首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 820 毫秒
1.
Type VI protein secretion systems (T6SS) are essential for virulence of several Gram‐negative bacteria. In this study, we identified a T6SS in Vibrio anguillarum, a marine bacterium that causes a hemorrhagic septicemia in fish. A partial operon vtsA‐H (v ibrio t ype s ix secretion) was sequenced and shown to encode eight proteins. VtsE‐H are signature proteins found in other T6SSs, while VtsA‐D are not associated with T6SS studied so far. In‐frame deletions were made in each gene. Secretion of a haemolysin‐co‐regulated‐like protein (Hcp), a protein secreted by all studied T6SSs, was decreased in VtsE‐H. Unexpectedly, VtsA, VtsC and VtsD activated while VtsB and VtsE‐H repressed hcp expression. The T6SS proteins also regulated expression of two extracellular proteases, EmpA and PrtV, but inversely to Hcp expression. This regulation was indirect as T6S positively regulated expression of the stress‐response regulator RpoS and the quorum‐sensing regulator VanT, which positively regulate protease expression. Moreover, VtsA‐H proteins were not needed for virulence but did play a role in various stress responses. Thus, these data characterize a new role for T6S in the ecology of bacteria and we hypothesize this role to be a signal sensing mechanism that modulates the expression of regulators of the general stress response.  相似文献   

2.
Monoclonal antibodies against Yersinia enterocolitica were produced by fusion of NS‐1 mouse myeloma cells with spleen cells of ICR mice immunized with heat‐killed and heat‐killed plus SDS‐mercaptoethanol treated forms of Y. enterocolitica ATCC 27729 alone or mixed with Y. enterocolitica MU. The twenty‐five MAbs obtained from five fusions were divided into nine groups according to their specificities to different bacterial strains and species, as determined by dot blotting. The first five groups of MAbs were specific only to Y. enterocolitica, but did not recognize all of the isolates tested. MAbs in groups 6 and 7 reacted with all isolates of Y. enterocolitica tested but showed cross‐reaction with some Yersinia spp. and Edwardsiella tarda, especially in the case of group 7. MAbs in groups 8 and 9 reacted with all isolates of Y. enterocolitica and Yersinia spp., as well as other Gram‐negative bacteria that belong to the family Enterobacteriaceae. These MAbs recognized Y. enterocolitica antigens with apparent molecular weights ranging from 10 – 43 kDa by Western blotting, and could detect Y. enterocolitica from ~103– 105 colony forming units (CFUs) by dot blotting. The hybridoma clone YE38 was selected for detection of Y. enterocolitica in pork samples which had been artificially‐contaminated by inoculation with Y. enterocolitica ATCC 27729 at concentrations of ~104– 106 CFUs/g and incubation in peptone sorbitol bile broth at 4°C. Samples were collected and applied on a nitrocellulose membrane for dot blotting with trypticase soy and cefsulodin‐Irgasan‐novobiocin agars. After 48 hr of incubation, the detection limit was ~102– 103 CFU/g by dot blotting.  相似文献   

3.
Protein secretion systems are critical to bacterial virulence and interactions with other organisms. The Type VI secretion system (T6SS) is found in many bacterial species and is used to target either eukaryotic cells or competitor bacteria. However, T6SS‐secreted proteins have proven surprisingly elusive. Here, we identified two secreted substrates of the antibacterial T6SS from the opportunistic human pathogen, Serratia marcescens. Ssp1 and Ssp2, both encoded within the T6SS gene cluster, were confirmed as antibacterial toxins delivered by the T6SS. Four related proteins encoded around the Ssp proteins (‘Rap’ proteins) included two specifically conferring self‐resistance (‘immunity’) against T6SS‐dependent Ssp1 or Ssp2 toxicity. Biochemical characterization revealed specific, tight binding between cognate Ssp–Rap pairs, forming complexes of 2:2 stoichiometry. The atomic structures of two Rap proteins were solved, revealing a novel helical fold, dependent on a structural disulphide bond, a structural feature consistent with their functional localization. Homologues of the Serratia Ssp and Rap proteins are found encoded together within other T6SS gene clusters, thus they represent founder members of new families of T6SS‐secreted and cognate immunity proteins. We suggest that Ssp proteins are the original substrates of the S. marcescens T6SS, before horizontal acquisition of other T6SS‐secreted toxins. Molecular insight has been provided into how pathogens utilize antibacterial T6SSs to overcome competitors and succeed in polymicrobial niches.  相似文献   

