首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The release of organic material upon algal cell lyses has a key role in structuring bacterial communities and affects the cycling of biolimiting elements in the marine environment. Here we show that already before cell lysis the leakage or excretion of organic matter by infected yet intact algal cells shaped North Sea bacterial community composition and enhanced bacterial substrate assimilation. Infected algal cultures of Phaeocystis globosa grown in coastal North Sea water contained gamma- and alphaproteobacterial phylotypes that were distinct from those in the non-infected control cultures 5 h after infection. The gammaproteobacterial population at this time mainly consisted of Alteromonas sp. cells that were attached to the infected but still intact host cells. Nano-scale secondary-ion mass spectrometry (nanoSIMS) showed ∼20% transfer of organic matter derived from the infected 13C- and 15N-labelled P. globosa cells to Alteromonas sp. cells. Subsequent, viral lysis of P. globosa resulted in the formation of aggregates that were densely colonised by bacteria. Aggregate dissolution was observed after 2 days, which we attribute to bacteriophage-induced lysis of the attached bacteria. Isotope mass spectrometry analysis showed that 40% of the particulate 13C-organic carbon from the infected P. globosa culture was remineralized to dissolved inorganic carbon after 7 days. These findings reveal a novel role of viruses in the leakage or excretion of algal biomass upon infection, which provides an additional ecological niche for specific bacterial populations and potentially redirects carbon availability.  相似文献   

3.
Many variables must be considered in seeking to describe differences in population sizes for native aquatic bacterial populations. In this study of seagrass- and nearby plant-free sediments, seasonal effects on total bacterial counts were found to be highly significant, outweighing the significance of factors such as geographic variability, but on populations of a chosen Alteromonas sp., they were not significant at the 5% level. Summer counts for both populations were higher than those for winter; this result is likely to reflect the higher productivity of the host Zostera capricomi in summer months, resulting in the exudation of increased amounts of organic nutrients. The Alteromonas sp. occurred in greatest abundance (1.8% of the total population) at the seagrass sediment site from which it was originally isolated and formed up to 1.5% of the population in adjacent plant-free sediments. In fluorescent microscopy studies with labeled antibodies, the Alteromonas sp. was found to be ubiquitous in seagrass and plant-free sediments but was found closely associated in much higher numbers with seagrass root-rhizome tissue, suggesting a possible nutritional relationship between plant and bacterium. In associated trials of sediment preservation techniques, bacterial counts of replicate sediments preserved with glutaraldehyde (3% v/v) were higher than those obtained using Lugol's iodine or freezing. Correspondence to: P.W. Glazebrook  相似文献   

4.
5.
During early Spring (April–May) when the seawater salinity drops suddenly and the seawater temperature increases drastically, severe lesions and thallus bleaching were observed in the Laminaria religiosa population at Oshoro Bay, Otaru, Hokkaido, Japan. The healthy and diseased kelp blades were collected and subjected to enumeration of total number of culturable bacteria and bacterial species. Bacterial enumerations were done using 3 different media formulations; high-nutrient media (Media 1), low-nutrient media (Media 2) and modified low-nutrient media with 5% kelp extract (Media 3). Seven bacterial species were isolated from the healthy kelp. These were Alcaligenes aquamarinas, Alteromonas sp., Azomonas agilis, Azotobacter beijerinckii, Escherichia coli, Halobacterium sp. and Halococcus sp. All 7 bacterial species were isolated on Media 2 and Media 3, but only 5 species were isolated using Media 1 with the absence of Halobacterium sp. and Halococcus sp. Highest total number of culturable bacteria was 2050 CFU/cm2 on Media 3. Eight species of bacteria were isolated from the diseased kelp thallus with the addition of Erwinia amylovora. All 8 bacteria grew on Media 2 and Media 3, but only 6 species were isolated using Media 1 with the absence of Halobacterium sp. and Halococcus sp. Highest total number of culturable bacteria was 5830 CFU/cm2 on Media 3. However, only 3 species were isolated from the lesioned area. The most abundant species was Alteromonas sp. followed by Halococcus sp. and Alcaligenes aquamarinas. The surface bacteria showed best growth on Media 3. Scanning Electron Microscopic images of the healthy and diseased thallus gave distinctive evidence of the severity of the lesions as well as the relative abundance in the bacterial population. In an effort to identify the symptoms causative organism, the isolated bacterial species were cultured and used to test Koch's postulates. Out of the 8 species, only Alteromonas sp. induced lesions on the axenic kelp blades. The inoculated bacteria were also re-isolated without any significant contamination. Hence, Alteromonas sp. is suggested as the possible disease causing organism.  相似文献   

