首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen peroxide is an important signalling molecule, involved in regulation of numerous metabolic processes in plants. The most important sources of H2O2 in photosynthetically active cells are chloroplasts and peroxisomes. Here we employed variegated Pelargonium zonale to characterise and compare enzymatic and non‐enzymatic components of the antioxidative system in autotrophic and heterotrophic leaf tissues at (sub)cellular level under optimal growth conditions. The results revealed that both leaf tissues had specific strategies to regulate H2O2 levels. In photosynthetic cells, the redox regulatory system was based on ascorbate, and on the activities of thylakoid‐bound ascorbate peroxidase (tAPX) and catalase. In this leaf tissue, ascorbate was predominantly localised in the nucleus, peroxisomes, plastids and mitochondria. On the other hand, non‐photosynthetic cells contained higher glutathione content, mostly located in mitochondria. The enzymatic antioxidative system in non‐photosynthetic cells relied on the ascorbate–glutathione cycle and both Mn and Cu/Zn superoxide dismutase. Interestingly, higher content of ascorbate and glutathione, and higher activities of APX in the cytosol of non‐photosynthetic leaf cells compared to the photosynthetic ones, suggest the importance of this compartment in H2O2 regulation. Together, these results imply different regulation of processes linked with H2O2 signalling at subcellular level. Thus, we propose green‐white variegated leaves as an excellent system for examination of redox signal transduction and redox communication between two cell types, autotrophic and heterotrophic, within the same organ.  相似文献   

2.
Inhibition of root growth and accumulation of putrescine caused by exogenous spermidine in roots of maize seedlings (Zea mays L., cv Samodek) were partially prevented by a concomitant treatment with dimethylthiourea (DMTU), that traps H2O2 produced from spermidine by the activity of polyamine oxidase (PAO) in the apoplast. Treatment with spermidine caused a strong increase of ascorbate peroxidase (APX) gene expression, that was induced to a lesser extent by removing spermidine-generated H2O2 by DMTU. Over-expression of APX was associated with increased APX activity in spermidine-treated seedlings whereas the addition of DMTU to spermidine completely prevented spermidine-induced increase of APX activity. Thus, DMTU permitted the demonstration that exogenous spermidine supplied to maize seedlings causes an oxidative stress and induces APX, a key enzyme of the antioxidant defence mechanism, through H2O2, a spermidine catabolic product.  相似文献   

3.
Nitric oxide (NO) has emerged as an important signaling molecule in plants, but little is known about the effects of reactive nitrogen species in plant mitochondria. In this study, the effects of DETA‐NONOate, a pure NO slow generator, and of SIN‐1 (3‐morpholinosydnonimine), a peroxynitrite producer, on the activities of respiratory pathways, enzymatic and non‐enzymatic antioxidants have been investigated in isolated mitochondria from pea leaves. No significant changes in lipid peroxidation, protein oxidation or in ascorbate and glutathione redox state were observed after DETA‐NONOate treatments whereas cytochrome pathway (CP) respiration was reversibly inhibited and alternative pathway (AP) respiration showed little inhibition. On the other hand, NO did not affect neither activities of Mn superoxide dismutase (Mn‐SOD) nor enzymes involved in the ascorbate and glutathione regeneration in mitochondria except for ascorbate peroxidase (APX), which was reversely inhibited depending on ascorbate concentration. Finally, SIN‐1 treatment of mitochondria produced a decrease in CP respiration, an increase in protein oxidation and strongly inhibited APX activity (90%), with glutathione reductase and dehydroascorbate reductase (DHAR) being moderately inhibited (30 and 20%, respectively). This treatment did not affect monodehydroascorbate reductase (MDHAR) and Mn‐SOD activities. Results showed that mitochondrial nitrosative stress was not necessarily accompanied by oxidative stress. We suggest that NO‐resistant AP and mitochondrial APX may be important components of the H2O2‐signaling pathways under nitrosative stress induced by NO in this organelle. Also, MDHAR and DHAR, via ascorbate regeneration, could constitute an essential antioxidant defense together with Mn‐SOD, against NO and ONOO? stress in plant mitochondria.  相似文献   

