首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
FliG and FliM are switch proteins that regulate the rotation and switching of the flagellar motor. Several assembly models for FliG and FliM have recently been proposed; however, it remains unclear whether the assembly of the switch proteins is conserved among different bacterial species. We applied a combination of pull‐down, thermodynamic and structural analyses to characterize the FliM–FliG association from the mesophilic bacterium Helicobacter pylori. FliM binds to FliG with micromolar binding affinity, and their interaction is mediated through the middle domain of FliG (FliGM), which contains the EHPQR motif. Crystal structures of the middle domain of H. pylori FliM (FliMM) and FliGM–FliMM complex revealed that FliG binding triggered a conformational change of the FliM α3‐α1′ loop, especially Asp130 and Arg144. We furthermore showed that various highly conserved residues in this region are required for FliM–FliG complex formation. Although the FliM–FliG complex structure displayed a conserved binding mode when compared with Thermotoga maritima, variable residues were identified that may contribute to differential binding affinities across bacterial species. Comparison of the thermodynamic parameters of FliG–FliM interactions between H. pylori and Escherichia coli suggests that molecular basis and binding properties of FliM to FliG is likely different between these two species.  相似文献   

2.
In many bacterial pathogens, the second messenger c‐di‐GMP stimulates the production of an exopolysaccharide (EPS) matrix to shield bacteria from assaults of the immune system. How c‐di‐GMP induces EPS biogenesis is largely unknown. Here, we show that c‐di‐GMP allosterically activates the synthesis of poly‐β‐1,6‐N‐acetylglucosamine (poly‐GlcNAc), a major extracellular matrix component of Escherichia coli biofilms. C‐di‐GMP binds directly to both PgaC and PgaD, the two inner membrane components of the poly‐GlcNAc synthesis machinery to stimulate their glycosyltransferase activity. We demonstrate that the PgaCD machinery is a novel type c‐di‐GMP receptor, where ligand binding to two proteins stabilizes their interaction and promotes enzyme activity. This is the first example of a c‐di‐GMP‐mediated process that relies on protein–protein interaction. At low c‐di‐GMP concentrations, PgaD fails to interact with PgaC and is rapidly degraded. Thus, when cells experience a c‐di‐GMP trough, PgaD turnover facilitates the irreversible inactivation of the Pga machinery, thereby temporarily uncoupling it from c‐di‐GMP signalling. These data uncover a mechanism of c‐di‐GMP‐mediated EPS control and provide a frame for c‐di‐GMP signalling specificity in pathogenic bacteria.  相似文献   

3.
c‐di‐GMP is a bacterial second messenger that is enzymatically synthesized and degraded in response to environmental signals. Cellular processes are affected when c‐di‐GMP binds to receptors which include proteins that contain the PilZ domain. Although each c‐di‐GMP synthesis or degradation enzyme metabolizes the same molecule, many of these enzymes can be linked to specific downstream processes. Here we present evidence that c‐di‐GMP signalling specificity is achieved through differences in affinities of receptor macromolecules. We show that the PilZ domain proteins of Salmonella Typhimurium, YcgR and BcsA, demonstrate a 43‐fold difference in their affinity for c‐di‐GMP. Modulation of the affinities of these proteins altered their activities in a predictable manner in vivo. Inactivation of yhjH, which encodes a predicted c‐di‐GMP degrading enzyme, increased the fraction of the cellular population that demonstrated c‐di‐GMP levels high enough to bind to the higher‐affinity YcgR protein and inhibit motility, but not high enough to bind to the lower‐affinity BcsA protein and stimulate cellulose production. Finally, PilZ domain proteins of Pseudomonas aeruginosa demonstrated a 145‐fold difference in binding affinities, suggesting that regulation by binding affinity may be a conserved mechanism that allows organisms with many c‐di‐GMP binding macromolecules to rapidly integrate multiple environmental signals into one output.  相似文献   

4.
The flagellar motor is one type of propulsion device of motile bacteria. The cytoplasmic ring (C-ring) of the motor interacts with the stator to generate torque in clockwise and counterclockwise directions. The C-ring is composed of three proteins, FliM, FliN, and FliG. Together they form the “switch complex” and regulate switching and torque generation. Here we report the crystal structure of the middle domain of FliM in complex with the middle and C-terminal domains of FliG that shows the interaction surface and orientations of the proteins. In the complex, FliG assumes a compact conformation in which the middle and C-terminal domains (FliGMC) collapse and stack together similarly to the recently published structure of a mutant of FliGMC with a clockwise rotational bias. This intramolecular stacking of the domains is distinct from the intermolecular stacking seen in other structures of FliG. We fit the complex structure into the three-dimensional reconstructions of the motor and propose that the cytoplasmic ring is assembled from 34 FliG and FliM molecules in a 1:1 fashion.  相似文献   