6.
Abstract

Biofouling control in reverse osmosis membranes (ROMs) is challenging due to the high cost of treatments, and reduction in the life of ROMs. This study characterizes the biofouling in the ROMs from a desalination plant and reports its effective removal using the supernatant obtained from Alteromonas sp. strain Ni1-LEM. The characterization of the bacterial community revealed that the most abundant taxa in ROMs were the genera Fulvivirga and Pseudoalteromonas, and unclassified species of the families Flavobacteriaceae and Sphingomonadaceae. This bacterial community significantly decreased upon treatment with the supernatant from Alteromonas sp. Ni1-LEM, resulting in the prevalence of the genus Pseudoalteromonas. Furthermore, this bacterial supernatant significantly inhibited cell adhesion of seven benthic microalgae isolated from ROMs as well as promoting cell detachment of the existing microbial biofilms. The study showed that the extracellular supernatant modified the conformation of extracellular polymeric substances (EPS) in the biofouling of ROMs without any biocidal effects.  相似文献   

7.
We constructed two mesophilic anaerobic chemostats that were continuously fed with synthetic wastewater containing butyrate as the sole source of carbon and energy. Steady-state conditions were achieved at dilution rates between 0.025 and 0.7 day−1. Butyrate, fed into the chemostat, was almost completely mineralized to CH4 and CO2 at dilution rates below 0.5 day−1. The butyrate-degrading methanogenic communities in the chemostats at dilution rates between 0.025 and 0.7 day−1 were monitored based on the 16S rRNA gene, using molecular biological techniques including clone library analysis, denaturing gradient gel electrophoresis, and quantitative real-time polymerase chain reaction. The aceticlastic methanogen Methanosaeta and the hydrogenotrophic methanogen Methanoculleus dominated in methanogens at low dilution rates, whereas the aceticlastic methanogen Methanosaeta, Methanosarcina, the hydrogenotrophic methanogen Methanoculleus, and Methanospirillum dominated at high dilution rates. Bacteria affiliated with the family Syntrophaceae in the phylum Proteobacteria predominated at the low dilution rate of 0.025 day−1, whereas bacteria affiliated with the phylum Firmicutes and Candidate division OP3 predominated at high dilution rates. A significant quantity of bacteria closely related to the genus Syntrophomonas was detected at high dilution rates. Dilution rate showed an apparent effect on archaeal and bacterial communities in the butyrate-fed chemostats.  相似文献   