4.
We have monitored the changes in antioxidant enzyme activities and H2O2 concentrations in roots of rice (Oryza sativa L., cv. Taichung Native 1) seedlings treated with exogenous abscisic acid(ABA). Decrease in superoxide dismutase (SOD) and catalase (CAT) activities was observed in rice roots in the presence of ABA. However, ascorbate peroxide (APX) and glutathione reductase (GR) activities were increased after the ABA treatment. ABA treatment resulted in an increase in H2O2 concentrations in rice roots. Pre-treatment with dimethylthiourea, a chemical trap for H2O2, and diphenyleneiodonium chloride (DPI), a well known inhibitor of NADPH oxidase, inhibited ABA-induced accumulation of H2O2 and ABA-induced activities of APX and GR. ABA-induced accumulation of H2O2 was found to be prior to ABA-induced activities of APX and GR. Our results suggest that H2O2 is involved in ABA-induced APX and GR activities in rice roots.  相似文献   

5.
6.
The physiological role of peroxisomal ascorbate peroxidases (pAPX) is unknown; therefore, we utilized pAPX4 knockdown rice and catalase (CAT) inhibition to assess its role in CAT compensation under high photorespiration. pAPX4 knockdown induced co‐suppression in the expression of pAPX3. The rice mutants exhibited metabolic changes such as lower CAT and glycolate oxidase (GO) activities and reduced glyoxylate content; however, APX activity was not altered. CAT inhibition triggered different changes in the expression of CAT, APX and glutathione peroxidase (GPX) isoforms between non‐transformed (NT) and silenced plants. These responses were associated with alterations in APX, GPX and GO activities, suggesting redox homeostasis differences. The glutathione oxidation‐reduction states were modulated differently in mutants, and the ascorbate redox state was greatly affected in both genotypes. The pAPX suffered less oxidative stress and photosystem II (PSII) damage and displayed higher photosynthesis than the NT plants. The improved acclimation exhibited by the pAPX plants was indicated by lower H2O2 accumulation, which was associated with lower GO activity and glyoxylate content. The suppression of both pAPXs and/or its downstream metabolic and molecular effects may trigger favourable antioxidant and compensatory mechanisms to cope with CAT deficiency. This physiological acclimation may involve signalling by peroxisomal H2O2, which minimized the photorespiration.  相似文献   

7.
The effects of exogenous abscisic acid (ABA) on lead tolerance in rice (Oryza sativa L.) seedlings were investigated. Pre-treatment with 0.1 g m3 ABA for 2 d restricted amount of Pb translocated from roots to shoots, decreased malondialdehyde and H2O2 contents in leaves, and alleviated Pb-induced decrease in plant growth and leaf chlorophyll content. Further, ABA pre-treatment adjusted leaf antioxidative enzyme activities (increased ascorbate peroxidase and catalase activities while decreased superoxide dismutase activity) and so alleviated oxidative stress.  相似文献   

8.
Antioxidant response of wheat roots to drought acclimation   总被引:1,自引:0,他引:1  
Wheat (Triticum aestivum L.) seedlings of a drought-resistant cv. C306 were subjected to severe water deficit directly or through stress cycles of increasing intensity with intermittent recovery periods. The antioxidant defense in terms of redox metabolites and enzymes in root cells and mitochondria was examined in relation to membrane damage. Acclimated seedlings exhibited higher relative water content and were able to limit the accumulation of H2O2 and membrane damage during subsequent severe water stress conditions. This was due to systematic up-regulation of superoxide dismutase, ascorbate peroxidase (APX), catalase, peroxidases, and ascorbate–glutathione cycle components at both the whole cell level as well as in mitochondria. In contrast, direct exposure of severe water stress to non-acclimated seedlings caused greater water loss, excessive accumulation of H2O2 followed by elevated lipid peroxidation due to the poor antioxidant enzyme response particularly of APX, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and ascorbate–glutathione redox balance. Mitochondrial antioxidant defense was found to be better than the cellular defense in non-acclimated roots. Termination of stress followed by rewatering leads to a rapid enhancement in all the antioxidant defense components in non-acclimated roots, which suggested that the excess levels of H2O2 during severe water stress conditions might have inhibited or down-regulated the antioxidant enzymes. Hence, drought acclimation conferred enhanced tolerance toward oxidative stress in the root tissue of wheat seedlings due to both reactive oxygen species restriction and well-coordinated induction of antioxidant defense.  相似文献   

