首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased aridity is of global concern. Polar regions provide an opportunity to monitor changes in bioavailable water free of local anthropogenic influences. However, sophisticated proxy measures are needed. We explored the possibility of using stable carbon isotopes in segments of moss as a fine‐scale proxy for past bioavailable water. Variation in δ13C with water availability was measured in three species across three peninsulas in the Windmill Islands, East Antarctica and verified using controlled chamber experiments. The δ13C from Antarctic mosses accurately recorded long‐term variations in water availability in the field, regardless of location, but significant disparities in δ13C between species indicated some make more sensitive proxies. δ13CSUGAR derived from living tissues can change significantly within the span of an Antarctic season (5 weeks) in chambers, but under field conditions, slow growth means that this technique likely represents multiple seasons. δ13CCELLULOSE provides a precise and direct proxy for bioavailable water, allowing reconstructions for coastal Antarctica and potentially other cold regions over past centuries.  相似文献   

2.
Several different factors in the collection and preservation of whale skin and blubber samples were examined to determine their effect on the results obtained by stable nitrogen and carbon isotope (δ15N and δ13C) analysis. Samples of wet killer whale skin retained their original stable isotope values for up to 14 d at 4°C or lower. However, decomposition significantly changed the δ15N value within 3 d at 20°C. Storage at ?20°C was as effective as ?80°C for the preservation of skin and blubber samples for stable isotope analysis for at least a year. By contrast, once a skin sample had been freeze‐dried and lipid extracted, the stable isotope values did not change significantly when it was stored dry at room temperature for at least 12 mo. Preservation of whale skin samples for a month in DMSO‐salt solution, frozen or at room temperature, did not significantly change the δ15N and δ13C values of lipid extracted tissues, although the slight changes seen could influence results of a study if only small changes are expected.  相似文献   

3.
Stable isotope natural abundance measurements integrate across several biogeochemical processes in ecosystem N and C dynamics. Here, we report trends in natural isotope abundance (δ13C and δ15N in plant and soil) along a climosequence of 33 Nothofagus forest stands located within Patagonia, Southern Argentina. We measured 28 different abiotic variables (both climatic variables and soil properties) to characterize environmental conditions at each of the 33 sites. Foliar δ13C values ranged from ?35.4‰ to ?27.7‰, and correlated positively with foliar δ15N values, ranging from ?3.7‰ to 5.2‰. Soil δ13C and δ15N values reflected the isotopic trends of the foliar tissues and ranged from ?29.8‰ to ?25.3‰, and ?4.8‰ to 6.4‰, respectively, with no significant differences between Nothofagus species (Nothofagus pumilio, Nothofagus antarctica, Nothofagus betuloides). Principal component analysis and multiple regressions suggested that mainly water availability variables (mean annual precipitation), but not soil properties, explained between 42% and 79% of the variations in foliar and soil δ13C and δ15N natural abundance, which declined with increased moisture supply. We conclude that a decline in water use efficiency at wetter sites promotes both the depletion of heavy C and N isotopes in soil and plant biomass. Soil δ13C values were higher than those of the plant tissues and this difference increased as annual precipitation increased. No such differences were apparent when δ15N values in soil and plant were compared, which indicates that climatic differences contributed more to the overall C balance than to the overall N balance in these forest ecosystems.  相似文献   

4.
5.
Teeth of odontocetes accumulate annual dentinal growth layer groups (GLGs) that record isotope ratios, which reflect the time of their synthesis. Collectively, they provide lifetime records of individual feeding patterns from which life history traits can be inferred. We subsampled the prenatal dentin and postnatal GLGs in Risso's dolphins (Grampus griseus) (n = 65) that stranded or were collected as bycatch in Taiwan (1994–2014) and analyzed them for δ15N and δ13C. Age‐specific δ15N and δ13C values were corrected for effects of calendar year, stranding site, C/N, and sex. δ15N values were higher in prenatal layers (14.94‰ ± 0.74‰) than in adult female GLGs (12.58‰ ± 0.20‰), suggesting fetal enrichment during gestation. Decreasing δ15N values in early GLGs suggested changes in dietary protein sources during transition to complete weaning. Weaning age was earlier in males (1.09 yr) than in females (1.81 yr). Significant differences in δ15N values between weaned males and females suggest potential sexual segregation in feeding habits. δ13C values increased from the prenatal to the 4th GLG by ~1.0‰, indicative of a diet shift from 13C‐depleted milk to prey items. Our results provide novel insights into the sex‐specific ontogenetic changes in feeding patterns and some life history traits of Risso's dolphins.  相似文献   

