首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a new synthesis, based on a suite of complementary approaches, of the primary production and carbon sink in forests of the 25 member states of the European Union (EU‐25) during 1990–2005. Upscaled terrestrial observations and model‐based approaches agree within 25% on the mean net primary production (NPP) of forests, i.e. 520±75 g C m?2 yr?1 over a forest area of 1.32 × 106 km2 to 1.55 × 106 km2 (EU‐25). New estimates of the mean long‐term carbon forest sink (net biome production, NBP) of EU‐25 forests amounts 75±20 g C m?2 yr?1. The ratio of NBP to NPP is 0.15±0.05. Estimates of the fate of the carbon inputs via NPP in wood harvests, forest fires, losses to lakes and rivers and heterotrophic respiration remain uncertain, which explains the considerable uncertainty of NBP. Inventory‐based assessments and assumptions suggest that 29±15% of the NBP (i.e., 22 g C m?2 yr?1) is sequestered in the forest soil, but large uncertainty remains concerning the drivers and future of the soil organic carbon. The remaining 71±15% of the NBP (i.e., 53 g C m?2 yr?1) is realized as woody biomass increments. In the EU‐25, the relatively large forest NBP is thought to be the result of a sustained difference between NPP, which increased during the past decades, and carbon losses primarily by harvest and heterotrophic respiration, which increased less over the same period.  相似文献   

2.
We analyzed the magnitude, the trends and the uncertainties of fossil‐fuel CO2 emissions in the European Union 25 member states (hereafter EU‐25), based on emission inventories from energy‐use statistics. The stability of emissions during the past decade at EU‐25 scale masks decreasing trends in some regions, offset by increasing trends elsewhere. In the recent 4 years, the new Eastern EU‐25 member states have experienced an increase in emissions, reversing after a decade‐long decreasing trend. Mediterranean and Nordic countries have also experienced a strong acceleration in emissions. In Germany, France and United Kingdom, the stability of emissions is due to the decrease in the industry sector, offset by an increase in the transportation sector. When four different inventories models are compared, we show that the between‐models uncertainty is as large as 19% of the mean for EU‐25, and even bigger for individual countries. Accurate accounting for fossil CO2 emissions depends on a clear understanding of system boundaries, i.e. emitting activities included in the accounting. We found that the largest source of errors between inventories is the use of distinct systems boundaries (e.g. counting or not bunker fuels, cement manufacturing, nonenergy products). Once these inconsistencies are corrected, the between‐models uncertainty can be reduced down to 7% at EU‐25 scale. The uncertainty of emissions at smaller spatial scales than the country scale was analyzed by comparing two emission maps based upon distinct economic and demographic activities. A number of spatial and temporal biases have been found among the two maps, indicating a significant increase in uncertainties when increasing the resolution at scales finer than ≈200 km. At 100 km resolution, for example, the uncertainty of regional emissions is estimated to be 60 g C m?2 yr?1, up to 50% of the mean. The uncertainty on regional fossil‐fuel CO2 fluxes to the atmosphere could be reduced by making accurate 14C measurements in atmospheric CO2, and by combining them with transport models.  相似文献   

3.
Overviewing the European carbon (C), greenhouse gas (GHG), and non‐GHG fluxes, gross primary productivity (GPP) is about 9.3 Pg yr?1, and fossil fuel imports are 1.6 Pg yr?1. GPP is about 1.25% of solar radiation, containing about 360 × 1018 J energy – five times the energy content of annual fossil fuel use. Net primary production (NPP) is 50%, terrestrial net biome productivity, NBP, 3%, and the net GHG balance, NGB, 0.3% of GPP. Human harvest uses 20% of NPP or 10% of GPP, or alternatively 1‰ of solar radiation after accounting for the inherent cost of agriculture and forestry, for production of pesticides and fertilizer, the return of organic fertilizer, and for the C equivalent cost of GHG emissions. C equivalents are defined on a global warming potential with a 100‐year time horizon. The equivalent of about 2.4% of the mineral fertilizer input is emitted as N2O. Agricultural emissions to the atmosphere are about 40% of total methane, 60% of total NO‐N, 70% of total N2O‐N, and 95% of total NH3‐N emissions of Europe. European soils are a net C sink (114 Tg yr?1), but considering the emissions of GHGs, soils are a source of about 26 Tg CO2 C‐equivalent yr?1. Forest, grassland and sediment C sinks are offset by GHG emissions from croplands, peatlands and inland waters. Non‐GHGs (NH3, NOx) interact significantly with the GHG and the C cycle through ammonium nitrate aerosols and dry deposition. Wet deposition of nitrogen (N) supports about 50% of forest timber growth. Land use change is regionally important. The absolute flux values total about 50 Tg C yr?1. Nevertheless, for the European trace‐gas balance, land‐use intensity is more important than land‐use change. This study shows that emissions of GHGs and non‐GHGs significantly distort the C cycle and eliminate apparent C sinks.  相似文献   