9.
The effects of arsenic (As) on growth and antioxidant metabolism of fenugreek (Trigonella foenum-graecum L. cv. Azad) plants were studied using 10, 20, and 30 mg As/kg of soil in a pot experiment under controlled conditions. The length and dry weights of shoots and roots, photosynthetic traits, and grain yield components exhibited a significant increase over control (0 mg As/kg) at As20 but decreased markedly at As30. The cause of this completely reverse response of plant growth between As20 and As30 was investigated in the backdrop of H2O2 metabolism by analyzing responses of three prominent antioxidant enzymes, namely superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) along with cellular ascorbate pool and its redox state. Despite a significant increase in the H2O2 content in both As20 and As30 plants, the former, unlike As30 plants, did not experience any type of As-induced oxidative stress (membrane lipid peroxidation, electrolyte leakage). Normal to high levels of leaf APX, CAT, and redox pool of ascorbate effectively balanced the elevated SOD activity at As20, maintaining the H2O2 concentration higher than control but obviously in favor of As20 plant growth. By contrast, soil amendment with phosphorus (200 mg P/kg) at As30 prevented As-induced oxidative stress through the reduction of the H2O2 level even below As0. The increased enzyme activity was mainly due to the induction of unique Cu/Zn, Fe, and Mn isoforms of SOD and APX-3/APX-4 and/or their increased expression in coordination with CAT. The detection of novel isoforms suggests a strong response of H2O2-metabolizing enzymes against As-induced oxidative stress in fenugreek.  相似文献   

10.
Aminotriazole(AT)-induced changes in growth, hydrogen peroxide content and activities of H2O2-scavenging antioxidant enzymes were investigated in the growing leaves ofArabidopsis plants (Arabidopsis thaliana cv Columbia). Catalase activity of rosette leaves was reduced by 65% with an application of 0.1 mM AT (a herbicide known as a catalase inhibitor), whereas the leaf growth and H2O2 content were almost unaffected. However, an approximate 1.6 to 2-fold increase in cytosolic ascorbate peroxidase (APX) activity concomitant with a substantial activation of glutathione reductase (GR) (approx. 22% increase) was observed during leaf growth in the presence of 0.1 mM AT. The activity of cytosolic APX in leaves was also increased by 1.8-fold with an application of exogenous 2 mM paraquat (an inducer of H2O2 production in plant cells) in the absence of AT. These results collectively suggest that (a) cytosolic APX and GR operate to activate an ascorbate-glutathione cycle for the removal of H2O2 under severe catalase deactivation, and (b) the expression of APX seems to be regulated by a change of the endogenous H2O2 level in leaf cells.  相似文献   

11.
Hydrogen peroxide (H2O2), an active oxygen species, is widely generated in many biological systems and mediates various physiological and biochemical processes in plants. In this study, we demonstrated that exogenous H2O2 was able to improve the tolerance of wheat seedlings to salt stress. Treatments with exogenous H2O2 for 2 days significantly enhanced salt stress tolerance in wheat seedlings by decreasing the concentration of malondialdehyde (MDA), the production rate of superoxide radical (O2 ), and increasing the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), and the concentration of glutathione (GSH) and carotenoids (CAR). To further clarify the role of H2O2 in preventing salt stress damage, CAT and ascorbate (AsA), the specific H2O2 scavengers, were used. The promoting effect of exogenous H2O2 on salt stress could be reversed by the addition of CAT and AsA. It was suggested that exogenous H2O2 induced changes in MDA, O2 , antioxidant enzymes and antioxidant compounds were responsible for the increase in salt stress tolerance observed in the experiments. Therefore, H2O2 may participate in antioxidant enzymes and antioxidant compounds induced tolerance of wheat seedlings to salt stress. The results also showed that exogenous H2O2 had a positive physiological effect on the growth and development of salt-stressed seedlings.  相似文献   