5.
Rotation and switching of the bacterial flagellum depends on a large rotor-mounted protein assembly composed of the proteins FliG, FliM and FliN, with FliG most directly involved in rotation. The crystal structure of a complex between the central domains of FliG and FliM, in conjunction with several biochemical and molecular-genetic experiments, reveals the arrangement of the FliG and FliM proteins in the rotor. A stoichiometric mismatch between FliG (26 subunits) and FliM (34 subunits) is explained in terms of two distinct positions for FliM: one where it binds the FliG central domain and another where it binds the FliG C-terminal domain. This architecture provides a structural framework for addressing the mechanisms of motor rotation and direction switching and for unifying the large body of data on motor performance. Recently proposed alternative models of rotor assembly, based on a subunit contact observed in crystals, are not supported by experiment.  相似文献   

6.
7.
The high-resolution structures of nearly all the proteins that comprise the bacterial flagellar motor switch complex have been solved; yet a clear picture of the switching mechanism has not emerged. Here, we used NMR to characterize the interaction modes and solution properties of a number of these proteins, including several soluble fragments of the flagellar motor proteins FliM and FliG, and the response-regulator CheY. We find that activated CheY, the switch signal, binds to a previously unidentified region of FliM, adjacent to the FliM-FliM interface. We also find that activated CheY and FliG bind with mutual exclusivity to this site on FliM, because their respective binding surfaces partially overlap. These data support a model of CheY-driven motor switching wherein the binding of activated CheY to FliM displaces the carboxy-terminal domain of FliG (FliGC) from FliM, modulating the FliGC-MotA interaction, and causing the motor to switch rotational sense as required for chemotaxis.  相似文献   

8.
Rhodospirillum centenum is a purple photosynthetic bacterium that is capable of differentiating from vibrioid swimming cells that contain a single polar flagellum into rod-shaped swarming cells that have a polar flagellum plus numerous lateral flagella. Microscopic studies have demonstrated that the polar flagellum is constitutively present and that the lateral flagella are found only when the cells are grown on solidified or viscous medium. In this study, we demonstrated that R. centenum contains two sets of motor and switch genes, one set for the lateral flagella and the other for the polar flagellum. Electron microscopic analysis indicated that polar and lateral flagellum-specific FliG, FliM, and FliN switch proteins are necessary for assembly of the respective flagella. In contrast, separate polar and lateral MotA and MotB motor subunits are shown to be required for motility but are not needed for the synthesis of polar and lateral flagella. Phylogenetic analysis indicates that the polar and lateral FliG, FliM, and FliN switch proteins are closely related and most likely arose as a gene duplication event. However, phylogenetic analysis of the MotA and MotB motor subunits suggests that the polar flagellum may have obtained a set of motor genes through a lateral transfer event.  相似文献   

9.
In contrast to numerous enzymes involved in c‐di‐GMP synthesis and degradation in enterobacteria, only a handful of c‐di‐GMP receptors/effectors have been identified. In search of new c‐di‐GMP receptors, we screened the Escherichia coli ASKA overexpression gene library using the Differential Radial Capillary Action of Ligand Assay (DRaCALA) with fluorescently and radioisotope‐labelled c‐di‐GMP. We uncovered three new candidate c‐di‐GMP receptors in E. coli and characterized one of them, BcsE. The bcsE gene is encoded in cellulose synthase operons in representatives of Gammaproteobacteria and Betaproteobacteria. The purified BcsE proteins from E. coli, Salmonella enterica and Klebsiella pneumoniae bind c‐di‐GMP via the domain of unknown function, DUF2819, which is hereby designated GIL, G GDEF I ‐site l ike domain. The RxGD motif of the GIL domain is required for c‐di‐GMP binding, similar to the c‐di‐GMP‐binding I‐site of the diguanylate cyclase GGDEF domain. Thus, GIL is the second protein domain, after PilZ, dedicated to c‐di‐GMP‐binding. We show that in S. enterica, BcsE is not essential for cellulose synthesis but is required for maximal cellulose production, and that c‐di‐GMP binding is critical for BcsE function. It appears that cellulose production in enterobacteria is controlled by a two‐tiered c‐di‐GMP‐dependent system involving BcsE and the PilZ domain containing glycosyltransferase BcsA.  相似文献   