4.
5.
This paper examines carbon stocks and their relative balance in terrestrial ecosystems simulated by Biome‐BGC, LPJ, and CASA in an ensemble model experiment conducted using the Terrestrial Observation and Prediction System. We developed the Hierarchical Framework for Diagnosing Ecosystem Models to separate the simulated biogeochemistry into a cascade of functional tiers and examine their characteristics sequentially. The analyses indicate that the simulated biomass is usually two to three times higher in Biome‐BGC than LPJ or CASA. Such a discrepancy is mainly induced by differences in model parameters and algorithms that regulate the rates of biomass turnover. The mean residence time of biomass in Biome‐BGC is estimated to be 40–80 years in temperate/moist climate regions, while it mostly varies between 5 and 30 years in CASA and LPJ. A large range of values is also found in the simulated soil carbon. The mean residence time of soil carbon in Biome‐BGC and LPJ is ~200 years in cold regions, which decreases rapidly with increases of temperature at a rate of ~10 yr °C?1. Because long‐term soil carbon pool is not simulated in CASA, its corresponding mean residence time is only about 10–20 years and less sensitive to temperature. Another key factor that influences the carbon balance of the simulated ecosystem is disturbance caused by wildfire, for which the algorithms vary among the models. Because fire emissions are balanced by net ecosystem production (NEP) at steady states, magnitudes, and spatial patterns of NEP vary significantly as well. Slight carbon imbalance may be left by the spin‐up algorithm of the models, which adds uncertainty to the estimated carbon sources or sinks. Although these results are only drawn on the tested model versions, the developed methodology has potential for other model exercises.  相似文献   

6.
The effect of a transition from grassland to second‐generation (2G) bioenergy on soil carbon and greenhouse gas (GHG) balance is uncertain, with limited empirical data on which to validate landscape‐scale models, sustainability criteria and energy policies. Here, we quantified soil carbon, soil GHG emissions and whole ecosystem carbon balance for short rotation coppice (SRC) bioenergy willow and a paired grassland site, both planted at commercial scale. We quantified the carbon balance for a 2‐year period and captured the effects of a commercial harvest in the SRC willow at the end of the first cycle. Soil fluxes of nitrous oxide (N2O) and methane (CH4) did not contribute significantly to the GHG balance of these land uses. Soil respiration was lower in SRC willow (912 ± 42 g C m?2 yr?1) than in grassland (1522 ± 39 g C m?2 yr?1). Net ecosystem exchange (NEE) reflected this with the grassland a net source of carbon with mean NEE of 119 ± 10 g C m?2 yr?1 and SRC willow a net sink, ?620 ± 18 g C m?2 yr?1. When carbon removed from the ecosystem in harvested products was considered (Net Biome Productivity), SRC willow remained a net sink (221 ± 66 g C m?2 yr?1). Despite the SRC willow site being a net sink for carbon, soil carbon stocks (0–30 cm) were higher under the grassland. There was a larger NEE and increase in ecosystem respiration in the SRC willow after harvest; however, the site still remained a carbon sink. Our results indicate that once established, significant carbon savings are likely in SRC willow compared with the minimally managed grassland at this site. Although these observed impacts may be site and management dependent, they provide evidence that land‐use transition to 2G bioenergy has potential to provide a significant improvement on the ecosystem service of climate regulation relative to grassland systems.  相似文献   

