共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryptococcus neoformans is the leading cause of fungal meningitis in immunocomprised populations. Although extensive studies have been conducted on signal transduction pathways important for fungal sexual reproduction and virulence, how fungal virulence is regulated during infection is still not understood. In this study, we identified the F-box protein Fbp1, which contains a putative F-box domain and 12 leucine-rich repeats (LRR). Although fbp1 mutants showed normal growth and produced normal major virulence factors, such as melanin and capsule, Fbp1 was found to be essential for fungal virulence, as fbp1 mutants were avirulent in a murine systemic-infection model. Fbp1 is also important for fungal sexual reproduction. Basidiospore production was blocked in bilateral mating between fbp1 mutants, even though normal dikaryotic hyphae were observed during mating. In vitro assays of stress responses revealed that fbp1 mutants are hypersensitive to SDS, but not calcofluor white (CFW) or Congo red, indicating that Fbp1 may regulate cell membrane integrity. Fbp1 physically interacts with Skp1 homologues in both Saccharomyces cerevisiae and C. neoformans via its F-box domain, suggesting it may function as part of an SCF (Skp1, Cullins, F-box proteins) E3 ligase. Overall, our study revealed that the F-box protein Fbp1 is essential for fungal sporulation and virulence in C. neoformans, which likely represents a conserved novel virulence control mechanism that involves the SCF E3 ubiquitin ligase-mediated proteolysis pathway. 相似文献
2.
Meiotic recombination of sex chromosomes is thought to be repressed in organisms with heterogametic sex determination (e.g. mammalian X/Y chromosomes), due to extensive divergence and chromosomal rearrangements between the two chromosomes. However, proper segregation of sex chromosomes during meiosis requires crossing-over occurring within the pseudoautosomal regions (PAR). Recent studies reveal that recombination, in the form of gene conversion, is widely distributed within and may have played important roles in the evolution of some chromosomal regions within which recombination was thought to be repressed, such as the centromere cores of maize. Cryptococcus neoformans, a major human pathogenic fungus, has an unusually large mating-type locus (MAT, >100 kb), and the MAT alleles from the two opposite mating-types show extensive nucleotide sequence divergence and chromosomal rearrangements, mirroring characteristics of sex chromosomes. Meiotic recombination was assumed to be repressed within the C. neoformans MAT locus. A previous study identified recombination hot spots flanking the C. neoformans MAT, and these hot spots are associated with high GC content. Here, we investigated a GC-rich intergenic region located within the MAT locus of C. neoformans to establish if this region also exhibits unique recombination behavior during meiosis. Population genetics analysis of natural C. neoformans isolates revealed signals of homogenization spanning this GC-rich intergenic region within different C. neoformans lineages, consistent with a model in which gene conversion of this region during meiosis prevents it from diversifying within each lineage. By analyzing meiotic progeny from laboratory crosses, we found that meiotic recombination (gene conversion) occurs around the GC-rich intergenic region at a frequency equal to or greater than the meiotic recombination frequency observed in other genomic regions. We discuss the implications of these findings with regards to the possible functional and evolutionary importance of gene conversion within the C. neoformans MAT locus and, more generally, in fungi. 相似文献
3.
Melanin and virulence in Cryptococcus neoformans 总被引:2,自引:0,他引:2
Melanin synthesis has been associated with virulence for the human pathogenic fungus Cryptococcus neoformans. Recent evidence indicates that C. neoformans cells synthesize melanin during infection and that this pigment protects the fungus against immune defense mechanisms. 相似文献
4.
The use of insertional mutagenesis to discover genes that impact laccase activity has resulted in the identification of multiple cellular processes that affect the fitness of Cryptococcus neoformans. Fitness has been defined as the ability of an organism to propagate and evolve within a given environment. Because the human host is an evolutionary dead-end for an opportunistic pathogen, we have defined pathogenic fitness here as the capability to successfully propagate within the stressful environment of the host, causing disease by expression of virulence traits that damage the host. In this review, laccase-deficient insertional mutants will be highlighted in terms of the basic biological processes in which they are involved. The impact of laccase-associated cellular functions on fitness and virulence will be discussed, as will the mutants' potential as therapeutic targets. Vacuolar function, copper homeostasis, mitochondrial function and carbon repression are covered. 相似文献
5.
6.
