首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sun Y  Yin J  Cao H  Li C  Kang L  Ge F 《PloS one》2011,6(5):e19751
Rising atmospheric CO(2) concentrations can affect the induced defense of plants against chewing herbivores but little is known about whether elevated CO(2) can change the induced defense of plants against parasitic nematodes. This study examined the interactions between the root-knot nematode Meloidogyne incognita and three isogenic tomato (Lycopersicon esculentum) genotypes grown under ambient (390 ppm) and elevated (750 ppm) CO(2) in growth chambers. In a previous study with open-top chambers in the field, we reported that elevated CO(2) increased the number of nematode-induced root galls in a JA-defense-dominated genotype but not in a wild-type or JA-defense-recessive genotype. In the current study, we tested the hypothesis that elevated CO(2) will favor the salicylic acid (SA)-pathway defense but repress the jasmonic acid (JA)-pathway defense of plants against plant-parasitic nematodes. Our data showed that elevated CO(2) reduced the JA-pathway defense against M. incognita in the wild-type and in a genotype in which defense is dominated by the JA pathway (a JA-defense-dominated genotype) but up-regulated the SA-pathway defense in the wild type and in a JA-defense-recessive genotype (jasmonate-deficient mutant). Our results suggest that, in terms of defense genes, secondary metabolites, and volatile organic compounds, induced defense of nematode-infected plants could be affected by elevated CO(2), and that CO(2)-induced changes of plant resistance may lead to genotype-specific responses of plants to nematodes under elevated CO(2). The changes in resistance against nematodes, however, were small relative to those reported for chewing insects.  相似文献   

2.
Elevation in atmospheric CO2 concentration broadly affects plant phenology and physiology, and these effects may alter the performance of plant viruses. The effects of elevated CO2 on the susceptibility of tomato plants to Tomato yellow leaf curl virus (TYLCV) were examined for two successive years in open top chambers (OTC) in the field. We experimentally tested the hypothesis that elevated CO2 would reduce the incidence and severity of TYLCV on tomato by altering plant defence strategies. Our results showed that elevated CO2 decreased TYLCV disease incidence (by 14.6% in 2009 and 11.8% in 2010) and decreased disease severity (by 20.0% in 2009 and 10.4% in 2010). Elevated CO2 also decreased the level of TYLCV coat protein in tomato leaves. Regardless of virus infection, elevated CO2 increased plant height and aboveground biomass. Additionally, elevated CO2 increased the leaf C:N ratio of tomato, but decreased soluble protein content in leaves. Notably, elevated CO2 increased the salicylic acid (SA) level in uninfected and infected plants. In contrast, elevated CO2 reduced jasmonic acid (JA) in uninfected plants while it increased JA and abscisic acid (ABA) in virus‐infected plants. Furthermore, combined exogenous SA and JA application enhanced resistance to TYLCV more than application of either SA or JA alone. Our results suggest that the modulated antagonistic relationship between SA and JA under elevated CO2 makes a great contribution to increased tomato resistance to TYLCV, and the predicted increases in tomato productivity may be enhanced by reduced plant virus susceptibility under projected rising CO2 conditions.  相似文献   

3.
大气CO2浓度增加和温度升高引起的全球变化对土壤生态系统的生物地球化学过程产生了重要影响.挥发性卤代烃(VOXs)的合成与释放是土壤参与全球物质循环与能量流动的重要途径.本研究以南亚热带乔木幼苗木荷和杉木为对象,设置对照(CK)、CO2浓度升高(EC)、增温(ET)以及两者同时升高(EC+ET)4个处理,运用开顶箱及吹...  相似文献   

4.
Reproduction of artificially selected near isogenic Meloidogyne incognita lineages virulent and avirulent against the Mi resistance gene of tomato was assessed on host and resistant lines and cultivars of pepper. Egg mass production following inoculation of individual potted seedlings with second-stage juveniles was studied in experiments conducted in controlled environment. Artificially selected Mi-virulent nematode populations were unable to develop on resistant pepper lines PM 217 and PM 687. This suggests that the genetic systems governing resistance to root-knot nematodes are differently expressed in tomato and pepper, in spite of the very close phylogenetic relationships and structural genomic homologies occurring between these two vegetable crops. Moreover, these artificially selected nematode populations were also found unable to develop on the susceptible pepper cultivars California Wonder and Doux Long des Landes, while their pathogenicity was not significantly affected on susceptible tomatoes. Due to the existence of naturally virulent Meloidogyne populations, these results enhance the need for a better understanding of the mechanisms involved, in order to develop new forms of management of plant resistance to root-knot nematodes.  相似文献   