7.
Several lines of evidence point to European managed grassland ecosystems being a sink of carbon. In this study, we apply ORCHIDEE‐GM a process‐based carbon cycle model that describes specific management practices of pastures and the dynamics of carbon cycling in response to changes in climatic and biogeochemical drivers. The model is used to simulate changes in the carbon balance [i.e., net biome production (NBP)] of European grasslands over 1991–2010 on a 25 km × 25 km grid. The modeled average trend in NBP is 1.8–2.0 g C m?2 yr?2 during the past two decades. Attribution of this trend suggests management intensity as the dominant driver explaining NBP trends in the model (36–43% of the trend due to all drivers). A major change in grassland management intensity has occurred across Europe resulting from reduced livestock numbers. This change has ‘inadvertently’ enhanced soil C sequestration and reduced N2O and CH4 emissions by 1.2–1.5 Gt CO2‐equivalent, offsetting more than 7% of greenhouse gas emissions in the whole European agricultural sector during the period 1991–2010. Land‐cover change, climate change and rising CO2 also make positive and moderate contributions to the NBP trend (between 24% and 31% of the trend due to all drivers). Changes in nitrogen addition (including fertilization and atmospheric deposition) are found to have only marginal net effect on NBP trends. However, this may not reflect reality because our model has only a very simple parameterization of nitrogen effects on photosynthesis. The sum of NBP trends from each driver is larger than the trend obtained when all drivers are varied together, leaving a residual – nonattributed – term (22–26% of the trend due to all drivers) indicating negative interactions between drivers.  相似文献   

8.
In a recent study, Magnani et al. report how atmospheric nitrogen deposition drives stand-lifetime net ecosystem productivity (NEPav) for midlatitude forests, with an extremely high C to N response (725 kg C kg−1 wet-deposited N for their European sites). We present here a re-analysis of these data, which suggests a much smaller C : N response for total N inputs. Accounting for dry, as well as wet N deposition reduces the C : N response to 177 : 1. However, if covariance with intersite climatological differences is accounted for, the actual C : N response in this dataset may be <70 : 1. We then use a model analysis of 22 European forest stands to simulate the findings of Magnani et al. Multisite regression of simulated NEPav vs. total N deposition reproduces a high C : N response (149 : 1). However, once the effects of intersite climatological differences are accounted for, the value is again found to be much smaller, pointing to a real C : N response of about 50–75 : 1.  相似文献   

9.
With increasing nitrogen (N) application to croplands required to support growing food demand, mitigating N2O emissions from agricultural soils is a global challenge. National greenhouse gas emissions accounting typically estimates N2O emissions at the country scale by aggregating all crops, under the assumption that N2O emissions are linearly related to N application. However, field studies and meta‐analyses indicate a nonlinear relationship, in which N2O emissions are relatively greater at higher N application rates. Here, we apply a super‐linear emissions response model to crop‐specific, spatially explicit synthetic N fertilizer and manure N inputs to provide subnational accounting of global N2O emissions from croplands. We estimate 0.66 Tg of N2O‐N direct global emissions circa 2000, with 50% of emissions concentrated in 13% of harvested area. Compared to estimates from the IPCC Tier 1 linear model, our updated N2O emissions range from 20% to 40% lower throughout sub‐Saharan Africa and Eastern Europe, to >120% greater in some Western European countries. At low N application rates, the weak nonlinear response of N2O emissions suggests that relatively large increases in N fertilizer application would generate relatively small increases in N2O emissions. As aggregated fertilizer data generate underestimation bias in nonlinear models, high‐resolution N application data are critical to support accurate N2O emissions estimates.  相似文献   

10.
Wetlands are important sources of methane (CH4) and sinks of carbon dioxide (CO2). However, little is known about CH4 and CO2 fluxes and dynamics of seasonally flooded tropical forests of South America in relation to local carbon (C) balances and atmospheric exchange. We measured net ecosystem fluxes of CH4 and CO2 in the Pantanal over 2014–2017 using tower‐based eddy covariance along with C measurements in soil, biomass and water. Our data indicate that seasonally flooded tropical forests are potentially large sinks for CO2 but strong sources of CH4, particularly during inundation when reducing conditions in soils increase CH4 production and limit CO2 release. During inundation when soils were anaerobic, the flooded forest emitted 0.11 ± 0.002 g CH4‐C m?2 d?1 and absorbed 1.6 ± 0.2 g CO2‐C m?2 d?1 (mean ± 95% confidence interval for the entire study period). Following the recession of floodwaters, soils rapidly became aerobic and CH4 emissions decreased significantly (0.002 ± 0.001 g CH4‐C m?2 d?1) but remained a net source, while the net CO2 flux flipped from being a net sink during anaerobic periods to acting as a source during aerobic periods. CH4 fluxes were 50 times higher in the wet season; DOC was a minor component in the net ecosystem carbon balance. Daily fluxes of CO2 and CH4 were similar in all years for each season, but annual net fluxes varied primarily in relation to flood duration. While the ecosystem was a net C sink on an annual basis (absorbing 218 g C m?2 (as CH4‐C + CO2‐C) in anaerobic phases and emitting 76 g C m?2in aerobic phases), high CH4 effluxes during the anaerobic flooded phase and modest CH4 effluxes during the aerobic phase indicate that seasonally flooded tropical forests can be a net source of radiative forcings on an annual basis, thus acting as an amplifying feedback on global warming.  相似文献   