Cyclosporin A (CsA) and FK506 are antimicrobial, immunosuppressive natural products that inhibit signal transduction. In T cells and Saccharomyces cerevisiae, CsA and FK506 bind to the immunophilins cyclophilin A and FKBP12 and the resulting complexes inhibit the Ca2+-regulated protein phosphatase calcineurin. We find that growth of the opportunistic fungal pathogen Cryptococcus neoformans is sensitive to CsA and FK506 at 37 degrees C but not at 24 degrees C, suggesting that CsA and FK506 inhibit a protein required for C. neoformans growth at elevated temperature. Genetic evidence supports a model in which immunophilin-drug complexes inhibit calcineurin to prevent growth at 37 degrees C. The gene encoding the C. neoformans calcineurin A catalytic subunit was cloned and disrupted by homologous recombination. Calcineurin mutant strains are viable but do not survive in vitro conditions that mimic the host environment (elevated temperature, 5% CO2 or alkaline pH) and are no longer pathogenic in an animal model of cryptococcal meningitis. Introduction of the wild-type calcineurin A gene complemented these growth defects and restored virulence. Our findings demonstrate that calcineurin is required for C. neoformans virulence and may define signal transduction elements required for fungal pathogenesis that could be targets for therapeutic intervention. 相似文献
7.
Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice 总被引:31,自引:5,他引:31 下载免费PDF全文
A double mutant of Cryptococcus neoformans which lacked the ability to produce melanin (Mel-) on media containing diphenols and failed to grow at 37 degrees C (temperature sensitive, Tem-) was obtained by UV irradiation and subsequent cloning. The mutant showed two lesions in melanogenesis in that it lacked the active transport system for diphenolic compounds and also lacked phenoloxidase. Ultrastructures of the mutant and wild-type cells grown on a medium with or without L-dopa showed that only the wild-type cells grown on L-dopa medium formed a dark cell wall layer, presumably containing melanin. The mutant was crossed with a wild type, and the phenotypes of the progeny were analyzed. The analysis showed no linkage between the mating type and either Mel or Tem loci, but loose linkage was seen between Mel and Tem loci. The progeny, Mel+ Tem+, Mel+ Tem-, Mel- Tem+, and Mel- Tem-, were studied for their virulence in mice. Only Mel+ Tem+ types killed mice with an inoculum of 5 X 10(5) cells within 50 days. 相似文献
8.
Pathogenicity of Cryptococcus neoformans: virulence factors and immunological mechanisms 总被引:3,自引:0,他引:3
Cryptococcus neoformans is the causative agent of cryptococcosis and cryptococcal meningitis, which are serious pathological conditions affecting up to 10% of patients with AIDS. Mechanisms of pathogenicity of C. neoformans and the host defenses against this fungus are reviewed, incorporating recent data and perspectives. 相似文献
9.
10.
The gas carbon dioxide (CO2) plays a critical role in microbial and mammalian respiration, photosynthesis in algae and plants, chemoreception in insects, and even global warming . However, how CO2 is transported, sensed, and metabolized by microorganisms is largely not understood. For instance, CO2 is known to induce production of polysaccharide capsule virulence determinants in pathogenic bacteria and fungi via unknown mechanisms . Therefore, we studied CO2 actions in growth, differentiation, and virulence of the basidiomycetous human fungal pathogen Cryptococcus neoformans. The CAN2 gene encoding beta-carbonic anhydrase in C. neoformans was found to be essential for growth in environmental ambient conditions but dispensable for in vivo proliferation and virulence at the high CO2 levels in the host. The can2Delta mutant in vitro growth defect is largely attributable to defective fatty acid synthesis. CO2 was found to inhibit cell-cell fusion but not filamentation during sexual reproduction. The can2 mutation restored early mating events in high CO2 but not later steps (fruiting body formation, sporulation), indicating a major role for carbonic anhydrase and CO2/HCO3- in this developmental cascade leading to the production of infectious spores. Our studies illustrate diverse roles of an ancient enzyme class in enabling environmental survival of a ubiquitous human pathogen. 相似文献
11.