6.
7.
Human‐induced changes in atmospheric composition are expected to affect primary productivity across terrestrial biomes. Recent changes in productivity have been observed in many forest ecosystems, but low‐latitude upper tree line forests remain to be investigated. Here, we use dendrochronological methods and isotopic analysis to examine changes in productivity, and their physiological basis, in Abies religiosa (Ar) and Pinus hartwegii (Ph) trees growing in high‐elevation forests of central Mexico. Six sites were selected across a longitudinal transect (Transverse Volcanic Axis), from the Pacific Ocean toward the Gulf of Mexico, where mature dominant trees were sampled at altitudes ranging from 3200 to 4000 m asl. A total of 60 Ar and 84 Ph trees were analyzed to describe changes in growth (annual‐resolution) and isotopic composition (decadal‐resolution) since the early 1900s. Our results show an initial widespread increase in basal area increment (BAI) during the first half of the past century. However, BAI has decreased significantly since the 1950s with accentuated decline after the 1980s in both species and across sites. We found a consistent reduction in atmosphere to wood 13C discrimination, resulting from increasing water use efficiency (20–60%), coinciding with rising atmospheric CO2. Changes in 13C discrimination were not followed, however, by shifts in tree ring δ18O, indicating site‐ and species‐specific differences in water source or uptake strategy. Our results indicate that CO2 stimulation has not been enough to counteract warming‐induced drought stress, but other stressors, such as progressive nutrient limitation, could also have contributed to growth decline. Future studies should explore the distinct role of resource limitation (water vs. nutrients) in modulating the response of high‐elevation ecosystems to atmospheric change.  相似文献   

8.
The life histories of ammonites and the life strategies they employed are difficult to assess without robust modern analogues but placing constraints on ammonite growth rates provides a fundamental first step to understanding this abundant, but poorly understood, fossil group. Here we interpret periodic variations in carbon and oxygen stable isotope profiles from Campanian and Maastrichtian ammonites (Baculites) as seasonally driven and use these records to determine their rate of shell precipitation. Several of these samples are housed in museums and were originally prepared using sealants for display and preservation but testing of these sealants indicated no alteration of the isotopic values of treated carbonate. Diagenetic alteration, as determined by shell microstructure, affected the preservation of isotopic signals, resulting in the loss of seasonal variation in less well‐preserved specimens, and the δ13C signal is more robust than δ18O. The periodicity of isotopic profiles from Baculites shells presented here suggest that these organisms grew at rapid rates (c. 340 mm per year), which may imply an r‐type life strategy in which the animals reach maturity quickly, spawn large quantities of progeny, and die at a young age. Because of the potential mobility of Baculites, reconstructing palaeoenvironmental conditions from these isotopic records is challenging and should be conducted cautiously. Unfortunately, well‐preserved Baculites shells much longer than 350 mm are rarely recovered, which complicates the statistical treatment of potential periodicity in isotopic profiles.  相似文献   

9.
The utility of δ15N measurements in Padina australis Hauck as a probe for its external nitrogen (N) sources was tested by monitoring the bulk values of chemical components [δ15N, δ13C, and N and carbon (C) contents] and their internal distributions during a 12 d incubation in a controlled environment. Under the saturated conditions of isotopically heavier nitrate than that of original algal tissue, the bulk δ15N in P. australis was enriched, but less than what was predicted from a simple mixing model, signaling possible isotopic discrimination during N assimilation and subsequent N efflux from the cells. The enhanced N content (%), which occurred simultaneously with this δ15N shift, was a useful signal indicating this phenomenon. Bulk δ15N was enriched, especially around the meristem, in tissues growing under conditions of higher irradiance and temperature, probably due in part to dissolved organic nitrogen (DON) excretion. The δ13C enhancement in bulk algal tissues, also associated with high photosynthetic activity, may be an additional signal indicating this unbalanced internal δ15N distribution. However, in summer and winter environmental conditions with periodic nitrate supplies simulating typical fringing reef waters, the difference in measured algal bulk δ15N from theoretical predictions was within ±1.0‰. This difference is very small compared with the variation in δ15N in possible N sources in coastal areas. In the field, therefore, δ15N in Padina can be used effectively to trace N sources in both space and time after determining algal N content and δ13C to determine whether large alterations occur in algal δ15N.  相似文献   