5.
Elevated CO2 alters belowground exoenzyme activities in tussock tundra   总被引:9,自引:0,他引:9  
Moorhead  Daryl L.  Linkins  A.E. 《Plant and Soil》1997,189(2):321-329
A three-year exposure to a CO2 concentration of 680 mol mol-1 altered the enzymic characteristics of root surfaces, associated ectomycorrhizae, and in soils surrounding roots in a tussock tundra ecosystem of north Alaska, USA. At elevated CO2, phosphatase activity was higher on Eriophorum vaginatum root surfaces, ectomycorrhizal rhizomorphs and mantles associated with Betula nana roots, and in Oe and Oi soil horizons associated with plant roots. Also, endocellulase and exocellulase activities at elevated CO2 were higher in ectomycorrhizal rhizomorphs and lower in Oe and Oi soil horizons associated with roots. These results suggest that arctic plants respond to raised CO2 by increasing activities associated with nutrient acquisition, e.g. higher phosphatase activities on surfaces of roots and ectomycorrhizae, and greater cellulase activity in ectomycorrhizae. Changes in enzyme activities of surrounding soils are consistent with an increase in carbon exudation from plant roots, which would be expected to inhibit cellulase activities and stimulate phosphatase activities of soil microflora. These data were used to modify existing simulation models describing tussock phosphatase activities and litter decay. Model projections suggest that observed increases in phosphatase activities at 680 mol mol-1 CO2 could augment total annual phosphorus release within tussocks by more than 40%, at present levels of root and ectomycorrhizae biomass. This includes a nearly three-fold increase in potential phosphatase activity of E. vaginatum roots, per unit of surface area. Observed reductions in cellulase activities could diminish cellulose turnover by 45% in soils within rooting zones, which could substantially increase mineral nitrogen availability in soils due to lowered microbial immobilization.  相似文献   

6.
在干旱胁迫伴随大气CO2浓度以及升高的CO2浓度(加倍)条件下,以过量表达番茄类囊体膜抗坏血酸过氧化物酶基因(StAPX)的转基因番茄为试材,探明干旱胁迫TCO2浓度升高对转基因及其野生型番茄植株清除活性氧及耐旱能力的影响。结果表明:升高的CO2浓度明显增加了干旱胁迫下植物的光合水平;升高的CO2浓度明显降低了干旱导致的植物体内H2O2.和O2的积累,影响了干旱胁迫下番茄植株的水.水循环系统的活性氧清除酶活性和小分子抗氧化物质含量;干旱胁迫下即使伴随升高的CO2浓度,测试番茄植株体内的渗透调节物质含量变化也不太明显;升高的CO2浓度明显降低了干旱胁迫下的植物细胞膜伤害程度;干旱胁迫下,升高的CO2浓度对转基因番茄株系比对野生型植株的影响更加明显。结果证明干旱逆境下,升高的CO2浓度能够在一定程度上进一步提高转基因番茄植株的耐旱性。  相似文献   