12.
The present study was performed to see the physiological role of cytosolic ascorbate peroxidase (APX) and its relationship to other enzymes involved in the H2O2 scavenging metabolism, and also to elucidate the regulation of APX expression in dark-grown radish (Raphanus sativus L. cv Taiwang) cotyledons. To do so, 3-amino-l,2,4-triazole (aminotriazole), a known specific inhibitor of catalase, was used to simulate a catalase-deficient phenomenon in cotyledons. Aminotriazole, in very low concetration (10-4 M), inhibited remarkably the development of catalase activity in cotyledons during dark germination. This inhibition of catalase by aminotriazole, however, did not result in any significant changes in the growth response and the H2O2 level of developing cotyledons. In addition, the development of guaiacol peroxidase (GPX) activity was also not significantly affected. Unlike GPX, cytosolic APX activity was induced rapidly and reached a 1.7-fold increase in aminotriazole treated cotyledons at day 7 after germination. However,in vitro incubation of cytosolic APX preparation from cotyledons with aminotriazole did not result in any significant change in activity. One cytosolic APX isozyme (APXa) band involved in this APX activation was predominantly intensified in a native polyacrylamide gel by activity staining assay. This means that this APXa isozyme seems to play a key role in the expression of cytosolic APX activity. On the other hand, 2-day-old control seedlings treated with exogenous 1 mM H2O2 for 1 h showed a significant increase of cytosolic APX acitivity even in the absence of aminotriazole. Also, 2 μM cycloheximide treatment substantially inhibited the increase of APX activity due to aminotriazole. Based on these results, we suggest that a radish cytosolic APX could probably be substituted for catalase in H2O2 removal and that the expression of APX seems to be regulated by a change of endogenous H2O2 level which couples to APX protein synthesis in a translation stage in cotyledons.  相似文献   

13.
Water deficit for rice is a worldwide concern, and to produce drought-tolerant varieties, it is essential to elucidate molecular mechanisms associated with water deficit tolerance. In the present study, we investigated the differential responses of nonenzymatic antioxidants ascorbate (AsA), glutathione (GSH), and their redox pool as well as activity levels of enzymes of ascorbate–glutathione cycle in seedlings of drought-sensitive rice (Oryza sativa L.) cv. Malviya-36 and drought-tolerant cv. Brown Gora subjected to water deficit treatment of ?1.0 and ?2.1 MPa for 24–72 h using PEG-6000 in sand cultures. Water deficit caused increased production of reactive oxygen species such as O2??, H2O2, and HO? in the tissues, and the level of production was higher in the sensitive than the tolerant cultivar. Water deficit caused reduction in AsA and GSH and decline in their redox ratios (AsA/DHA and GSH/GSSG) with lesser decline in tolerant than the sensitive seedlings. With progressive level of water deficit, the activities of monodehydroascorbate reductase, dehydroascorbate reductase, ascorbate peroxidase (APX), and glutathione transferase increased in the seedlings of both rice cultivars, but the increased activity levels were higher in the seedlings of drought-tolerant cv. Brown Gora compared to the sensitive cv. Malviya-36. Greater accumulation of proline was observed in stressed seedlings of tolerant than the sensitive cultivar. In-gel activity staining of APX revealed varying numbers of their isoforms and their differential expression in sensitive and tolerant seedlings under water deficit. Results suggest that an enhanced oxidative stress tolerance by a well-coordinated cellular redox state of ascorbate and glutathione in reduced forms and induction of antioxidant defense system by elevated activity levels of enzymes of ascorbate–glutathione cycle is associated with water deficit tolerance in rice.  相似文献   

14.
The aim of this work was to investigate the balance between the activities of ascorbate peroxidase (APX) and phenol peroxidases (POD) and cowpea root growth in response to dehydration and salt stress. Root growth and indicators of oxidative response were markedly changed in response to salinity and dehydration. Salt treatment strongly inhibited root elongation, which was associated with an increase in lignin content and a significant decrease in the concentrations of apoplastic hydrogen peroxide (H2O2) and ascorbate. In conditions of extreme salinity, cytosol–APX activity was significantly decreased. In contrast, cell-wall POD activity was greatly increased, whereas lipid peroxidation was unchanged. These results indicate that POD could be involved in both H2O2 scavenging and the inhibition of root elongation under high salinity. In contrast, dehydration stimulated primary root elongation and increased lipid peroxidation and apoplastic ascorbate content, but it did not change APX and POD activities or H2O2 concentration. When cowpea roots were subjected to salinity followed by dehydration, the water and pressure potentials were decreased, and lipid peroxidation was markedly increased, highlighting the additive nature of the inhibitory effects caused by salt and dehydration. The proline concentration was markedly increased by dehydration alone, as well as by salt followed by dehydration, suggesting a possible role for proline in osmotic adjustment. Salinity and dehydration induce contrasting responses in the growth and morphology of cowpea roots. These effects are associated with different types of oxidative modulation involving cytosolic-APX and cell-wall POD activities and apoplast H2O2 and ascorbate levels.  相似文献   

