首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinesin-based cargo transport in cells frequently involves the coordinated activity of multiple motors, including kinesins from different families that move at different speeds. However, compared to the progress at the single-molecule level, mechanisms by which multiple kinesins coordinate their activity during cargo transport are poorly understood. To understand these multimotor coordination mechanisms, defined pairs of kinesin-1 and kinesin-2 motors were assembled on DNA scaffolds and their motility examined in vitro. Although less processive than kinesin-1 at the single-molecule level, addition of kinesin-2 motors more effectively amplified cargo run lengths. By applying the law of total expectation to cargo binding durations in ADP, the kinesin-2 microtubule reattachment rate was shown to be fourfold faster than that of kinesin-1. This difference in microtubule binding rates was also observed in solution by stopped-flow. High-resolution tracking of a gold-nanoparticle-labeled motor with 1 ms and 2 nm precision revealed that kinesin-2 motors detach and rebind to the microtubule much more frequently than does kinesin-1. Finally, compared to cargo transported by two kinesin-1, cargo transported by two kinesin-2 motors more effectively navigated roadblocks on the microtubule track. These results highlight the importance of motor reattachment kinetics during multimotor transport and suggest a coordinated transport model in which kinesin-1 motors step effectively against loads whereas kinesin-2 motors rapidly unbind and rebind to the microtubule. This dynamic tethering by kinesin-2 maintains the cargo near the microtubule and enables effective navigation along crowded microtubules.  相似文献   

2.
Intracellular cargo transport frequently involves multiple motor types, either having opposite directionality or having the same directionality but different speeds. Although significant progress has been made in characterizing kinesin motors at the single-molecule level, predicting their ensemble behavior is challenging and requires tight coupling between experiments and modeling to uncover the underlying motor behavior. To understand how diverse kinesins attached to the same cargo coordinate their movement, we carried out microtubule gliding assays using pairwise mixtures of motors from the kinesin-1, -2, -3, -5, and -7 families engineered to have identical run lengths and surface attachments. Uniform motor densities were used and microtubule gliding speeds were measured for varying proportions of fast and slow motors. A coarse-grained computational model of gliding assays was developed and found to recapitulate the experiments. Simulations incorporated published force-dependent velocities and run lengths, along with mechanical interactions between motors bound to the same microtubule. The simulations show that the force-dependence of detachment is the key parameter that determines gliding speed in multimotor assays, while motor compliance, surface density, and stall force all play minimal roles. Simulations also provide estimates for force-dependent dissociation rates, suggesting that kinesin-1 and the mitotic motors kinesin-5 and -7 maintain microtubule association against loads, whereas kinesin-2 and -3 readily detach. This work uncovers unexpected motor behavior in multimotor ensembles and clarifies functional differences between kinesins that carry out distinct mechanical tasks in cells.  相似文献   

3.
Intracellular cargo transport frequently involves multiple motor types, either having opposite directionality or having the same directionality but different speeds. Although significant progress has been made in characterizing kinesin motors at the single-molecule level, predicting their ensemble behavior is challenging and requires tight coupling between experiments and modeling to uncover the underlying motor behavior. To understand how diverse kinesins attached to the same cargo coordinate their movement, we carried out microtubule gliding assays using pairwise mixtures of motors from the kinesin-1, -2, -3, -5, and -7 families engineered to have identical run lengths and surface attachments. Uniform motor densities were used and microtubule gliding speeds were measured for varying proportions of fast and slow motors. A coarse-grained computational model of gliding assays was developed and found to recapitulate the experiments. Simulations incorporated published force-dependent velocities and run lengths, along with mechanical interactions between motors bound to the same microtubule. The simulations show that the force-dependence of detachment is the key parameter that determines gliding speed in multimotor assays, while motor compliance, surface density, and stall force all play minimal roles. Simulations also provide estimates for force-dependent dissociation rates, suggesting that kinesin-1 and the mitotic motors kinesin-5 and -7 maintain microtubule association against loads, whereas kinesin-2 and -3 readily detach. This work uncovers unexpected motor behavior in multimotor ensembles and clarifies functional differences between kinesins that carry out distinct mechanical tasks in cells.  相似文献   

