of a decondensed 45S rDNA chromatin as obtained from the AFM image was about 55–65 nm, composed of just two 30-nm single fibers of chromatin. FISH in flow-sorted G2 interphase nuclei showed that 45S rDNA was highly decondensed in more than 90% of the G2/M nuclei. Our results suggested that a failure of the complex folding of the chromatin fibers occurred at 45S rDNA sites, resulting in gap formation or break.  相似文献   

20.
Advances in microscopy and genomic techniques have provided new insight into spatial chromatin organization inside of the nucleus. In particular, chromosome conformation capture data has highlighted the relevance of polymer physics for high-order chromatin organization. In this context, we review basic polymer states, discuss how an appropriate polymer model can be determined from experimental data, and examine the success and limitations of various polymer models of higher-order interphase chromatin organization. By taking into account topological constraints acting on the chromatin fiber, recently developed polymer models of interphase chromatin can reproduce the observed scaling of distances between genomic loci, chromosomal territories, and probabilities of contacts between loci measured by chromosome conformation capture methods. Polymer models provide a framework for the interpretation of experimental data as ensembles of conformations rather than collections of loops, and will be crucial for untangling functional implications of chromosomal organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号