《FEMS yeast research》2005,5(1):1-10
Laccase is an important virulence factor for the human pathogen, Cryptococcus neoformans. In this review, we examine the structural, biological and genetic features of the enzyme and its role in the pathogenesis of cryptococcosis. Laccase is expressed in C. neoformans as a cell wall enzyme that possesses a broad spectrum of activity oxidizing both polyphenolic compounds and iron. Two paralogs, CNLAC1 and CNLAC2, are present in the fungus, of which the first one expresses the dominant enzyme activity under glucose starvation conditions. Regulation of the enzyme is in response to various environmental signals including nutrient starvation, the presence of multivalent cations and temperature stress, and is mediated through multiple signal transduction pathways. Study of the function and regulation of this important virulence factor has led to further understanding of mechanisms of fungal pathogenesis and the regulation of stress response in the host cell environment. 相似文献
12.
Laccase is an important virulence factor for the human pathogen, Cryptococcus neoformans. In this review, we examine the structural, biological and genetic features of the enzyme and its role in the pathogenesis of cryptococcosis. Laccase is expressed in C. neoformans as a cell wall enzyme that possesses a broad spectrum of activity oxidizing both polyphenolic compounds and iron. Two paralogs, CNLAC1 and CNLAC2, are present in the fungus, of which the first one expresses the dominant enzyme activity under glucose starvation conditions. Regulation of the enzyme is in response to various environmental signals including nutrient starvation, the presence of multivalent cations and temperature stress, and is mediated through multiple signal transduction pathways. Study of the function and regulation of this important virulence factor has led to further understanding of mechanisms of fungal pathogenesis and the regulation of stress response in the host cell environment. 相似文献
13.
Canonical heterotrimeric G proteins regulating mating and virulence of Cryptococcus neoformans 下载免费PDF全文
Li L Shen G Zhang ZG Wang YL Thompson JK Wang P 《Molecular biology of the cell》2007,18(11):4201-4209
Perturbation of pheromone signaling modulates not only mating but also virulence in Cryptococcus neoformans, an opportunistic human pathogen known to encode three Galpha, one Gbeta, and two Ggamma subunit proteins. We have found that Galphas Gpa2 and Gpa3 exhibit shared and distinct roles in regulating pheromone responses and mating. Gpa2 interacted with the pheromone receptor homolog Ste3alpha, Gbeta subunit Gpb1, and RGS protein Crg1. Crg1 also exhibited in vitro GAP activity toward Gpa2. These findings suggest that Gpa2 regulates mating through a conserved signaling mechanism. Moreover, we found that Ggammas Gpg1 and Gpg2 both regulate pheromone responses and mating. gpg1 mutants were attenuated in mating, and gpg2 mutants were sterile. Finally, although gpa2, gpa3, gpg1, gpg2, and gpg1 gpg2 mutants were fully virulent, gpa2 gpa3 mutants were attenuated for virulence in a murine model. Our study reveals a conserved but distinct signaling mechanism by two Galpha, one Gbeta, and two Ggamma proteins for pheromone responses, mating, and virulence in Cryptococcus neoformans, and it also reiterates that the link between mating and virulence is not due to mating per se but rather to certain mating-pathway components that encode additional functions promoting virulence. 相似文献
14.
15.
Fungal pathogens of humans require molecular oxygen for several essential biochemical reactions, yet virtually nothing is known about how they adapt to the relatively hypoxic environment of infected tissues. We isolated mutants defective in growth under hypoxic conditions, but normal for growth in normoxic conditions, in Cryptococcus neoformans, the most common cause of fungal meningitis. Two regulatory pathways were identified: one homologous to the mammalian sterol-response element binding protein (SREBP) cholesterol biosynthesis regulatory pathway, and the other a two-component-like pathway involving a fungal-specific hybrid histidine kinase family member, Tco1. We show that cleavage of the SREBP precursor homolog Sre1-which is predicted to release its DNA-binding domain from the membrane-occurs in response to hypoxia, and that Sre1 is required for hypoxic induction of genes encoding for oxygen-dependent enzymes involved in ergosterol synthesis. Importantly, mutants in either the SREBP pathway or the Tco1 pathway display defects in their ability to proliferate in host tissues and to cause disease in infected mice, linking for the first time to our knowledge hypoxic adaptation and pathogenesis by a eukaryotic aerobe. SREBP pathway mutants were found to be a hundred times more sensitive than wild-type to fluconazole, a widely used antifungal agent that inhibits ergosterol synthesis, suggesting that inhibitors of SREBP processing could substantially enhance the potency of current therapies. 相似文献
16.