10.
Indonesia lost more tropical forest than all of Brazil in 2012, mainly driven by the rubber, oil palm, and timber industries. Nonetheless, the effects of converting forest to oil palm and rubber plantations on soil organic carbon (SOC) stocks remain unclear. We analyzed SOC losses after lowland rainforest conversion to oil palm, intensive rubber, and extensive rubber plantations in Jambi Province on Sumatra Island. The focus was on two processes: (1) erosion and (2) decomposition of soil organic matter. Carbon contents in the Ah horizon under oil palm and rubber plantations were strongly reduced up to 70% and 62%, respectively. The decrease was lower under extensive rubber plantations (41%). On average, converting forest to plantations led to a loss of 10 Mg C ha?1 after about 15 years of conversion. The C content in the subsoil was similar under the forest and the plantations. We therefore assumed that a shift to higher δ13C values in plantation subsoil corresponds to the losses from the upper soil layer by erosion. Erosion was estimated by comparing the δ13C profiles in the soils under forest and under plantations. The estimated erosion was the strongest in oil palm (35 ± 8 cm) and rubber (33 ± 10 cm) plantations. The 13C enrichment of SOC used as a proxy of its turnover indicates a decrease of SOC decomposition rate in the Ah horizon under oil palm plantations after forest conversion. Nonetheless, based on the lack of C input from litter, we expect further losses of SOC in oil palm plantations, which are a less sustainable land use compared to rubber plantations. We conclude that δ13C depth profiles may be a powerful tool to disentangle soil erosion and SOC mineralization after the conversion of natural ecosystems conversion to intensive plantations when soils show gradual increase of δ13C values with depth.  相似文献   

11.
Ecosystem respiration (Reco) is one of the largest terrestrial carbon (C) fluxes. The effect of climate change on Reco depends on the responses of its autotrophic and heterotrophic components. How autotrophic and heterotrophic respiration sources respond to climate change is especially important in ecosystems underlain by permafrost. Permafrost ecosystems contain vast stores of soil C (1672 Pg) and are located in northern latitudes where climate change is accelerated. Warming will cause a positive feedback to climate change if heterotrophic respiration increases without corresponding increases in primary production. We quantified the response of autotrophic and heterotrophic respiration to permafrost thaw across the 2008 and 2009 growing seasons. We partitioned Reco using Δ14C and δ13C into four sources–two autotrophic (above – and belowground plant structures) and two heterotrophic (young and old soil). We sampled the Δ14C and δ13C of sources using incubations and the Δ14C and δ13C of Reco using field measurements. We then used a Bayesian mixing model to solve for the most likely contributions of each source to Reco. Autotrophic respiration ranged from 40 to 70% of Reco and was greatest at the height of the growing season. Old soil heterotrophic respiration ranged from 6 to 18% of Reco and was greatest where permafrost thaw was deepest. Overall, growing season fluxes of autotrophic and old soil heterotrophic respiration increased as permafrost thaw deepened. Areas with greater thaw also had the greatest primary production. Warming in permafrost ecosystems therefore leads to increased plant and old soil respiration that is initially compensated by increased net primary productivity. However, barring large shifts in plant community composition, future increases in old soil respiration will likely outpace productivity, resulting in a positive feedback to climate change.  相似文献   

12.
13.
14.
Plants may be more sensitive to carbon dioxide (CO2) enrichment at subambient concentrations than at superambient concentrations, but field tests are lacking. We measured soil‐water content and determined xylem pressure potentials and δ13C values of leaves of abundant species in a C3/C4 grassland exposed during 1997–1999 to a continuous gradient in atmospheric CO2 spanning subambient through superambient concentrations (200–560 µmol mol2?1). We predicted that CO2 enrichment would lessen soil‐water depletion and increase xylem potentials more over subambient concentrations than over superambient concentrations. Because water‐use efficiency of C3 species (net assimilation/leaf conductance; A/g) typically increases as soils dry, we hypothesized that improvements in plant‐water relations at higher CO2 would lessen positive effects of CO2 enrichment on A/g. Depletion of soil water to 1.35 m depth was greater at low CO2 concentrations than at higher CO2 concentrations during a mid‐season drought in 1998 and during late‐season droughts in 1997 and 1999. During droughts each year, mid‐day xylem potentials of the dominant C4 perennial grass (Bothriochloa ischaemum (L.) Keng) and the dominant C3 perennial forb (Solanum dimidiatum Raf.) became less negative as CO2 increased from subambient to superambient concentrations. Leaf A/g—derived from leaf δ13C values—was insensitive to feedbacks from CO2 effects on soil water and plant water. Among most C3 species sampled—including annual grasses, perennial grasses and perennial forbs—A/g increased linearly with CO2 across subambient concentrations. Leaf and air δ13C values were too unstable at superambient CO2 concentrations to reliably determine A/g. Significant changes in soil‐ and plant‐water relations over subambient to superambient concentrations and in leaf A/g over subambient concentrations generally were not greater over low CO2 than over higher CO2. The continuous response of these variables to CO2 suggests that atmospheric change has already improved water relations of grassland species and that periodically water‐limited grasslands will remain sensitive to CO2 enrichment.  相似文献   