4.
5.
6.
The kinesin-3 family (KIF) is one of the largest among the kinesin superfamily and an important driver of a variety of cellular transport events. Whereas all kinesins contain the highly conserved kinesin motor domain, different families have evolved unique motor features that enable different mechanical and functional outputs. A defining feature of kinesin-3 motors is the presence of a positively charged insert, the K-loop, in loop 12 of their motor domains. However, the mechanical and functional output of the K-loop with respect to processive motility of dimeric kinesin-3 motors is unknown. We find that, surprisingly, the K-loop plays no role in generating the superprocessive motion of dimeric kinesin-3 motors (KIF1, KIF13, and KIF16). Instead, we find that the K-loop provides kinesin-3 motors with a high microtubule affinity in the motor''s ADP-bound state, a state that for other kinesins binds only weakly to the microtubule surface. A high microtubule affinity results in a high landing rate of processive kinesin-3 motors on the microtubule surface. We propose that the family-specific K-loop contributes to efficient kinesin-3 cargo transport by enhancing the initial interaction of dimeric motors with the microtubule track.  相似文献   

7.
Obstacles on the surface of microtubules can lead to defective cargo transport, proposed to play a role in neurological diseases such as Alzheimer’s. However, little is known about how motor proteins, which follow individual microtubule protofilaments (such as kinesin-1), deal with obstacles on the molecular level. Here, we used rigor-binding mutants of kinesin-1 as roadblocks to permanently obstruct individual microtubule binding sites and studied the movement of individual kinesin-1 motors by single-molecule fluorescence and dark-field scattering microscopy in vitro. In the presence of roadblocks, kinesin-1 often stopped for ∼0.4 s before either detaching or continuing to move, whereby the latter circumvention events occurred in >30% after a stopping event. Consequently, and in agreement with numerical simulations, the mean velocity, mean run length, and mean dwell time of the kinesin-1 motors decreased upon increasing the roadblock density. Tracking individual kinesin-1 motors labeled by 40 nm gold particles with 6 nm spatial and 1 ms temporal precision revealed that ∼70% of the circumvention events were associated with significant transverse shifts perpendicular to the axis of the microtubule. These side-shifts, which occurred with equal likelihood to the left and right, were accompanied by a range of longitudinal shifts suggesting that roadblock circumvention involves the unbinding and rebinding of the motors. Thus, processive motors, which commonly follow individual protofilaments in the absence of obstacles, appear to possess intrinsic circumvention mechanisms. These mechanisms were potentially optimized by evolution for the motor’s specific intracellular tasks and environments.  相似文献   

8.
Controlled activity of several kinesin motors is required for the proper assembly of the mitotic spindle. Eg5, a homotetrameric bipolar kinesin-5 from Xenopus laevis, can cross-link and slide anti-parallel microtubules apart by a motility mechanism comprising diffusional and directional modes. How this mechanism is regulated, possibly by the tail domains of the opposing motors, is poorly understood. In order to explore the basic unregulated kinesin-5 motor activity, we generated a stably dimeric kinesin-5 construct, Eg5Kin, consisting of the motor domain and neck linker of Eg5 and the neck coiled coil of Drosophila melanogaster kinesin-1 (DmKHC). In single-molecule motility assays, we found this chimera to be highly processive. In addition, we studied the effect of the kinesin-5-specific inhibitor monastrol using single-molecule fluorescence assays. We found that monastrol reduced the length of processive runs, but strikingly did not affect velocity. Quantitative analysis of monastrol dose dependence suggests that two bound monastrol molecules are required to be bound to an Eg5Kin dimer to terminate a run.  相似文献   