4.
Bacterial type IV secretion systems (T4SSs) can mediate conjugation. The T4SS from Neisseria gonorrhoeae possesses the unique ability to mediate DNA secretion into the extracellular environment. The N. gonorrhoeae T4SS can be grouped with F-type conjugative T4SSs based on homology. We tested 17 proteins important for DNA secretion by N. gonorrhoeae for protein interactions. The BACTH-TM bacterial two-hybrid system was successfully used to study periplasmic interactions. By determining if the same interactions were observed for F-plasmid T4SS proteins and when one interaction partner was replaced by the corresponding protein from the other T4SS, we aimed to identify features associated with the unique function of the N. gonorrhoeae T4SS as well as generic features of F-type T4SSs. For both systems, we observed already described interactions shared by homologs from other T4SSs as well as new and described interactions between F-type T4SS-specific proteins. Furthermore, we demonstrate, for the first-time, interactions between proteins with homology to the conserved T4SS outer membrane core proteins and F-type-specific proteins and we confirmed two of them by co-purification. The F-type-specific protein TraHN was found to localize to the outer membrane and the presence of significant amounts of TraHN in the outer membrane requires TraGN.  相似文献   

5.
Two hybridomas producing monoclonal antibodies (MAbs) were prepared by fusing myeloma cells (Sp2/0-Ag14) with mouse spleen cells immunized with purified spirosin from Yersinia enterocolitica SYT-11–72 (YE72). The antibodies produced by them were designated MAbs-S5 and S27. They were IgG2a and IgG1, respectively, both with χ light chains. MAbs-S5 and S27 reacted specifically with spirosin from YE72. On Western blotting after limited proteolysis with Staphylococcus aureus V8 protease, YE72 spirosin revealed peptide fragments of 35 and 37 kDa reacting markedly with MAb-S5, which suggested the presence of an antigenic determinant on these fragments. By cellular fractionation of YE72 and subsequent EIA and Western blot analysis, spirosome was shown to be present in the cytoplasm of YE72.  相似文献   

6.
7.
Some hyperthermophilic heterotrophs in the genus Thermococcus produce H2 in the absence of S° and have up to seven hydrogenases, but their combined physiological roles are unclear. Here, we show which hydrogenases in Thermococcus paralvinellae are affected by added H2 during growth without S°. Growth rates and steady‐state cell concentrations decreased while formate production rates increased when T. paralvinallae was grown in a chemostat with 65 µM of added H2(aq). Differential gene expression analysis using RNA‐Seq showed consistent expression of six hydrogenase operons with and without added H2. In contrast, expression of the formate hydrogenlyase 1 (fhl1) operon increased with added H2. Flux balance analysis showed H2 oxidation and formate production using FHL became an alternate route for electron disposal during H2 inhibition with a concomitant increase in growth rate relative to cells without FHL. T. paralvinellae also grew on formate with an increase in H2 production rate relative to growth on maltose or tryptone. Growth on formate increased fhl1 expression but decreased expression of all other hydrogenases. Therefore, Thermococcus that possess fhl1 have a competitive advantage over other Thermococcus species in hot subsurface environments where organic substrates are present, S° is absent and slow H2 efflux causes growth inhibition.  相似文献   

8.
Most type VI secretion systems (T6SSs) described to date are protein delivery apparatuses that mediate bactericidal activities. Several T6SSs were also reported to mediate virulence activities, although only few anti‐eukaryotic effectors have been described. Here, we identify three T6SSs in the marine bacterium Vibrio proteolyticus and show that T6SS1 mediates bactericidal activities under warm marine‐like conditions. Using comparative proteomics, we find nine potential T6SS1 effectors, five of which belong to the polymorphic MIX‐effector class. Remarkably, in addition to six predicted bactericidal effectors, the T6SS1 secretome includes three putative anti‐eukaryotic effectors. One of these is a MIX‐effector containing a cytotoxic necrotizing factor 1 domain. We demonstrate that T6SS1 can use this MIX‐effector to target phagocytic cells, resulting in morphological changes and actin cytoskeleton rearrangements. In conclusion, the V. proteolyticus T6SS1, a system homologous to one found in pathogenic vibrios, uses a suite of polymorphic effectors that target both bacteria and eukaryotic neighbors.  相似文献   