15.
Question: The relationship between carbon‐13 in soil organic matter and C3 and C4 plant abundance is complicated because of differential productivity, litter fall and decomposition. As a result, applying a mass balance equation to δ13C data from soils cannot be used to infer past C3 and C4 plant abundance; only the proportion of carbon derived from C3 and C4 plants can be estimated. In this paper, we compare δ13C of surface soil samples with vegetation data, in order to establish whether the ratio of C3:C4 plants (rather than the proportion of carbon from C3 and C4 plants) can be inferred from soil δ13C. Location: The Tsavo National Park, in southeastern Kenya. Methods: We compare vegetation data with δ13C of organic matter in surface soil samples and derive regression equations relating the δ13C of soil organic matter to C3:C4 plant abundance. We use these equations to interpret δ13C data from soil profiles in terms of changes in inferred C3:C4 plant ratio. We compare our method of interpretation with that derived from a mass balance approach. Results: There was a statistically significant, linear relationship between the δ13C of organic matter in surface soil samples and the natural logarithm of the ratio of C3:C4 plants in the 100m2 surrounding the soil sample. Conclusions: We suggest that interpretation of δ13C data from organic matter in soil profiles can be improved by comparing vegetation surveys with δ13C of organic matter in surface soil samples. Our results suggest that past C3 plant abundance might be under‐estimated if a mass balance approach is used.  相似文献   

16.
Northern terrestrial ecosystems have shown global warming‐induced advances in start, delays in end, and thus increased lengths of growing season and gross photosynthesis in recent decades. The tradeoffs between seasonal dynamics of two opposing fluxes, CO2 uptake through photosynthesis and release through respiration, determine the influence of the terrestrial ecosystem on the atmospheric CO2 and 13C/12C seasonality. Here, we use four CO2 observation stations in the Northern Hemisphere, namely Alert, La Jolla, Point Barrow, and Mauna Loa Observatory, to determine how changes in vegetation productivity and phenology, respiration, and air temperature affect both the atmospheric CO2 and 13C/12C seasonality. Since the 1960s, the only significant long‐term trend of CO2 and 13C/12C seasonality was observed at the northern most station, Alert, where the spring CO2 drawdown dates advanced by 0.65 ± 0.55 days yr?1, contributing to a nonsignificant increase in length of the CO2 uptake period (0.74 ± 0.67 days yr?1). For Point Barrow station, vegetation phenology changes in well‐watered ecosystems such as the Canadian and western Siberian wetlands contributed the most to 13C/12C seasonality while the CO2 seasonality was primarily linked to nontree vegetation. Our results indicate significant increase in the Northern Hemisphere soil respiration. This means, increased respiration of 13C depleted plant materials cancels out the 12C gain from enhanced vegetation activities during the start and end of growing season. These findings suggest therefore that parallel warming‐induced increases both in photosynthesis and respiration contribute to the long‐term stability of CO2 and 13C/12C seasonality under changing climate and vegetation activity. The summer photosynthesis and the soil respiration in the dormant seasons have become more vigorous which lead to increased peak‐to‐through CO2 amplitude. As the relative magnitude of the increased photosynthesis in summer months is more than the increased respiration in dormant months, we have the increased overall carbon uptake rates in the northern ecosystems.  相似文献   

17.
Abstract Soil organic matter (SOM) was sampled from lateritic soil profiles across an abrupt eucalypt savanna–monsoon rainforest boundary on the north coast of Croker Island, northern Australia. Accelerator mass spectrometry dating revealed that SOM that had accumulated at the base of these 1.5 m profiles had a radiocarbon age of about 5000 years. The mean carbon and nitrogen stable isotope composition of SOM from 10 cm deep layers from the surface, middle and base of three monsoon rainforest soil profiles was significantly different from the means for these layers in three adjacent savanna soil profiles, suggesting the isotopic ‘footprint’ of the vegetation boundary has been stable since the mid Holocene. Although there were no obvious environmental discontinuities associated with the boundary, the monsoon rainforest was found to occur on significantly more clay rich soils than the surrounding savanna. Tiny fragments of monsoon rainforest and abandoned ‘nests’ (large earthen mounds) of the orange‐footed scrubfowl, an obligate monsoon rainforest species, occurred in the savanna, signalling that the rainforest was once more extensive. Despite episodic disturbances, such as tropical storm damage and fires, the stability of the boundary is probably maintained because clay rich soils enable monsoon rainforest tree species to grow rapidly and achieve canopy closure, thereby excluding grass and reducing the risk of fire. Conversely, slower tree growth rates, grass competition and fire on the savanna soils would impede the expansion of the rainforest although high rainfall periods with shorter dry seasons may enable rainforest trees to grow sufficiently quickly to colonize the savanna successfully.  相似文献   