15.
Tewari RK  Watanabe D  Watanabe M 《Planta》2012,235(1):99-110
Despite extensive research over the past years, regeneration from protoplasts has been observed in only a limited number of plant species. Protoplasts undergo complex metabolic modification during their isolation. The isolation of protoplasts induces reactive oxygen species (ROS) generation in Brassica napus leaf protoplasts. The present study was conducted to provide new insight into the mechanism of ROS generation in B. napus leaf protoplasts. In vivo localization of H2O2 and enzymes involved in H2O2 generation and detoxification, molecular antioxidant-ascorbate and its redox state and lipid peroxidation were investigated in the leaf and isolated protoplasts. Incubating leaf strips in the macerating enzyme (ME) for different duration (3, 6, and 12 h) induced accumulation of H2O2 and malondialdehyde (lipid peroxidation, an index of membrane damage) in protoplasts. The level of H2O2 was highest just after protoplast isolation and subsequently decreased during culture. Superoxide generating NADPH oxidase (NOX)-like activity was enhanced, whereas superoxide dismutase (SOD) and ascorbate peroxidase (APX) decreased in the protoplasts compared to leaves. Diaminobenzidine peroxidase (DAB-POD) activity was also lower in the protoplasts compared to leaves. Total ascorbate content, ascorbate to dehydroascorbate ratio (redox state), were enhanced in the protoplasts compared to leaves. Higher activity of NOX-like enzyme and weakening in the activity of antioxidant enzymes (SOD, APX, and DAB-POD) in protoplasts resulted in excessive accumulation of H2O2 in chloroplasts of protoplasts. Chloroplastic NADPH oxidase-like activity mediated perpetual H2O2 generation probably induced apoptotic-like cell death of B. napus leaf protoplasts as indicated by parallel DNA laddering and decreased mitochondrial membrane potential.  相似文献   

16.
Brassinosteroids (BRs) are essential for plant growth and development; however, their roles in the regulation of stomatal opening or closure remain obscure. Here, the mechanism underlying BR‐induced stomatal movements is studied. The effects of 24‐epibrassinolide (EBR) on the stomatal apertures of tomato (Solanum lycopersicum) were measured by light microscopy using epidermal strips of wild type (WT), the abscisic acid (ABA)‐deficient notabilis (not) mutant, and plants silenced for SlBRI1, SlRBOH1 and SlGSH1. EBR induced stomatal opening within an appropriate range of concentrations, whereas high concentrations of EBR induced stomatal closure. EBR‐induced stomatal movements were closely related to dynamic changes in H2O2 and redox status in guard cells. The stomata of SlRBOH1‐silenced plants showed a significant loss of sensitivity to EBR. However, ABA deficiency abolished EBR‐induced stomatal closure but did not affect EBR‐induced stomatal opening. Silencing of SlGSH1, the critical gene involved in glutathione biosynthesis, disrupted glutathione redox homeostasis and abolished EBR‐induced stomatal opening. The results suggest that transient H2O2 production is essential for poising the cellular redox status of glutathione, which plays an important role in BR‐induced stomatal opening. However, a prolonged increase in H2O2 facilitated ABA signalling and stomatal closure.  相似文献   