9.
The kinesin-2 family motor KIF3A/B works together with dynein to bidirectionally transport intraflagellar particles, melanosomes, and neuronal vesicles. Compared with kinesin-1, kinesin-2 is less processive, and its processivity is more sensitive to load, suggesting that processivity may be controlled by different gating mechanisms. We used stopped-flow and steady-state kinetics experiments, along with single-molecule and multimotor assays to characterize the entire kinetic cycle of a KIF3A homodimer that exhibits motility similar to that of full-length KIF3A/B. Upon first encounter with a microtubule, the motor rapidly exchanges both mADP and mATP. When adenosine 5′-[(β,γ)-imido]triphosphate was used to entrap the motor in a two-head-bound state, exchange kinetics were unchanged, indicating that rearward strain in the two-head-bound state does not alter nucleotide binding to the front head. A similar lack of front head gating was found when intramolecular strain was enhanced by shortening the neck linker domain from 17 to 14 residues. In single-molecule assays in ADP, the motor dissociates at 2.1 s−1, 20-fold slower than the stepping rate, demonstrating the presence of rear head gating. In microtubule pelleting assays, the KDMt is similar in ADP and ATP. The data and accompanying simulations suggest that, rather than KIF3A processivity resulting from strain-dependent regulation of nucleotide binding (front head gating), the motor spends a significant fraction of its hydrolysis cycle in a low affinity state but dissociates only slowly from this state. This work provides a mechanism to explain differences in the load-dependent properties of kinesin-1 and kinesin-2.  相似文献   

10.
Molecular motors translocate along cytoskeletal filaments, as in the case of kinesin motors on microtubules. Although conventional kinesin-1 tracks a single microtubule protofilament, other kinesins, akin to dyneins, switch protofilaments. However, the molecular trajectory—whether protofilament switching occurs in a directed or stochastic manner—is unclear. Here, we used high-resolution optical tweezers to track the path of single budding yeast kinesin-8, Kip3, motor proteins. Under applied sideward loads, we found that individual motors stepped sideward in both directions, with and against loads, with a broad distribution in measured step sizes. Interestingly, the force response depended on the direction. Based on a statistical analysis and simulations accounting for the geometry, we propose a diffusive sideward stepping motion of Kip3 on the microtubule lattice, asymmetrically biased by force. This finding is consistent with previous multimotor gliding assays and sheds light on the molecular switching mechanism. For kinesin-8, the diffusive switching mechanism may enable the motor to bypass obstacles and reach the microtubule end for length regulation. For other motors, such a mechanism may have implications for torque generation around the filament axis.  相似文献   

11.
Intracellular trafficking of organelles often involves cytoskeletal track switching. Organelles such as melanosomes are transported by multiple motors including kinesin-2, dynein, and myosin-V, which drive switching between microtubules and actin filaments during dispersion and aggregation. Here, we used optical trapping to determine the unitary and ensemble forces of kinesin-2, and to reconstitute cargo switching at cytoskeletal intersections in a minimal system with kinesin-2 and myosin-V motors bound to beads. Single kinesin-2 motors exerted forces up to ~5 pN, similar to kinesin-1. However, kinesin-2 motors were more likely to detach at submaximal forces, and the duration of force maintenance was short as compared to kinesin-1. In multimotor assays, force increased with kinesin-2 density but was not affected by the presence of myosin-V. In crossed filament assays, switching frequencies of motor-bound beads were dependent on the starting track. At equal average forces, beads tended to switch from microtubules onto overlying actin filaments consistent with the relatively faster detachment of kinesin-2 at near-maximal forces. Thus, in addition to relative force, switching probability at filament intersections is determined by the dynamics of motor-filament interaction, such as the quick detachment of kinesin-2 under load. This may enable fine-tuning of filament switching in the cell.  相似文献   

12.
Inside cells, a multitude of molecular motors and other microtubule-associated proteins are expected to compete for binding to a limited number of binding sites available on microtubules. Little is known about how competition for binding sites affects the processivity of molecular motors and, therefore, cargo transport, organelle positioning, and microtubule organization, processes that all depend on the activity of more or less processive motors. Very few studies have been performed in the past to address this question directly. Most studies reported only minor effects of crowding on the velocity of motors. However, a controversy appears to exist regarding the effect of crowding on motor processivity. Here, we use single-molecule imaging of mGFP-labeled minimal dimeric kinesin-1 constructs in vitro to study the effects of competition on kinesin's processivity. For competitors, we use kinesin rigor mutants as static roadblocks, minimal wild-type kinesins as motile obstacles, and a cell extract as a complex mixture of microtubule-associated proteins. We find that mGFP-labeled kinesin-1 detaches prematurely from microtubules when it encounters obstacles, leading to a strong reduction of its processivity, a behavior that is largely independent of the type of obstacle used here. Kinesin has a low probability to wait briefly when encountering roadblocks. Our data suggest, furthermore, that kinesin can occasionally pass obstacles on the protofilament track.  相似文献   