7.
【目的】近年来随着人类活动的增加,温室气体尤其是大气CO_2浓度升高造成的虫害爆发已成为国际上关注的焦点,因此,研究拟南芥Arabidopsis thaliana上桃蚜取食行为的变化对大气CO_2浓度升高的响应意义重大。【方法】本研究以拟南芥和绿色桃蚜Myzus persicae为研究对象,利用野生型拟南芥Col-0,茉莉酸途径信号传导缺失突变体(jar1)、水杨酸途径信号传导缺失突变体(npr1)、乙烯途径信号传导缺失突变体(ein2-5)为材料,以大气CO_2浓度升高为影响因子,利用刺吸式电位仪(EPG)记录了桃蚜在不同处理的拟南芥上的取食波形。【结果】研究结果发现:CO_2浓度升高缩短了Col-0和jar1植株上蚜虫首次刺探时间和首次到达韧皮部的时间,却延长了npr1和ein2-5上蚜虫首次到达韧皮部的时间,降低了jar1植株上蚜虫总的刺探时间且增加了其总的取食韧皮部时间,但没有改变其它基因型植株上蚜虫总的刺探和取食时间;同时增加了野生型植株上蚜虫的刺探频率,却没有影响其它基因型植株上的刺探频率。【结论】CO_2浓度升高降低了野生型植株和jar1植株抗性,有利于蚜虫到达韧皮部;却增加了npr1和ein2-5上的植物抗性,从而不利于蚜虫到达韧皮部。  相似文献   

8.
植物挥发性有机化合物(biogenic volatile organic compounds,BVOCs)在近地表臭氧和二次有机气溶胶生成中有重要作用,而大气CO2浓度上升对植物BVOCs释放有显著影响。利用Meta-analysis方法对已发表的数据进行整合分析发现:(1)总体而言,大气CO2浓度增加会导致不同木本植物(常绿与落叶) BVOCs释放降低;(2)就不同木本植物BVOCs释放而言,大气CO2浓度增加主要导致落叶植物BVOCs释放速率降低,而常绿植物则以增加为主;(3)就植物释放BVOCs种类而言,大气CO2浓度增加显著降低异戊二烯的释放速率,对单萜烯释放速率则无显著影响。结果可为阐明陆地生态系统BVOCs释放对全球CO2浓度增加的响应提供依据。  相似文献   

9.
Few studies regarding the effects of elevated atmospheric CO(2) concentrations on plant lipid metabolism have been carried out. Here, the effects of elevated CO(2) concentration on lipid composition in mature seeds and in leaves during the diurnal cycle of Arabidopsis thaliana were investigated. Plants were grown in controlled climate chambers at elevated (800 ppm) and ambient CO(2) concentrations. Lipids were extracted and characterized using thin layer chromatography (TLC) and gas liquid chromatography. The fatty acid profile of total leaf lipids showed large diurnal variations. However, the elevated CO(2) concentration did not induce any significant differences in the diurnal pattern compared with the ambient concentration. The major chloroplast lipids monogalactosyldiacylglycerol (MGDG) and phosphatidylglycerol (PG) were decreased at elevated CO(2) in favour of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Elevated CO(2) produced a 25% lower ratio of 16:1trans to 16:0 in PG compared with the ambient concentration. With good nutrient supply, growth at elevated CO(2) did not significantly affect single seed weight, total seed mass, oil yield per seed, or the fatty acid profile of the seeds. This study has shown that elevated CO(2) induced changes in leaf lipid composition in A. thaliana, whereas seed lipids were unaffected.  相似文献   

10.
Aluminum (Al) toxicity is a major factor limiting plant growth in acid soils. Elevated atmospheric CO2 [CO2] enhances plant growth. However, there is no report on the effect of elevated [CO2] on growth of plant genotypes differing in Al tolerance grown in acid soils. We investigated the effect of short‐term elevated [CO2] on growth of Al‐tolerant (ET8) and Al‐sensitive (ES8) wheat plants and malate exudation from root apices by growing them in acid soils under ambient [CO2] and elevated [CO2] using open‐top chambers. Exposure of ET8 plants to elevated [CO2] enhanced root biomass only. In contrast, shoot biomass of ES8 was enhanced by elevated [CO2]. Given that exudation of malate to detoxify apoplastic Al is a mechanism for Al tolerance in wheat plants, ET8 plants exuded greater amounts of malate from root apices than ES8 plants under both ambient and elevated [CO2]. These results indicate that elevated [CO2] has no effect on malate exudation in both ET8 and ES8 plants. These novel findings have important implications for our understanding how plants respond to elevated [CO2] grown in unfavorable edaphic conditions in general and in acid soils in particular.  相似文献   