8.
Summary Regional variation in the intensity of fish predation on tethered brittle stars and crabs was measured at 30–33 m depths in the rocky subtidal zone at seven sites representing coastal and offshore regions of the Gulf of Maine, USA. Analysis of covariance comparing the slopes of brittle star survivorship curves followed by multiple comparisons tests revealed five groupings of sites, with significantly greater predation rates in the two offshore than in the three coastal groups. Brittle stars tethered at the three offshore sites were consumed primarily by cod, Gadus morhua, with 60–100% prey mortality occuring in 2.5 h. In striking contrast, only 6–28% of brittle star prey was consumed in the same amount of time at the four coastal sites, which were dominated by cunner, Tautogolabrus adspersus. In several coastal trials, a majority of brittle star prey remained after 24 h. The pattern of higher predation offshore held for rock crabs as well with only 2.7% of tethered crabs consumed (n=36) at coastal sites versus 57.8% of crabs (n=64) consumed at offshore sites. Another important predatory fish, the wolffish, Anarhichas lupus, consumed more tethered crabs than brittle stars. Videos and time-lapse movies indicated that cod and wolffish were significantly more abundant at offshore than at coastal sites. Three hundred years of fishing pressure in New England has severely depleted stocks of at least one important benthic predator, the cod, in coastal waters. We speculate that this human-induced predator removal has lowered predation pressure on crabs and other large mobile epibenthos in deep coastal communities. Transect data indicate that coastal sites with few cod support significantly higher densities of crabs than offshore sites with abundant cod.  相似文献   

9.
To enrich syntrophic acetate‐oxidizing bacteria (SAOB), duplicate chemostats were inoculated with sludge from syntrophic acetate oxidation (SAO)‐dominated systems and continuously supplied with acetate (0.4 or 7.5 g l?1) at high‐ammonia levels. The chemostats were operated under mesophilic (37°C) or thermophilic (52°C) temperature for about six hydraulic retention times (HRT 28 days) and were sampled over time. Irrespective of temperature, a methane content of 64–69% and effluent acetate level of 0.4–1.0 g l?1 were recorded in chemostats fed high acetate. Low methane production in the low‐acetate chemostats indicated that the substrate supply was below the threshold for methanization of acetate via SAO. Novel representatives within the family Clostridiales and genus Syntrophaceticus (class Clostridia) were identified to represent putative SAOB candidates in mesophilic and thermophilic conditions respectively. Known SAOB persisted at low relative abundance in all chemostats. The hydrogenotrophic methanogens Methanoculleus bourgensis (mesophilic) and Methanothermobacter thermautotrophicus (thermophilic) dominated archaeal communities in the high‐acetate chemostats. In line with the restricted methane production in the low‐acetate chemostats, methanogens persisted at considerably lower abundance in these chemostats. These findings strongly indicate involvement in SAO and tolerance to high ammonia levels of the species identified here, and have implications for understanding community function in stressed anaerobic processes.  相似文献   

10.
Coral communities were monitored at Pandora Reef, nearshore Great Barrier Reef from 1981 to 2005 using photography and videography. In the 1980s, regional elevation of land-based nutrients in coastal waters (ca. 2–6 times pre-European levels of early 1800s) did not prevent overall recovery of coral cover and diversity following a sequence of environmental disturbances in the 1970s. However, prospects for a repeat of such resilience following catastrophic mortality from high-temperature bleaching in 1998 and a cyclone in 2000 are not clear. Different coral communities around the reef varied greatly in relation to impacts and recovery. Fore-reef communities dominated by acroporids (fast growing branching and tabular Acropora and foliose Montipora) recovered strongly in the 1980s following apparently severe impacts by cyclone, flood and heat wave disturbances in the 1970s, attaining 60–90% cover by stabilizing rubble and outgrowing macro-algae in <10 years. In the back-reef, by contrast, poritid-dominated communities (massive and finger Porites and columnar Goniopora and Alveopora) had more stable trajectories and smaller impact from recent disturbances: recovery was well underway in 2005. The contrasting trajectories of different parts of the reef reflect differential survival of more persistent versus more ephemeral taxa, notably poritids and acroporids, respectively, both major contributors to framework and cover on reefs globally. A repeat of earlier resilience appears possible in the shallow fore-reef, but unlikely in the deeper fore-reef, which had few viable fragments or recruits in 2005. The main limits on recovery may be (1) reduced supply of coral larvae due to widespread regional losses of coral brood stock and (2) the reduced intervals between disturbances associated with global climate change. The presence of a high abundance of Acroporidae is a major pre-disposing risk factor for climate change impacts.  相似文献   