13.
Molecular motor proteins use the energy released from ATP hydrolysis to generate force and haul cargoes along cytoskeletal filaments. Thus, measuring the force motors generate amounts to directly probing their function. We report on optical trapping methodology capable of making precise in vivo stall-force measurements of individual cargoes hauled by molecular motors in their native environment. Despite routine measurement of motor forces in vitro, performing and calibrating such measurements in vivo has been challenging. We describe the methodology recently developed to overcome these difficulties, and used to measure stall forces of both kinesin-1 and cytoplasmic dynein-driven lipid droplets in Drosophila embryos. Critically, by measuring the cargo dynamics in the optical trap, we find that there is memory: it is more likely for a cargo to resume motion in the same direction—rather than reverse direction—after the motors transporting it detach from the microtubule under the force of the optical trap. This suggests that only motors of one polarity are active on the cargo at any instant in time and is not consistent with the tug-of-war models of bidirectional transport where both polarity motors can bind the microtubules at all times. We further use the optical trap to measure in vivo the detachment rates from microtubules of kinesin-1 and dynein-driven lipid droplets. Unlike what is commonly assumed, we find that dynein’s but not kinesin’s detachment time in vivo increases with opposing load. This suggests that dynein’s interaction with microtubules behaves like a catch bond.  相似文献   

14.
Molecular motors such as kinesin and dynein use the energy derived from ATP hydrolysis to walk processively along microtubule tracks and transport various cargoes inside the cell. Recent advancements in fluorescent protein (FP) research enable motors to be fluorescently labeled such that single molecules can be visualized inside cells in multiple colors. The performance of these fluorescent tags can vary depending on their spectral properties and a natural tendency for oligomerization. Here we present a survey of different fluorescent tags fused to kinesin-1 and studied by single-molecule motility assays of mammalian cell lysates. We tested eight different FP tags and found that seven of them display sufficient fluorescence intensity and photostability to visualize motility events. Although none of the FP tags interfere with the enzymatic properties of the motor, four of the tags (EGFP, monomeric EGFP, tagRFPt, and mApple) cause aberrantly long motor run lengths. This behavior is unlikely to be due to electrostatic interactions and is probably caused by tag-dependent oligomerization events that appear to be facilitated by fusion to the dimeric kinesin-1. We also compared the single-molecule performance of various fluorescent SNAP and HALO ligands. We found that although both green and red SNAP ligands provide sufficient fluorescent signal, only the tetramethyl rhodamine (TMR) HALO ligand provides sufficient signal for detection in these assays. This study will serve as a valuable reference for choosing fluorescent labels for single-molecule motility assays.  相似文献   

15.
The kinesin-3 family contains the fastest and most processive motors of the three neuronal transport kinesin families, yet the sequence of states and rates of kinetic transitions that comprise the chemomechanical cycle and give rise to their unique properties are poorly understood. We used stopped-flow fluorescence spectroscopy and single-molecule motility assays to delineate the chemomechanical cycle of the kinesin-3, KIF1A. Our bacterially expressed KIF1A construct, dimerized via a kinesin-1 coiled-coil, exhibits fast velocity and superprocessivity behavior similar to WT KIF1A. We established that the KIF1A forward step is triggered by hydrolysis of ATP and not by ATP binding, meaning that KIF1A follows the same chemomechanical cycle as established for kinesin-1 and -2. The ATP-triggered half-site release rate of KIF1A was similar to the stepping rate, indicating that during stepping, rear-head detachment is an order of magnitude faster than in kinesin-1 and kinesin-2. Thus, KIF1A spends the majority of its hydrolysis cycle in a one-head-bound state. Both the ADP off-rate and the ATP on-rate at physiological ATP concentration were fast, eliminating these steps as possible rate-limiting transitions. Based on the measured run length and the relatively slow off-rate in ADP, we conclude that attachment of the tethered head is the rate-limiting transition in the KIF1A stepping cycle. Thus, KIF1A''s activity can be explained by a fast rear-head detachment rate, a rate-limiting step of tethered-head attachment that follows ATP hydrolysis, and a relatively strong electrostatic interaction with the microtubule in the weakly bound post-hydrolysis state.  相似文献   