18.
Stable isotope composition of organisms from different trophic groups collected from a semi‐isolated wetland pool in the Ross River estuary, northern Australia, was analysed to determine if there was a consistent relationship between δ13C, δ15N and trophic level that could be used to assign trophic positions. A strong linear negative relationship between δ13C and δ15N was detected for the three trophic levels considered (primary producers, primary consumers and secondary consumers). This relationship was consistent among trophic levels, differing only in height, that is, on δ15N values, which indicate trophic positions. A difference of 3.6–3.8‰ between trophic levels was present, suggesting a δ15N fractionation of approximately 3.7‰, a value slightly higher than the commonly assumed δ15N fractionation of approximately 3.4‰. The relationship between δ13C and δ15N was similar for invertebrate and fish primary consumers, indicating similar δ15N trophic fractionation for both groups, meaning trophic positions and trophic length could be reliably calculated based on either invertebrates or fish.  相似文献   

19.
RalA GTPase has been implicated in the regulated delivery of exocytotic vesicles to the plasma membrane (PM) in mammalian cells. We had reported that RalA regulates biphasic insulin secretion, which we have now determined to be contributed by RalA direct interaction with voltage‐gated calcium (Cav) channels. RalA knockdown (KD) in INS‐1 cells and primary rat β‐cells resulted in a reduction in Ca2+ currents arising specifically from L‐(Cav1.2 and Cav1.3) and R‐type (Cav2.3) Ca2+ channels. Restoration of RalA expression in RalA KD cells rescued these defects in Ca2+ currents. RalA co‐immunoprecipitated with the Cavα2δ‐1 auxiliary subunit known to bind the three Cavs. Moreover, the functional molecular interactions between Cavα2δ‐1 and RalA on the PM shown by total internal reflection fluorescent microscopy/FRET analysis could be induced by glucose stimulation. KD of RalA inhibited trafficking of α2δ‐1 to insulin granules without affecting the localization of the other Cav subunits. Furthermore, we confirmed that RalA and α2δ‐1 functionally interact since RalA KD‐induced inhibition of Cav currents could not be recovered by RalA when α2δ‐1 was simultaneously knocked down. These data provide a mechanism for RalA function in insulin secretion, whereby RalA binds α2δ‐1 on insulin granules to tether these granules to PM Ca2+ channels. This acts as a chaperoning step prior to and in preparation for sequential assembly of exocyst and excitosome complexes that mediate biphasic insulin secretion.  相似文献   

20.
Nicotinic acetylcholine receptors (nAChR) of the α6β2* subtype (where *indicates the possible presence of additional subunits) are prominently expressed on dopaminergic neurons. Because of this, their role in tobacco use and nicotine dependence has received much attention. Previous studies have demonstrated that α6β2*‐nAChR are down‐regulated following chronic nicotine exposure (unlike other subtypes that have been investigated – most prominently α4β2* nAChR). This study examines, for the first time, effects across a comprehensive chronic nicotine dose range. Chronic nicotine dose–responses and quantitative ligand‐binding autoradiography were used to define nicotine sensitivity of changes in α4β2*‐nAChR and α6β2*‐nAChR expression. α6β2*‐nAChR down‐regulation by chronic nicotine exposure in dopaminergic and optic‐tract nuclei was ≈three‐fold more sensitive than up‐regulation of α4β2*‐nAChR. In contrast, nAChR‐mediated [3H]‐dopamine release from dopamine‐terminal region synaptosomal preparations changed only in response to chronic treatment with high nicotine doses, whereas dopaminergic parameters (transporter expression and activity, dopamine receptor expression) were largely unchanged. Functional measures in olfactory tubercle preparations were made for the first time; both nAChR expression levels and nAChR‐mediated functional measures changed differently between striatum and olfactory tubercles. These results show that functional changes measured using synaptosomal [3H]‐DA release are primarily owing to changes in nAChR, rather than in dopaminergic, function.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号