10.
The flagellar motor is an important virulence factor in infection by many bacterial pathogens. Motor function can be modulated by chemotactic proteins and recently appreciated proteins that are not part of the flagellar or chemotaxis systems. How these latter proteins affect flagellar activity is not fully understood. Here, we identified spermidine synthase SpeE as an interacting partner of switch protein FliM in Helicobacter pylori using pull‐down assay and mass spectrometry. To understand how SpeE contributes to flagellar motility, a speE‐null mutant was generated and its motility behavior was evaluated. We found that deletion of SpeE did not affect flagellar formation, but induced clockwise rotation bias. We further determined the crystal structure of the FliM‐SpeE complex at 2.7 Å resolution. SpeE dimer binds to FliM with micromolar binding affinity, and their interaction is mediated through the β1' and β2' region of FliM middle domain. The FliM‐SpeE binding interface partially overlaps with the FliM surface that interacts with FliG and is essential for proper flagellar rotational switching. By a combination of protein sequence conservation analysis and pull‐down assays using FliM and SpeE orthologues in E. coli, our data suggest that FliM‐SpeE association is unique to Helicobacter species.  相似文献   

11.
12.
13.
Many bacteria colonize surfaces and transition to a sessile mode of growth. The plant pathogen Agrobacterium tumefaciens produces a u nip olar p olysaccharide (UPP) adhesin at single cell poles that contact surfaces. Here we report that elevated levels of the intracellular signal cyclic diguanosine monophosphate (c‐di‐GMP) lead to surface‐contact‐independent UPP production and a red colony phenotype due to production of UPP and the exopolysaccharide cellulose, when A. tumefaciens is incubated with the polysaccharide stain Congo Red. Transposon mutations with elevated Congo Red staining identified presumptive UPP‐negative regulators, mutants for which were hyperadherent, producing UPP irrespective of surface contact. Multiple independent mutations were obtained in visN and visR, activators of flagellar motility in A. tumefaciens, now found to inhibit UPP and cellulose production. Expression analysis in a visR mutant and isolation of suppressor mutations, identified three diguanylate cyclases inhibited by VisR. Null mutations for two of these genes decrease attachment and UPP production, but do not alter cellular c‐di‐GMP levels. However, analysis of catalytic site mutants revealed their GGDEF motifs are required to increase UPP production and surface attachment. Mutations in a specific presumptive c‐di‐GMP phosphodiesterase also elevate UPP production and attachment, consistent with c‐di‐GMP activation of surface‐dependent adhesin deployment.  相似文献   

14.
In the past decade, Clostridium difficile has emerged as an important gut pathogen. This anaerobic, Gram‐positive bacterium is the main cause of infectious nosocomial diarrhea. Whereas much is known about the mechanism through which the C. difficile toxins cause diarrhea, relatively little is known about the dynamics of adhesion and motility, which is mediated by cell surface proteins. This review will discuss the recent advances in our understanding of the sortase‐mediated covalent attachment of cell surface (adhesion) proteins to the peptidoglycan layer of C. difficile and their release through the action of a highly specific secreted metalloprotease (Pro‐Pro endopeptidase 1, PPEP‐1). Specific emphasis will be on a model in which PPEP‐1 and its substrates control the switch from a sessile to motile phenotype in C. difficile, and how this is regulated by the cyclic dinucleotide c‐di‐GMP (3′‐5′ cyclic dimeric guanosine monophosphate).  相似文献   

15.
Brown PN  Hill CP  Blair DF 《The EMBO journal》2002,21(13):3225-3234
The FliG protein is essential for assembly, rotation and clockwise/counter-clockwise (CW/CCW) switching of the bacterial flagellum. About 25 copies of FliG are present in a large rotor-mounted assembly termed the 'switch complex', which also contains the proteins FliM and FliN. Mutational studies have identified the segments of FliG most crucial for flagellar assembly, rotation and switching. The structure of the C-terminal domain, which functions specifically in rotation, was reported previously. Here, we describe the crystal structure of a larger fragment of the FliG protein from Thermotoga maritima, which encompasses the middle and C-terminal parts of the protein (termed FliG-MC). The FliG-MC molecule consists of two compact globular domains, linked by an alpha-helix and an extended segment that contains a well-conserved Gly-Gly motif. Mutational studies indicate that FliM binds to both of the globular domains, and given the flexibility of the linking segment, FliM is likely to determine the relative orientation of the domains in the flagellum. We propose a model for the organization of FliG-MC molecules in the flagellum, and suggest that CW/CCW switching might occur by movement of the C-terminal domain relative to other parts of FliG, under the control of FliM.  相似文献   