11.
Similar nonsteady‐state automated chamber systems were used to measure and partition soil CO2 efflux in contrasting deciduous (trembling aspen) and coniferous (black spruce and jack pine) stands located within 100 km of each other near the southern edge of the Boreal forest in Canada. The stands were exposed to similar climate forcing in 2003, including marked seasonal variations in soil water availability, which provided a unique opportunity to investigate the influence of climate and stand characteristics on soil CO2 efflux and to quantify its contribution to the net ecosystem CO2 exchange (NEE) as measured with the eddy‐covariance technique. Partitioning of soil CO2 efflux between soil respiration (including forest‐floor vegetation) and forest‐floor photosynthesis showed that short‐ and long‐term temporal variations of soil CO2 efflux were related to the influence of (1) soil temperature and water content on soil respiration and (2) below‐canopy light availability, plant water status and forest‐floor plant species composition on forest‐floor photosynthesis. Overall, the three stands were weak to moderate sinks for CO2 in 2003 (NEE of ?103, ?80 and ?28 g C m?2 yr?1 for aspen, black spruce and jack pine, respectively). Forest‐floor respiration accounted for 86%, 73% and 75% of annual ecosystem respiration, in the three respective stands, while forest‐floor photosynthesis contributed to 11% and 14% of annual gross ecosystem photosynthesis in the black spruce and jack pine stands, respectively. The results emphasize the need to perform concomitant measurements of NEE and soil CO2 efflux at longer time scales in different ecosystems in order to better understand the impacts of future interannual climate variability and vegetation dynamics associated with climate change on each component of the carbon balance.  相似文献   

12.
Forests of the Midwestern United States are an important source of fiber for the wood and paper products industries. Scientists, land managers, and policy makers are interested in using woody biomass and/or harvest residue for biofuel feedstocks. However, the effects of increased biomass removal for biofuel production on forest production and forest system carbon balance remain uncertain. We modeled the carbon (C) cycle of the forest system by dividing it into two distinct components: (1) biological (net ecosystem production, net primary production, autotrophic and heterotrophic respiration, vegetation, and soil C content) and (2) industrial (harvest operations and transportation, production, use, and disposal of major wood products including biofuel and associated C emissions). We modeled available woody biomass feedstock and whole‐system carbon balance of 220 000 km2 of temperate forests in the Upper Midwest, USA by coupling an ecosystem process model to a collection of greenhouse gas life‐cycle inventory models and simulating seven forest harvest scenarios in the biological ecosystem and three biofuel production scenarios in the industrial system for 50 years. The forest system was a carbon sink (118 g C m?2 yr?1) under current management practices and forest product production rates. However, the system became a C source when harvest area was doubled and biofuel production replaced traditional forest products. Total carbon stores in the vegetation and soil increased by 5–10% under low‐intensity management scenarios and current management, but decreased up to 3% under high‐intensity harvest regimes. Increasing harvest residue removal during harvest had more modest effects on forest system C balance and total biomass removal than increasing the rate of clear‐cut harvests or area harvested. Net forest system C balance was significantly, and negatively correlated (R2 = 0.67) with biomass harvested, illustrating the trade‐offs between increased C uptake by forests and utilization of woody biomass for biofuel feedstock.  相似文献   