17.
The effects of exogenously applied hydrogen peroxide on the antioxidant system of pea plants were investigated. Ten-day-old pea seedlings were sprayed with 2.5 mM H2O2 and 24 h later with 0.2 mM PQ. Samples were taken 0, 2 and 5 h after the start of illumination. The protective effect of H2O2 was evaluated by monitoring of parameters related to the damage caused by PQ. The treatment with PQ led to a severe leakage of electrolytes from leaf tissues. Malondialdehyde level increased in PQ treated plants, but remained unchanged in H2O2 pre-treated ones after 5 h of illumination. Increased catalase and glutathione-S-transferase activity was observed in pea plants treated with H2O2 and PQ. Ascorbate peroxidase activity decreased significantly after paraquat application, but pre-treatment with H2O2 prevented ascorbate peroxidase inhibition to some extent. Increased guaiacol peroxidase activity was detected after H2O2 application. PQ application caused a drastic decline in the levels of thiol-group bearing compounds, reduced glutathione and ascorbate, while the quantity of oxidized glutathione and dehydroascorbate were increased. The results presented on changes in enzymatic and nonenzymatic antioxidants suggest that preliminary H2O2 application to pea plants treated with PQ, alleviates the toxic effects of the herbicide.  相似文献   

18.
Senescence is a developmentally regulated and highly ordered sequence of events. Senescence leads to abscission of plant organs and eventually leads to death of a plant or part of it. Present study revealed that Phalaenopsis flower undergo senescence due to over activation of O2 ·−generating xanthine oxidase (XO), which consequently increases the concentrations of O2 ·− leading to enhanced oxidative damage and disturbed cellular redox environment as indicated by increased lipid peroxidation and DHA/AsA + DHA ratio, respectively. While activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and non-specific peroxidase (POD) were enhanced in sepals and petals of old flower, activities of catalase (CAT) and glutathione reductase (GR) were decreased. Exogenous application of nitric oxide (NO) retarded H2O2-induced senescence of Phalaenopsis flower by downregulating activity of XO and concentrations of O2 ·−, H2O2 and malondialdehyde (MDA, an index of lipid peroxidation). Exogenous application of NO also downregulated SOD activity and upregulated antioxidant enzymes involved in the detoxification of H2O2 (CAT and APX), and in the regulation of redox couples viz, monodehydroascorbate reductase (MDHAR) and GR, together with the modulation in non-protein thiol status and DHA/AsA + DHA ratio.  相似文献   

19.
The aim of this study is to investigate the impacts of exogenous salicylic acid (SA) pretreatments on hydrogen peroxide (H2O2) accumulation, protein oxidation, and H2O2-scavenging enzymes in leaves of Cd-treated flax seedlings. Cd-enhanced H2O2 levels were related to increased activities of guaiacol peroxidase (POX, EC 1.11.1.7) and ascorbate peroxidase (APX, EC 1.11.1.11), and were independent of changes in catalase (CAT, EC 1.11.1.6) and superoxide dismutase (SOD, EC 1.15.1.1) activities. In control flax seedlings, exogenous SA pretreatments inhibited the activity of CAT, resulted in an enhanced production of H2O2 suggesting that SA requires H2O2 to initiate an oxidative stress. However, although leaves of Cd-free flax seedlings pretreated with SA accumulated in vivo H2O2 by 1.2-fold compared with leaves of Cd-only exposed ones; the damage to growth and proteins after the exposure to Cd was significantly less, indicating that SA can regulate the Cd-induced oxidative stress. Moreover, the Cd-treated seedlings primed with SA exhibited a higher level of total antioxidant capacities and increased activities of H2O2-detoxifying enzymes.  相似文献   

20.
Effects of exogenous nickel (Ni: 10 and 200 μM) on growth, mitotic activity, Ni accumulation, H2O2 content and lipid peroxidation as well as the activities of various antioxidative enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione peroxidase (GSH-Px) were investigated in wheat roots. A considerable Ni accumulation in the roots occurred at both the concentrations. Although Ni at 10 μM did not have any significant effect on root growth, it strongly inhibited the root growth at 200 μM. Mitotic activity in the root tips was not significantly affected by exposure of the seedlings to 10 μM Ni; however, it was almost completely inhibited at 200 μM treatment. Ni stress did not result in any significant changes in CAT and APX activities as well as lipid peroxidation. However, H2O2 concentration increased up to 82% over the control in the roots of seedlings exposed to 200 μM Ni. There was a significant decline in both SOD (50%) and GSH-Px (20–30%) activities in the roots when the seedlings were treated with 200 μM Ni. The results indicated that a strong inhibition of wheat root growth caused by Ni stress was not due to enhanced lipid peroxidation, but might be related to the accumulation of H2O2 in root tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号