11.
Insight into the initial phase of aggregate formation was provided by comparison between bacterial communities from freshly formed aggregates dominated by the epipelic diatom Cylindrotheca closterium and associated water masses. This study was performed from 2000 to 2006 in the northern Adriatic. The chemotaxonomic structures and physiological conditions were inferred from the fatty acid profiles of the cultured bacterial communities of all implicated components, fresh aggregates, their adjacent waters, oligotrophic high-salinity waters and halocline waters. The results showed similarity between bacterial communities of fresh aggregates and oligotrophic high-salinity water, suggesting their common origin and involvement in the formation of aggregates. In contrast, the origin of the water adjacent to aggregates was different from that of the other components but was similar to the halocline layer and was likely derived from northern Adriatic waters. The presence and activity of heterotrophic bacteria belonging to Alteromonadaceae, which are regularly observed on fresh aggregates, suggest that the early phase of aggregate formation corresponds to an abrupt change of environmental conditions due to the mixing of central and northern Adriatic waters. The initial colonisation of fresh mucilage ascribes to Alteromonas an important ecological function in aggregate community development related to the succession of phytoplankton and heterotrophic bacteria.  相似文献   

12.
Soil microbial communities are often not resistant to the impact caused by microbial invasions, both in terms of structure and functionality, but it remains unclear whether these changes persist over time. Here, we used three strains of Escherichia coli O157:H7 (E. coli O157:H7), a species used for modelling bacterial invasions, to evaluate the resilience of the bacterial communities from four Chinese soils to invasion. The impact of E. coli O157:H7 strains on soil native communities was tracked for 120 days by analysing bacterial community composition as well as their metabolic potential. We showed that soil native communities were not resistant to invasion, as demonstrated by a decline in bacterial diversity and shifts in bacterial composition in all treatments. The resilience of native bacterial communities (diversity and composition) was inversely correlated with invader's persistence in soils (R2 = 0.487, p < 0.001). Microbial invasions also impacted the functionality of the soil communities (niche breadth and community niche), the degree of resilience being dependent on soil or native community diversity. Collectively, our results indicate that bacteria invasions can potentially leave a footprint in the structure and functionality of soil communities, indicating the need of assessing the legacy of introducing exotic species in soil environments.  相似文献   

13.
Marine bacteria rely on phytoplankton exudates as carbon sources (DOCp). Yet, it is unclear to what extent phytoplankton exudates also provide nutrients such as phytoplankton-derived N and P (DONp, DOPp). We address these questions by mesocosm exudate addition experiments with spent media from the ubiquitous pico-cyanobacterium Prochlorococcus to bacterial communities in contrasting ecosystems in the Eastern Mediterranean – a coastal and an open-ocean, oligotrophic station with and without on-top additions of inorganic nutrients. Inorganic nutrient addition did not lower the incorporation of exudate DONp, nor did it reduce alkaline phosphatase activity, suggesting that bacterial communities are able to exclusively cover their nitrogen and phosphorus demands with organic forms provided by phytoplankton exudates. Approximately half of the cells in each ecosystem took up detectable amounts of Prochlorococcus-derived C and N, yet based on 16S rRNA sequencing different bacterial genera were responsible for the observed exudate utilization patterns. In the coastal community, several phylotypes of Aureimarina, Psychrosphaera and Glaciecola responded positively to the addition of phytoplankton exudates, whereas phylotypes of Pseudoalteromonas increased and dominated the open-ocean communities. Together, our results strongly indicate that phytoplankton exudates provide coastal and open-ocean bacterial communities with organic carbon, nitrogen and phosphorus, and that phytoplankton exudate serve a full-fledged meal for the accompanying bacterial community in the nutrient-poor eastern Mediterranean.  相似文献   