13.
Increasing reactive nitrogen (N) input has been recognized as one of the important factors influencing climate system through affecting the uptake and emission of greenhouse gases (GHG). However, the magnitude and spatiotemporal variations of N‐induced GHG fluxes at regional and global scales remain far from certain. Here we selected China as an example, and used a coupled biogeochemical model in conjunction with spatially explicit data sets (including climate, atmospheric CO2, O3, N deposition, land use, and land cover changes, and N fertilizer application) to simulate the concurrent impacts of increasing atmospheric and fertilized N inputs on balance of three major GHGs (CO2, CH4, and N2O). Our simulations showed that these two N enrichment sources in China decreased global warming potential (GWP) through stimulating CO2 sink and suppressing CH4 emission. However, direct N2O emission was estimated to offset 39% of N‐induced carbon (C) benefit, with a net GWP of three GHGs averaging ?376.3 ± 146.4 Tg CO2 eq yr?1 (the standard deviation is interannual variability of GWP) during 2000–2008. The chemical N fertilizer uses were estimated to increase GWP by 45.6 ± 34.3 Tg CO2 eq yr?1 in the same period, and C sink was offset by 136%. The largest C sink offset ratio due to increasing N input was found in Southeast and Central mainland of China, where rapid industrial development and intensively managed crop system are located. Although exposed to the rapidly increasing N deposition, most of the natural vegetation covers were still showing decreasing GWP. However, due to extensive overuse of N fertilizer, China's cropland was found to show the least negative GWP, or even positive GWP in recent decade. From both scientific and policy perspectives, it is essential to incorporate multiple GHGs into a coupled biogeochemical framework for fully assessing N impacts on climate changes.  相似文献   

14.
城市公园绿地是城市重要的生态功能景观,其空间分布的合理性对生态环境的改善及人们的日常生活质量都有一定影响.在城市基础设施配置供需平衡理念的背景下,本文基于城市公园绿地空间公平性评价的理论框架,采用一种基于重力模型的评价方法,以公园绿地的服务能力和各居住区人口数目分别度量供给能力和需求水平.以深圳市福田区为研究区,使用GIS网络分析技术和层次分析法,并在评价中考虑“边界效应”,从居住区的视角对深圳市福田区不同等级的公园绿地分布的空间公平性进行定量评价,进而提出了公园绿地空间配置的优化建议.结果表明: 福田区公园绿地总体公平性较差,其中,社区公园的公平性最差,区域性公园次之,郊野生态公园在部分区域公平性较好;综合各类公园的公平性评价结果,福田区约50%的区域可达到供需平衡,其他区域则均供给不足;福田区的公园绿地系统规划要从绿化率、空间配置及道路交通系统等方面进行改善,重点关注小尺度的公园配置数目,满足社区内的居民日常游憩需求.“边界效应”会对公平性评价结果造成一定影响,位于研究区边缘的居住区可以享受到居住区外的公园绿地服务,同时边界外的居住区也会共享区域内的绿地资源.  相似文献   

15.
The purpose of this study is to determine computationally tractable models describing the lateral-directional motion of a Drosophila-like dipteran insect, which may then be used to estimate the requirements for flight control and stabilization. This study continues the work begun in Faruque and Humbert (2010) to extend the quasi-steady aerodynamics model via inclusion of perturbations from the hover state. The aerodynamics model is considered as forcing upon rigid body dynamics, and frequency-based system identification tools used to derive the models. The analysis indicates two stable real poles, and two very lightly damped and nearly unstable complex poles describing a decoupling of roll/sideslip oscillatory motion from a first order subsidence yaw behavior. The results are presented with uncertainty variation for both a smaller male and larger female phenotype.  相似文献   

16.
Abstract

Target 2 of the European Biodiversity Strategy to 2020, whose aim was to maintain and restore ecosystems and their services, deals in practical terms with the mapping and assessment of ecosystems and their services, with the development of green infrastructure and with halting the loss of biodiversity at the EU, national, and subnational levels. The aim of this short communication was to show the activities currently being carried out in Italy that are related to this target, focusing on the contribution of vegetation science skills to the national implementation process. In particular, we outline noteworthy inputs in ecosystem mapping, in the assessment of ecosystem conservation status, in the individuation of priorities for the restoration of ecosystems, and in the settingup of an ecological framework to promote green infrastructure. An overview of the process outcomes and their relevance within the national and international contexts is also provided.  相似文献   

17.
We undertake a synthesis of the most relevant results from the presentations at the meeting Plant-Soil Carbon Below-Ground: The Effects of Elevated CO2 (Oxford-UK, September 1995), many of which are published in this Special Issue. Below-ground responses to elevated [CO2] are important because the capacity of soils for long-term carbon sequestration. We draw the following conclusions: (i) several ecosystems exposed to elevated [CO2] showed sustained increased CO2 uptake at the plot level for many years. A few systems, however, showed complete down-regulation of net CO2 uptake after several years of elevated [CO2] exposure; (ii) under elevated [CO2], a greater proportion of fixed carbon is generally allocated below-ground, potentially increasing the capacity of below-ground sinks; and (iii) some of the increased capacity of these sinks may lead to increased long-term soil carbon sequestration, although strong evidence is still lacking. We highlight the need for more soil studies to be undertaken within ongoing ecosystem-level experiments, and suggest that while some key experiments already established should be maintained to allow long term effects and feedbacks to take place, more research effort should be directed to mechanisms of soil organic matter stabilization.  相似文献   