目的研究巨噬细胞对新生隐球菌B3501标准株的主要毒性基因表达影响。方法将对数生长期的J774.16巨噬细胞分别与新生隐球菌野生株B3501共孵育4h,收集被J774.16吞噬的B3501作为实验组,提取实验组和在37℃条件下5%二氧化碳单独培养的对照组B3501的RNA,采用实时荧光定量PCR技术,检测J774.16细胞内和对照组B3501的CNLAC1、CAP60、URE1、NMT表达的差异。结果实验组中新生隐球菌的CAP6,CNLAC1,NMT及URE1基因的mRNA在每百万看家基因(GAPDH基因)中的平均含量分别为(2.698±0.084)×10^4,(1.806±0.322)×10^4,(2.267±0.074)×10^4和(4.041±0.271)×10^4;而对照组这4种毒性因子基因含量分别为:(1.139±0.183)×10^6,(9.324±5.028)×10^3,(1.326±0.028)×10^6和(1.307±0.001)×10^6,均远比实验组高,其中以NMT最为明显。结论新生隐球菌被巨噬细胞吞噬后,主要的毒性因子基因表达下降,其中以NMT最为明显,而CNLAC1下降幅度最小。 相似文献
17.
Environmental pathogenic fungi present a paradox in that they are virulent in animals without requiring animal hosts for replication or survival, a phenomenon we call 'ready-made' virulence. In the human pathogenic fungus Cryptococcus neoformans, the capacity for virulence in animals may originate from environmental selective pressures imposed by such organisms as amoeboid and nematode predators. Many C. neoformans virulence factors appear to have 'dual use' capabilities that confer survival advantages in both animal hosts and in the environment. The findings with C. neoformans may provide a paradigm for understanding the origin and maintenance of virulence in other pathogenic environmental fungi. 相似文献
18.
Todd Erickson Lide Liu Ara Gueyikian Xudong Zhu Jack Gibbons Peter R. Williamson 《Molecular microbiology》2001,42(4):1121-1131
Acidification of vesicular compartments plays an important role in a number of cellular transport processes, including protein secretion, metal cofactor insertion, glycosylation and pH stability. In the present study, we identify and characterize a component of the vesicular proton pump, Vph1p, to determine its role in the virulence of the AIDS-related fungal pathogen Cryptococcus neoformans. Insertional mutagenesis and plasmid rescue were used to identify the VPH1 gene by screening for mutants defective in laccase activity. Disruption of VPH1 resulted in defects in three virulence factors (capsule production, laccase and urease expression), as well as a growth defect at 37 degrees C, but only a small growth reduction at 30 degrees C. These effects were duplicated by the vacuolar (H+)-ATPase inhibitor bafilomycin A1. Furthermore, the vph1 insertional mutant was also avirulent in a mouse meningo-encephalitis model. Complementation of the insertional mutant with wild-type VPH1 resulted in a recovery of virulence factor expression, normal growth at 37 degrees C and restoration of full virulence. These studies establish the importance of the VPH1 gene and vesicular acidification in the virulence of C. neoformans. 相似文献
19.
A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans 下载免费PDF全文
The stress-activated mitogen-activated protein kinase (MAPK) pathway is widely used by eukaryotic organisms as a central conduit via which cellular responses to the environment effect growth and differentiation. The basidiomycetous human fungal pathogen Cryptococcus neoformans uniquely uses the stress-activated Pbs2-Hog1 MAPK system to govern a plethora of cellular events, including stress responses, drug sensitivity, sexual reproduction, and virulence. Here, we characterized a fungal "two-component" system that controls these fundamental cellular functions via the Pbs2-Hog1 MAPK cascade. A typical response regulator, Ssk1, modulated all Hog1-dependent phenotypes by controlling Hog1 phosphorylation, indicating that Ssk1 is the major upstream signaling component of the Pbs2-Hog1 pathway. A second response regulator, Skn7, governs sensitivity to Na+ ions and the antifungal agent fludioxonil, negatively controls melanin production, and functions independently of Hog1 regulation. To control these response regulators, C. neoformans uses multiple sensor kinases, including two-component-like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. Our findings highlight unique adaptations of this global two-component MAPK signaling cascade in a ubiquitous human fungal pathogen. 相似文献