11.
Although numerous studies indicate that increasing atmospheric CO2 or temperature stimulate soil CO2 efflux, few data are available on the responses of three major components of soil respiration [i.e. rhizosphere respiration (root and root exudates), litter decomposition, and oxidation of soil organic matter] to different CO2 and temperature conditions. In this study, we applied a dual stable isotope approach to investigate the impact of elevated CO2 and elevated temperature on these components of soil CO2 efflux in Douglas-fir terracosms. We measured both soil CO2 efflux rates and the 13C and 18O isotopic compositions of soil CO2 efflux in 12 sun-lit and environmentally controlled terracosms with 4-year-old Douglas fir seedlings and reconstructed forest soils under two CO2 concentrations (ambient and 200 ppmv above ambient) and two air temperature regimes (ambient and 4 °C above ambient). The stable isotope data were used to estimate the relative contributions of different components to the overall soil CO2 efflux. In most cases, litter decomposition was the dominant component of soil CO2 efflux in this system, followed by rhizosphere respiration and soil organic matter oxidation. Both elevated atmospheric CO2 concentration and elevated temperature stimulated rhizosphere respiration and litter decomposition. The oxidation of soil organic matter was stimulated only by increasing temperature. Release of newly fixed carbon as root respiration was the most responsive to elevated CO2, while soil organic matter decomposition was most responsive to increasing temperature. Although some assumptions associated with this new method need to be further validated, application of this dual-isotope approach can provide new insights into the responses of soil carbon dynamics in forest ecosystems to future climate changes.  相似文献   

12.
Teng N  Wang J  Chen T  Wu X  Wang Y  Lin J 《The New phytologist》2006,172(1):92-103
Leaves of Arabidopsis thaliana grown under elevated or ambient CO2 (700 or 370 micromol mol(-1), respectively) were examined for physiological, biochemical and structural changes. Stomatal characters, carbohydrate and mineral nutrient concentrations, leaf ultrastructure and plant hormone content were investigated using atomic absorption spectrophotometry, transmission electron microscopy and enzyme-linked immunosorbent assay (ELISA). Elevated CO2 reduced the stomatal density and stomatal index of leaves, and also reduced stomatal conductance and transpiration rate. Elevated CO2 increased chloroplast number, width and profile area, and starch grain size and number, but reduced the number of grana thylakoid membranes. Under elevated CO2, the concentrations of carbohydrates and plant hormones, with the exception of abscisic acid, increased whereas mineral nutrient concentrations declined. These results suggest that the changes in chloroplast ultrastructure may primarily be a consequence of increased starch accumulation. Accelerated A. thaliana growth and development in elevated CO2 could in part be attributed to increased foliar concentrations of plant hormones. The reductions in mineral nutrient concentrations may be a result of dilution by increased concentrations of carbohydrates and also of decreases in stomatal conductance and transpiration rate.  相似文献   

13.
Annual carbon budgets of ecosystems are central to our understanding of the biotic control of atmospheric composition, but they are not available under elevated CO2 for most vegetation types. Using gas exchange techniques, we assessed carbon fluxes of four early successional Mediterranean model communities, consisting of grasses, legumes and composites. The assemblages were grown on the same monoliths for three consecutive years in greenhouses tracking field conditions except for CO2 maintained at ambient (370 μmol mol?1) or elevated (700 μmol mol?1) concentration. During the third year of study, CO2 enrichment consistently shifted the annual carbon balance towards lower efflux, with displacements between 4.3 and 26.2 mol m?2 y?1 (one assemblage became a net CO2 sink, another just reached equilibrium, and the remaining two remained as a CO2 source). At least 50% of the shift under elevated CO2 originated from a decrease in belowground respiration. This indicates that, during this year, CO2 enrichment did not predominantly enhance C‐cycling, but on the contrary inhibited root respiration or microbial C‐utilization. Although elevated‐CO2‐grown systems acted as a net CO2 sink during a longer period of the year (4–7 months) compared with ambient‐CO2‐grown systems (3–3.5 months), gross canopy photosynthesis was modified only to a limited extent (between ?5.9 and + 14.8%). Interaction between the carbon and the water cycle was apparently responsible for this weak stimulation. In particular, reduced evapotranspiration under elevated CO2 coincided with inhibited canopy photosynthesis in early spring, most likely resulting from water saturation of the soil. In addition, only the earliest‐planted assemblages had an increased gross canopy photosynthesis during late autumn and early winter. This suggests that a longer summer drought, by delaying the establishment of such an annual type of vegetation, would reduce the positive impact of elevated CO2 on productivity. Water regime appears to strongly govern the influence of CO2 on the carbon fluxes in Mediterranean ecosystems with annual herbaceous vegetation.  相似文献   