18.
The major purpose of this article is to construct a plausible emissions profile for the European chemical industry from process data and mass balance considerations.' In it we describe this industry and its major conversion processes and emissions. Four major process chains, beginning with methane, ethylene, propylene, and benzene are analyzed, along with five important stand-alone processes. A self-consistent version of the industry is constructed for 1992, based on data from a variety of sources.
In 1992 Europe consumed 9,297 metric kilotons as measured by weight of chlorine (kMT[CI]) of salt and 2 I I kMT(CI) of recycled hydrochloric acid (HCI) to produce 86 I0 kMT of virgin elemental chlorine, plus 278 kMT(CI) of virgin by-product HCI. Total chlorine input to the industry was 8,689 kMT including I2 kMT(CI) of recycled chlorinated hydrocarbons (CHCs) and (net) 79 kMT(CI) of HCI. Shipments of chlorine and HCI to other sectors was 1,367 kMT(CI), while 7,322 kMT(CI) was embodied in products or lost within the sector: Of this subtotal, 350 kMT(CI) was used to manufacture identified inorganic chemicals, 5,694 kMT(CI) for identified organic chemicals, and 1,278 kMT(CI) for "other unspecified" chemicals.
We estimate that products account for 41.6% of inputs (measured at the "fence"), while wastes account for 24.7%  相似文献   

19.

Questions

We aim for a better understanding of the different modes of intra‐ and inter‐specific competition in two‐ and three‐species mixed‐forests. How can the effect of different modes of competitive interactions be detected and integrated into individual tree growth models? Are species interactions in spruce–fir–beech forests more associated with size‐symmetric or size‐asymmetric competition? Do competitive interactions between two of these species change from two‐ to three‐species mixtures?

Location

Temperate mixed‐species forests in Central Europe (Switzerland).

Methods

We used data from the Swiss National Forest Inventory to fit basal area increment models at the individual tree level, including the effect of ecological site conditions and indices of size‐symmetric and size‐asymmetric competition. Interaction terms between species‐specific competition indices were used to disentangle significant differences in species interactions from two‐ to three‐species mixtures.

Results

The growth of spruce and fir was positively affected by increasing proportions of the other species in spruce–fir mixtures, but negative effects were detected with increasing presence of beech. We found that competitive interactions for spruce and fir were more related to size‐symmetric competition, indicating that species interactions might be more associated with competition for below‐ground resources. Under constant amounts of stand basal area, the growth of beech clearly benefited from the increasing admixture of spruce and fir. For this species, patterns of size‐symmetric and size‐asymmetric competitive interactions were similar, indicating that beech is a strong self‐competitor for both above‐ground and below‐ground resources. Only for silver fir and beech, we found significant changes in species interactions from two‐ to three‐species mixtures, but these were not as prominent as the effects due to differences between intra‐ and inter‐specific competition.

Conclusions

Species interactions in spruce–fir–beech, or other mixed forests, can be characterized depending on the mode of competition, allowing interpretations of whether they occur mainly above or below ground level. Our outcomes illustrate that species‐specific competition indices can be integrated in individual tree growth functions to express the different modes of competition between species, and highlight the importance of considering the symmetry of competition alongside competitive interactions in models aimed at depicting growth in mixed‐species forests.
  相似文献   

20.
This is part 2 of a pair of papers on antimicrobial assays conducted to estimate the log reduction (LR), in the density of viable microbes, attributable to the germicide. Two alternative definitions of LR were defined in part 1, one based on the mean of the log-transformed densities; the other is based on the logarithm of the mean of densities. In this paper, we evaluate statistical methods for estimating LR from an antimicrobial assay in which the responses are presence/absence observations at each dilution in a series of dilutions. We provide a model for the presence/absence data, and, for each definition of LR, we derive the maximum likelihood estimator (mle). Using computer simulation methods, we compare the mle to several alternative estimators, including an estimator based on averaging the log-transformed most probable number (mpn) values. Standard error formulas for the estimators are also derived and evaluated using computer simulations. This investigation results in the following recommendations. If the parameter of interest is based on the mean of log-transformed densities, then the results favor use of the log-transformed mpn method. If, however, the parameter of interest is based on the logarithm of the mean of densities, then the results show that the mle should be used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号