9.
Type IV secretion systems (T4SSs) are versatile multiprotein nanomachines spanning the entire cell envelope in Gram‐negative and Gram‐positive bacteria. They play important roles through the contact‐dependent secretion of effector molecules into eukaryotic hosts and conjugative transfer of mobile DNA elements as well as contact‐independent exchange of DNA with the extracellular milieu. In the last few years, many details on the molecular mechanisms of T4SSs have been elucidated. Exciting structures of T4SS complexes from Escherichia coli plasmids R388 and pKM101, Helicobacter pylori and Legionella pneumophila have been solved. The structure of the F‐pilus was also reported and surprisingly revealed a filament composed of pilin subunits in 1:1 stoichiometry with phospholipid molecules. Many new T4SSs have been identified and characterized, underscoring the structural and functional diversity of this secretion superfamily. Complex regulatory circuits also have been shown to control T4SS machine production in response to host cell physiological status or a quorum of bacterial recipient cells in the vicinity. Here, we summarize recent advances in our knowledge of ‘paradigmatic’ and emerging systems, and further explore how new basic insights are aiding in the design of strategies aimed at suppressing T4SS functions in bacterial infections and spread of antimicrobial resistances.  相似文献   

10.
11.
Aim: To maximize biomass production of an ochratoxigenic mould–controlling strain of Lachancea thermotolerans employing response surface methodology (RSM). Methods and Results: Using Plackett–Burman screening designs (PBSD) and central composite designs (CCD), an optimized culture medium containing (g l?1): fermentable sugars (FS), 139·2, provided by sugar cane molasses (CMz), (NH4)2HPO4 (DAP), 9·0, and yeast extract (YE), 2·5, was formulated. Maximal cell concentration obtained after 24 h at 28°C was 24·2 g l?1cell dry weight (CDW). The mathematical model obtained was validated in experiments performed in shaken‐flask cultures and also in aerated bioreactors. Maximum yield and productivity values achieved were, respectively, of 0·23 g CDW/g FS in a medium containing (g l?1): FS, 87·0; DAP, 7·0; YE, 1·0; and of 0·96 g CDW l?1 h?1 in a medium containing (g l?1): FS, 150·8 plus DAP, 6·9. Conclusions: Optimized culture conditions for maximizing yeast biomass production determined in flask cultures were applicable at a larger scale. The highest yield values were attained in media containing relatively low‐CMz concentrations supplemented with DAP and YE. Yeast extract would not be necessary if higher productivity is the aim. Significance and Impact of the Study: Cells of L. thermotolerans produced aerobically could be sustainably produced in a medium just containing cheap carbon, nitrogen and phosphorus sources. Response surface methodology allowed the fine‐tuning of cultural conditions.  相似文献   

12.
A remarkable feature of the flagellar‐specific type III secretion system (T3SS) is the selective recognition of a few substrate proteins among the many thousand cytoplasmic proteins. Secretion substrates are divided into two specificity classes: early substrates secreted for hook‐basal body (HBB) construction and late substrates secreted after HBB completion. Secretion was reported to require a disordered N‐terminal secretion signal, mRNA secretion signals within the 5′‐untranslated region (5′‐UTR) and for late substrates, piloting proteins known as the T3S chaperones. Here, we utilized translational β‐lactamase fusions to probe the secretion efficacy of the N‐terminal secretion signal of fourteen secreted flagellar substrates in Salmonella enterica. We observed a surprising variety in secretion capability between flagellar proteins of the same secretory class. The peptide secretion signals of the early‐type substrates FlgD, FlgF, FlgE and the late‐type substrate FlgL were analysed in detail. Analysing the role of the 5′‐UTR in secretion of flgB and flgE revealed that the native 5′‐UTR substantially enhanced protein translation and secretion. Based on our data, we propose a multicomponent signal that drives secretion via the flagellar T3SS. Both mRNA and peptide signals are recognized by the export apparatus and together with substrate‐specific chaperones allowing for targeted secretion of flagellar substrates.  相似文献   