14.
H Guo  Y Sun  Q Ren  K Zhu-Salzman  L Kang  C Wang  C Li  F Ge 《PloS one》2012,7(7):e41426
Both resistance and tolerance, which are two strategies that plants use to limit biotic stress, are affected by the abiotic environment including atmospheric CO(2) levels. We tested the hypothesis that elevated CO(2) would reduce resistance (i.e., the ability to prevent damage) but enhance tolerance (i.e., the ability to regrow and compensate for damage after the damage has occurred) of tomato plants to the cotton bollworm, Helicoverpa armigera. The results showed that elevated CO(2) reduced resistance by decreasing the jasmonic acid (JA) level and activities of lipoxygenase, proteinase inhibitors, and polyphenol oxidase in wild-type (WT) plants infested with H. armigera. Consequently, the activities of total protease, trypsin-like enzymes, and weak and active alkaline trypsin-like enzymes increased in the midgut of H. armigera when fed on WT plants grown under elevated CO(2). Unexpectedly, the tolerance of the WT to H. armigera (in terms of photosynthetic rate, activity of sucrose phosphate synthases, flower number, and plant biomass and height) was also reduced by elevated CO(2). Under ambient CO(2), the expression of resistance and tolerance to H. armigera was much greater in wild type than in spr2 (a JA-deficient genotype) plants, but elevated CO(2) reduced these differences of the resistance and tolerance between WT and spr2 plants. The results suggest that the JA signaling pathway contributes to both plant resistance and tolerance to herbivorous insects and that by suppressing the JA signaling pathway, elevated CO(2) will simultaneously reduce the resistance and tolerance of tomato plants.  相似文献   

15.
实验分析了有机土栽培下温室内CO2浓度变化规律,研究了增施CO2对温室番茄植株生理效应、产量、果实品质的影响.结果表明有机土栽培条件下温室内CO2浓度变化存在明显的季节变化和日变化.温室内CO2浓度在11月和3月,最高浓度达到1 200 μL·L-1以上,在改善温光条件下,可不施或少施CO2;而7月温室内CO2日最高浓度在500 μL·L-1以下,每天应提早增施CO2.CO2空间分布为近地面层》畦面》植株内部》冠层》株顶上部.不同的栽培方式下,有机土壤栽培CO2浓度日变化范围为331~1 294 μL·L-1,而外界浓度与土壤无作物栽培方式日变化范围为327~556 μL·L-1,土壤栽培CO2变化范围为402~1 047 μL·L-1.光照强度是影响温室内CO2浓度和利用效率的主要因素.与对照相比,温室内增施CO2番茄株高增加18.29%,总干重增加18.69%,功能叶面积增加22.02%,光合速率提高48.92%,叶绿素含量增加33.00%,羧化效率提高87.50%,产量增加 26.48%,果实Vc增加33.27%,番茄红素增加30.98%,差异均达到显著水平.  相似文献   

16.
Abstract Two wilty tomato mutants, flacca and sitiens, fail to increase their endogenous ABA concentration in response to water stress. Instead, a compound accumulates which has been identified as 2-trans-ABA alcohol. Levels of this compound have been estimated for three wilty mutants and the control; both before and after water stress. When the compound was biosynthesized in the presence of 18O2, one atom appeared to be incorporated into the primary alcohol group. The possible implications of this for the ABA biosynthetic pathway are discussed.  相似文献   