14.
Summary A tributyltin chloride (TBTCl)-resistant bacterium,Alteromonas sp. M-1, was isolated from coastal seawater. This bacterium grew in medium containing 125 M TBTCl. TBTCl added to the medium was taken up by this bacterium, however, the amount of TBTCl in the cellular fraction was low after the logarithmic phase, suggesting the existence of a TBTCl-efflux system. A genetic library was constructed using plasmid vector pUC 19. Three positive clones were obtained, by whichE. coli was transformed to TBTCl resistance. Of the three clones, the shortest fragment fromHindIII-library was analyzed. This fragment was 1.8 kb long and contained one complete open reading frame. The predicted amino acid sequence of this open reading frame had a homologous domain to transglycosylases of bacteriophage andE. coli. TBTCl-tolerant marine bacteria other thanAlteromonas sp. M-1 were obtained from natural seawater to which TBTCl was added. DNA-DNA hybridization was performed between the three cloned fragments fromAlteromonas sp. M-1 and chromosomal DNA of the TBTCl-tolerant bacteria. Some strains hybridized with the fragments and some did not, suggesting that several genes are responsible for TBTCl tolerance.  相似文献   

15.
Aridity negatively affects the diversity and abundance of edaphic microbial communities and their multiple ecosystem services, ultimately impacting vegetation productivity and biotic interactions. Investigation about how plant-associated microbial communities respond to increasing aridity is of particular importance, especially in light of the global climate change predictions. To assess the effect of aridity on plant associated bacterial communities, we investigated the diversity and co-occurrence of bacteria associated with the bulk soil and the root system of olive trees cultivated in orchards located in higher, middle and lower arid regions of Tunisia. The results indicated that the selective process mediated by the plant root system is amplified with the increment of aridity, defining distinct bacterial communities, dominated by aridity-winner and aridity-loser bacteria negatively and positively correlated with increasing annual rainfall, respectively. Aridity regulated also the co-occurrence interactions among bacteria by determining specific modules enriched with one of the two categories (aridity-winners or aridity-losers), which included bacteria with multiple PGP functions against aridity. Our findings provide new insights into the process of bacterial assembly and interactions with the host plant in response to aridity, contributing to understand how the increasing aridity predicted by climate changes may affect the resilience of the plant holobiont.  相似文献   

16.
A bacterial strain NF3 was isolated from a sludge sample from Inlet Admiralty Bay (Antarctica) and has been identified as belonging to the genus Alteromonas. The isolate was a Gram-negative rod with a single polar flagellum arrangement. The strain was catalase and oxidase positive and capable of gelatin hydrolysis. The G + C content was 42 mol%. The fatty acid composition and the protein profile has confirmed its identification as Alteromonas sp. During cell growth, the strain produced an exopolymer composed of 76–86% protein and 8–14% sugars depending on the medium used.  相似文献   

17.
M. Potts 《Oecologia》1979,39(3):359-373
Summary High rates of nitrogen fixation (acetylene reduction) are associated with communities of heterocystous and non-heterocystous blue-green algae, which are widespread and abundant in the coastal mangrove forests of the Sinai Peninsula.Heterocystous forms, particularly representatives of the Rivulariaceae, grow in aerobic environments, where nitrogenase activity may be limited by the availability of nutrients such as Fe and PO4–P. Desiccated communities of Scytonema sp. reduce acetylene within ten minutes of wetting by tidal sea water. Communities dominated by the non-heterocystous Hydrocoleus sp., Hyella balani, Lyngbya aestuarii, Phormidium sp. and Schizothrix sp., occur in close contact with anaerobic sediments and reduce acetylene in the dark as well as in the light.Nitrogen fixation in all these communities is light dependant and may be supplemented by an alternative source of reductant in the dark. The indications are that nitrogen fixation by these communities of blue-green algae, makes a significant contribution to the overall nitrogen input of the mangrove ecosystem.  相似文献   