13.
Type III secretion systems (T3SSs) are protein injection devices essential for the interaction of many Gram‐negative bacteria with eukaryotic cells. While Shigella assembles its T3SS when the environmental conditions are appropriate for invasion, secretion is only activated after physical contact with a host cell. First, the translocators are secreted to form a pore in the host cell membrane, followed by effectors which manipulate the host cell. Secretion activation is tightly controlled by conserved T3SS components: the needle tip proteins IpaD and IpaB, the needle itself and the intracellular gatekeeper protein MxiC. To further characterize the role of IpaD during activation, we combined random mutagenesis with a genetic screen to identify ipaD mutant strains unable to respond to host cell contact. Class II mutants have an overall defect in secretion induction. They map to IpaD's C‐terminal helix and likely affect activation signal generation or transmission. The Class I mutant secretes translocators prematurely and is specifically defective in IpaD secretion upon activation. A phenotypically equivalent mutant was found in mxiC. We show that IpaD and MxiC act in the same intracellular pathway. In summary, we demonstrate that IpaD has a dual role and acts at two distinct locations during secretion activation.  相似文献   

14.
The enteropathogen Vibrio parahaemolyticus possesses two sets of type III secretion systems, T3SS1 and T3SS2. Effector proteins secreted by these T3SSs are delivered into host cells, leading to cell death or diarrhea. However, it is not known how specific effectors are secreted through a specific T3SS when both T3SSs are expressed within bacteria. One molecule thought to determine secretion specificity is a T3SS-associated chaperone; however, no T3SS2-specific chaperone has been identified. Therefore, we screened T3SS2 chaperone candidates by a pull-down assay using T3SS2 effectors fused with glutathione-S-transferase. A secretion assay revealed that the newly identified cognate chaperone VocC for the T3SS2-specific effector VopC was required for the efficient secretion of the substrate through T3SS2. Further experiments determined the chaperone-binding domain and the amino-terminal secretion signal of the cognate effector. These findings, in addition to the previously identified T3SS1-specific chaperone, VecA, provide a strategy to clarify the specificity of effector secretion through T3SSs of V.?parahaemolyticus.  相似文献   

15.
The growth or virulence of Mycobacterium tuberculosis bacilli depends on homologous type VII secretion systems, ESX‐1, ESX‐3 and ESX‐5, which export a number of protein effectors across membranes to the bacterial surface and environment. PE and PPE proteins represent two large families of highly polymorphic proteins that are secreted by these ESX systems. Recently, it was shown that these proteins require system‐specific cytoplasmic chaperones for secretion. Here, we report the crystal structure of M. tuberculosis ESX‐5‐secreted PE25–PPE41 heterodimer in complex with the cytoplasmic chaperone EspG5. EspG5 represents a novel fold that is unrelated to previously characterized secretion chaperones. Functional analysis of the EspG5‐binding region uncovered a hydrophobic patch on PPE41 that promotes dimer aggregation, and the chaperone effectively abolishes this process. We show that PPE41 contains a characteristic chaperone‐binding sequence, the hh motif, which is highly conserved among ESX‐1‐, ESX‐3‐ and ESX‐5‐specific PPE proteins. Disrupting the interaction between EspG5 and three different PPE target proteins by introducing different point mutations generally affected protein secretion. We further demonstrate that the EspG5 chaperone plays an important role in the ESX secretion mechanism by keeping aggregation‐prone PE–PPE proteins in their soluble state.  相似文献   