17.
Heteroblastic leaf development in Taraxacum officinale is compared between plants grown under ambient (350 ppm) vs. elevated (700 ppm) CO2 levels. Leaves of elevated CO2 plants exhibited more deeply incised leaf margins and relatively more slender leaf laminae than leaves of ambient CO2 plants. These differences were found to be significant in allometric analyses that controlled for differences in leaf size, as well as analyses that controlled for leaf developmental order. The effects of elevated CO2 on leaf shape were most pronounced when plants were grown individually, but detectable differences were also found in plants grown at high density. Although less dramatic than in Taraxacum, significant effects of elevated CO2 on leaf shape were also found in two other weedy rosette species, Plantago major and Rumex crispus. These observations support the long-standing hypothesis that leaf carbohydrate level plays an important role in regulating heteroblastic leaf development, though elevated C02 may also affect leaf development through direct hormonal interactions or increased leaf water potential. In Taraxacum, pronounced modifications of leaf shape were found at CO2 levels predicted to occur within the next century.  相似文献   

18.
Our understanding of the effects of elevated atmospheric CO2, singly and In combination with other environmental changes,on plant-soil interactions is incomplete. Elevated CO2 effects on C4 plants, though smaller than on C3 species, are mediated mostly via decreased stomatal conductance and thus water loss. Therefore, we characterized the interactive effect of elevated CO2 and drought on soil microbial communities associated with a dominant C4 prairie grass, Andropogon gerardii Vitman. Elevated CO2 and drought both affected resources available to the soil microbial community. For example, elevated CO2 increased the soil C:N ratio and water content during drought, whereas drought alone decreased both. Drought significantly decreased soil microbial biomass. In contrast, elevated COz increased biomass while ameliorating biomass decreases that were induced under drought. Total and active direct bacterial counts and carbon substrate use (overall use and number of used sources) increased significantly under elevated CO2. Denaturing gradient gel electrophoresis analysis revealed that drought and elevated CO2, singly and combined, did not affect the soil bacteria community structure.We conclude that elevated CO2 alone increased bacterial abundance and microbial activity and carbon use, probably in response to increased root exudation. Elevated CO2 also limited drought-related impacts on microbial activity and biomass,which likely resulted from decreased plant water use under elevated CO2. These are among the first results showing that elevated CO2 and drought work in opposition to modulate plant-associated soil-bacteria responses,which should then Influence soil resources and plant and ecosystem function.  相似文献   

19.
CO2浓度升高和干旱带来的气候变化势必对大豆的生长造成影响.目前,CO2浓度升高对干旱胁迫下大豆生理生化的影响研究较少.本试验研究了不同CO2浓度(400、600 pumol ? mol-1)和水分处理下(正常水分:叶片相对含水量为83%-90%;干旱:叶片相对含水量为64%-70%)大豆开花期的光合能力、光合色素积累...  相似文献   

20.
Elevated CO2, rhizosphere processes,and soil organic matter decomposition   总被引:12,自引:0,他引:12  
Cheng  Weixin  Johnson  Dale W. 《Plant and Soil》1998,202(2):167-174
The rhizosphere is one of the key fine-scale components of C cycles. This study was undertaken to improve understanding of the potential effects of atmospheric CO2 increase on rhizosphere processes. Using C isotope techniques, we found that elevated atmospheric CO2 significantly increased wheat plant growth, dry mass accumulation, rhizosphere respiration, and soluble C concentrations in the rhizosphere. When plants were grown under elevated CO2 concentration, soluble C concentration in the rhizosphere increased by approximately 60%. The degree of elevated CO2 enhancement on rhizosphere respiration was much higher than on root biomass. Averaged between the two nitrogen treatments and compared with the ambient CO2 treatment, wheat rhizosphere respiration rate increased 60% and root biomass only increased 26% under the elevated CO2 treatment. These results indicated that elevated atmospheric CO2 in a wheat-soil system significantly increased substrate input to the rhizosphere due to both increased root growth and increased root activities per unit of roots. Nitrogen treatments changed the effect of elevated CO2 on soil organic matter decomposition. Elevated CO2 increased soil organic matter decomposition (22%) in the nitrogen-added treatment but decreased soil organic matter decomposition (18%) without nitrogen addition. Soil nitrogen status was therefore found to be important in determining the directions of the effect of elevated CO2 on soil organic matter decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号