16.
The cytoplasmic portion of the bacterial flagellum is thought to consist of at least two structural components: a switch complex and an export apparatus. These components seem to assemble around the MS ring complex, which is the first flagellar basal body substructure and is located in the cytoplasmic membrane. In order to elucidate the process of assembly of cytoplasmic substructures, the membrane localization of each component of the switch complex (FliG, FliM, and FliN) in various nonflagellated mutants was examined by immunoblotting. It was found that all these switch proteins require the MS ring protein FliF to associate with the cell membrane. FliG does not require FliM and FliN for this association, but FliM and FliN associate cooperatively with the membrane only through FliG. Furthermore, all three switch proteins were detected in membranes isolated from fliE, fliH, fliI, fliJ, fliO, fliP, fliQ, fliR, flhA, flhB, and flgJ mutants, indicating that the switch complex assembles on the MS ring complex without any other flagellar proteins involved in the early stage of flagellar assembly. The relationship between the switch complex and the export apparatus is discussed.  相似文献   

17.
The plant innate immune system employs plasma membrane‐localized receptors that specifically perceive pathogen/microbe‐associated molecular patterns (PAMPs/MAMPs). This induces a defence response called pattern‐triggered immunity (PTI) to fend off pathogen attack. Commensal bacteria are also exposed to potential immune recognition and must employ strategies to evade and/or suppress PTI to successfully colonize the plant. During plant infection, the flagellum has an ambiguous role, acting as both a virulence factor and also as a potent immunogen as a result of the recognition of its main building block, flagellin, by the plant pattern recognition receptors (PRRs), including FLAGELLIN SENSING2 (FLS2). Therefore, strict control of flagella synthesis is especially important for plant‐associated bacteria. Here, we show that cyclic‐di‐GMP [bis‐(3′‐5′)‐cyclic di‐guanosine monophosphate], a central regulator of bacterial lifestyle, is involved in the evasion of PTI. Elevated cyclic‐di‐GMP levels in the pathogen Pseudomonas syringae pv. tomato (Pto) DC3000, the opportunist P. aeruginosa PAO1 and the commensal P. protegens Pf‐5 inhibit flagellin synthesis and help the bacteria to evade FLS2‐mediated signalling in Nicotiana benthamiana and Arabidopsis thaliana. Despite this, high cellular cyclic‐di‐GMP concentrations were shown to drastically reduce the virulence of Pto DC3000 during plant infection. We propose that this is a result of reduced flagellar motility and/or additional pleiotropic effects of cyclic‐di‐GMP signalling on bacterial behaviour.  相似文献   

18.
The switch complex at the base of the bacterial flagellum is essential for flagellar assembly, rotation, and switching. In Escherichia coli and Salmonella, the complex contains about 26 copies of FliG, 34 copies of FliM, and more then 100 copies of FliN, together forming the basal body C ring. FliG is involved most directly in motor rotation and is located in the upper (membrane-proximal) part of the C ring. A crystal structure of the middle and C-terminal parts of FliG shows two globular domains connected by an alpha-helix and a short extended segment. The middle domain of FliG has a conserved surface patch formed by the residues EHPQ(125-128) and R(160) (the EHPQR motif), and the C-terminal domain has a conserved surface hydrophobic patch. To examine the functional importance of these and other surface features of FliG, we made mutations in residues distributed over the protein surface and measured the effects on flagellar assembly and function. Mutations preventing flagellar assembly occurred mainly in the vicinity of the EHPQR motif and the hydrophobic patch. Mutations causing aberrant clockwise or counterclockwise motor bias occurred in these same regions and in the waist between the upper and lower parts of the C-terminal domain. Pull-down assays with glutathione S-transferase-FliM showed that FliG interacts with FliM through both the EHPQR motif and the hydrophobic patch. We propose a model for the organization of FliG and FliM subunits that accounts for the FliG-FliM interactions identified here and for the different copy numbers of FliG and FliM in the flagellum.  相似文献   

19.
20.
Cellular turgor is of fundamental importance to bacterial growth and survival. Changes in external osmolarity as a consequence of fluctuating environmental conditions and colonization of diverse environments can significantly impact cytoplasmic water content, resulting in cellular lysis or plasmolysis. To ensure maintenance of appropriate cellular turgor, bacteria import ions and small organic osmolytes, deemed compatible solutes, to equilibrate cytoplasmic osmolarity with the extracellular environment. Here, we show that elevated levels of c‐di‐AMP, a ubiquitous second messenger among bacteria, result in significant susceptibility to elevated osmotic stress in the bacterial pathogen Listeria monocytogenes. We found that levels of import of the compatible solute carnitine show an inverse correlation with intracellular c‐di‐AMP content and that c‐di‐AMP directly binds to the CBS domain of the ATPase subunit of the carnitine importer OpuC. Biochemical and structural studies identify conserved residues required for this interaction and transport activity in bacterial cells. Overall, these studies reveal a role for c‐di‐AMP mediated regulation of compatible solute import and provide new insight into the molecular mechanisms by which this essential second messenger impacts bacterial physiology and adaptation to changing environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号