16.
SecReT6 ( http://db‐mml.sjtu.edu.cn/SecReT6/ ) is an integrated database providing comprehensive information on type VI secretion systems (T6SSs) in bacteria. T6SSs are a class of sophisticated cell contact‐dependent apparatuses involved in mediating antagonistic or synergistic communications between bacteria and/or bacteria and eukaryotes. These apparatuses have recently been found to be widely distributed among Gram‐negative bacterial species. SecReT6 offers a unique, readily explorable archive of known and putative T6SSs, and cognate effectors found in bacteria. It currently contains data on 11 167 core T6SS components mapping to 906 T6SSs found in 498 bacterial strains representing 240 species, as well as a collection of over 600 directly relevant references. Also collated and archived were 1340 diverse candidate secreted effectors which were experimentally shown and/or predicted to be delivered by T6SSs into target eukaryotic and/or prokaryotic cells as well as 196 immunity proteins. A broad range of T6SS gene cluster detection and comparative analysis tools are readily accessible via SecReT6, which may aid identification of effectors and immunity proteins around the T6SS core components. This database will be regularly updated to ensure its ongoing maximal utility and relevance to the scientific research community.  相似文献   

17.
18.
Mycobacteria use type VII secretion systems (T7SSs) to translocate a wide range of proteins across their diderm cell envelope. These systems, also called ESX systems, are crucial for the viability and/or virulence of mycobacterial pathogens, including Mycobacterium tuberculosis and the fish pathogen Mycobacterium marinum. We have previously shown that the M. tuberculosis ESX-5 system is unable to fully complement secretion in an M. marinum esx-5 mutant, suggesting species specificity in secretion. In this study, we elaborated on this observation and established that the membrane ATPase EccC5, possessing four (putative) nucleotide-binding domains (NBDs), is responsible for this. By creating M. marinum-M. tuberculosis EccC5 chimeras, we observed both in M. marinum and in M. tuberculosis that secretion specificity of PE_PGRS proteins depends on the presence of the cognate linker 2 domain of EccC5. This region connects NBD1 and NBD2 of EccC5 and is responsible for keeping NBD1 in an inhibited state. Notably, the ESX-5 substrate EsxN, predicted to bind to NBD3 on EccC5, showed a distinct secretion profile. These results indicate that linker 2 is involved in species-specific substrate recognition and might therefore be an additional substrate recognition site of EccC5.  相似文献   

19.
Yersinia enterocolitica is a facultative intracellular pathogen which invades to epithelial cells and survives in phagocytes. Since the internal environment of phagocytes should be stressful conditions for the phagocytosed Yersinia, the bacteria should respond to protect themselves from otherwise lethal results. We analyzed the stress-induced proteins which possibly contribute to survival of Yersinia within the phagocytes. Y. enterocolitica was radiolabeled during the growth in macrophage-like J774-1 cells, and the bacterial proteins were analyzed by two-dimensional gel electrophoresis. At least 16 proteins were selectively induced in response to phagocytosis, and several out of 16 proteins were also induced by heat shock at 42 C or oxidative stresses in vitro. Of those, two major stress proteins were identified to be homologues of DnaK and CRPA by immunoblotting analysis. These results have indicated that Y. enterocolitica exhibits a global stress response to the hostile environment in the phagocytosed macrophage.  相似文献   

20.
Pathogenic bacteria of the genus Yersinia release in vitro a set of antihost proteins called Yops. Upon infection of cultured epithelial cells, extracellular Yersinia pseudotuberculosis transfers YopE across the host cell plasma membrane. To facilitate the study of this translocation process, we constructed a recombinant Yersinia enterocolitica strain producing YopE fused to a reporter enzyme. As a reporter, we selected the calmodulin-dependent adenylate cyclase of Borde-tella pertussis and we monitored the accumulation of cyclic AMP (cAMP). Since bacteria do not produce calmodulin, cyclase activity marks the presence of hybrid enzyme in the cytoplasmic compartment of the eukaryotic cell. Infection of a monolayer of HeLa cells by the recombinant Y. enterocolitica strain led to a significant increase of cAMP. This phenomenon was dependent not only on the integrity of the Yop secretion pathway but also on the presence of YopB and/or YopD. It also required the presence of the adhesin YadA at the bacterial surface. In contrast, the phenomenon was not affected by cytochalasin D, indicating that internalization of the bacteria themselves was not required for the translocation process. Our results demonstrate that Y. enterocolitica is able to transfer hybrid proteins into eukaryotic cells. This system can be used not only to study the mechanism of YopE translocation but also the fate of the other Yops or even of proteins secreted by other bacterial pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号