18.
Microbial communities typically vary in composition and structure over space and time. Little is known about the inherent characteristics of communities that govern various drivers of these changes, such as random variation, changes in response to perturbation, or susceptibility to invasion. In this study, we use 16S ribosomal RNA gene sequences to describe variation among bacterial communities in the midguts of cabbage white butterfly (Pieris rapae) larvae and examine the influence of community structure on susceptibility to invasion. We compared communities in larvae experiencing the same conditions at different times (temporal variation) or fed different diets (perturbation). The most highly represented phylum was Proteobacteria, which was present in all midgut communities. The observed species richness ranged from six to 15, and the most abundant members affiliated with the genera Methylobacteria, Asaia, Acinetobacter, Enterobacter, and Pantoea. Individual larvae subjected to the same conditions at the same time harbored communities that were highly similar in structure and membership, whereas the communities observed within larval populations changed with diet and over time. In addition, structural changes due to perturbation coincided with enhanced susceptibility to invasion by Enterobacter sp. NAB3R and Pantoea stewartii CWB600, suggesting that resistance to invasion is in part governed by community structure. These findings along with the observed conservation of membership at the phylum level, variation in structure and membership at lower taxonomic levels, and its relative simplicity make the cabbage white butterfly larval community an attractive model for studying community dynamics and robustness.  相似文献   

19.
Red Sea sponges offer potential as sources of novel drugs and bioactive compounds. Sponges harbor diverse and abundant prokaryotic communities. The diversity of Egyptian sponge-associated bacterial communities has not yet been explored. Our study is the first culture-based and culture-independent investigation of the total bacterial assemblages associated with two Red Sea Demosponges, Hyrtios erectus and Amphimedon sp. Denaturing gradient gel electrophoresis fingerprint-based analysis revealed statistically different banding patterns of the bacterial communities of the studied sponges with H. erectus having the greater diversity. 16S rRNA clone libraries of both sponges revealed diverse and complex bacterial assemblages represented by ten phyla for H. erectus and five phyla for Amphimedon sp. The bacterial community associated with H. erectus was dominated by Deltaproteobacteria. Clones affiliated with Gammaproteobacteria were the major component of the clone library of Amphimedon sp. About a third of the 16S rRNA gene sequences in these communities were derived from bacteria that are novel at least at the species level. Although the overall bacterial communities were significantly different, some bacterial groups, including members of Alphaproteobacteria, Gammaproteobacteria, Acidobacteria, and Actinobacteria, were found in both sponge species. The culture-based component of this study targeted Actinobacteria and resulted in the isolation of 35 sponge-associated microbes. The current study lays the groundwork for future studies of the role of these diverse microbes in the ecology, evolution, and development of marine sponges. In addition, our work provides an excellent resource of several candidate bacteria for production of novel pharmaceutically important compounds.  相似文献   

20.
This study reports on the factors involved in regulating the composition and structure of bacterial communities epiphytic on intertidal macroalgae, exploring their temporal variability and the role of copper pollution. Culture-independent, molecular approaches were chosen for this purpose and three host species were used as models: the ephemeral Ulva spp. (Chlorophyceae) and Scytosiphon lomentaria (Phaeophyceae) and the long-living Lessonia nigrescens (Phaeophyceae). The algae were collected from two coastal areas in Northern Chile, where the main contrast was the concentration of copper in the seawater column resulting from copper-mine waste disposals. We found a clear and strong effect in the structure of the bacterial communities associated with the algal species serving as host. The structure of the bacterial communities also varied through time. The effect of copper on the structure of the epiphytic bacterial communities was significant in Ulva spp., but not on L. nigrescens. The use of 16S rRNA gene library analysis to compare bacterial communities in Ulva revealed that they were composed of five phyla and six classes, with approximately 35 bacterial species, dominated by members of Bacteroidetes (Cytophaga-Flavobacteria-Bacteroides) and α-Proteobacteria, in both non-polluted and polluted sites. Less common groups, such as the Verrucomicrobiae, were exclusively found in polluted sites. This work shows that the structure of bacterial communities epiphytic on macroalgae is hierarchically determined by algal species > temporal changes > copper levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号