16.
Kinesin-1 is a molecular motor responsible for cargo transport along microtubules and plays critical roles in polarized cells, such as neurons. Kinesin-1 can function as a dimer of two kinesin heavy chains (KHC), which harbor the motor domain, or as a tetramer in combination with two accessory light chains (KLC). To ensure proper cargo distribution, kinesin-1 activity is precisely regulated. Both KLC and KHC subunits bind cargoes or regulatory proteins to engage the motor for movement along microtubules. We previously showed that the scaffolding protein JIP3 interacts directly with KHC in addition to its interaction with KLC and positively regulates dimeric KHC motility. Here we determined the stoichiometry of JIP3-KHC complexes and observed approximately four JIP3 molecules binding per KHC dimer. We then determined whether JIP3 activates tetrameric kinesin-1 motility. Using an in vitro motility assay, we show that JIP3 binding to KLC engages kinesin-1 with microtubules and that JIP3 binding to KHC promotes kinesin-1 motility along microtubules. We tested the in vivo relevance of these findings using axon elongation as a model for kinesin-1-dependent cellular function. We demonstrate that JIP3 binding to KHC, but not KLC, is essential for axon elongation in hippocampal neurons as well as axon regeneration in sensory neurons. These findings reveal that JIP3 regulation of kinesin-1 motility is critical for axon elongation and regeneration.  相似文献   

17.
Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) are involved in acetylcholine synthesis and degradation at pre- and postsynaptic compartments, respectively. Here we show that their anterograde transport in Drosophila larval ganglion is microtubule-dependent and occurs in two different time profiles. AChE transport is constitutive while that of ChAT occurs in a brief pulse during third instar larva stage. Mutations in the kinesin-2 motor subunit Klp64D and separate siRNA-mediated knock-outs of all the three kinesin-2 subunits disrupt the ChAT and AChE transports, and these antigens accumulate in discrete nonoverlapping punctae in neuronal cell bodies and axons. Quantification analysis further showed that mutations in Klp64D could independently affect the anterograde transport of AChE even before that of ChAT. Finally, ChAT and AChE were coimmunoprecipitated with the kinesin-2 subunits but not with each other. Altogether, these suggest that kinesin-2 independently transports AChE and ChAT within the same axon. It also implies that cargo availability could regulate the rate and frequency of transports by kinesin motors.  相似文献   

18.
Long-distance transport in cells is driven by kinesin and dynein motors that move along microtubule tracks. These motors must be tightly regulated to ensure the spatial and temporal fidelity of their transport events. Transport motors of the kinesin-1 and kinesin-3 families are regulated by autoinhibition, but little is known about the mechanisms that regulate kinesin-2 motors. We show that the homodimeric kinesin-2 motor KIF17 is kept in an inactive state in the absence of cargo. Autoinhibition is caused by a folded conformation that enables nonmotor regions to directly contact and inhibit the enzymatic activity of the motor domain. We define two molecular mechanisms that contribute to autoinhibition of KIF17. First, the C-terminal tail interferes with microtubule binding; and second, a coiled-coil segment blocks processive motility. The latter is a new mechanism for regulation of kinesin motors. This work supports the model that autoinhibition is a general mechanism for regulation of kinesin motors involved in intracellular trafficking events.  相似文献   

19.
BACKGROUND: Cytoplasmic dynein is the molecular motor responsible for most retrograde microtubule-based vesicular transport. In vitro single-molecule experiments suggest that dynein function is not as robust as that of kinesin-1 or myosin-V because dynein moves only a limited distance (approximately 800 nm) before detaching and can exert a modest (approximately 1 pN) force. However, dynein-driven cargos in vivo move robustly over many microns and exert forces of multiple pN. To determine how to go from limited single-molecule function to robust in vivo transport, we began to build complexity in a controlled manner by using in vitro experiments. RESULTS: We show that a single cytoplasmic dynein motor frequently transitions into an off-pathway unproductive state that impairs net transport. Addition of a second (and/or third) dynein motor, so that cargos are moved by two (or three) motors rather than one, is sufficient to recover several properties of in vivo motion; such properties include long cargo travels, robust motion, and increased forces. Part of this improvement appears to arise from selective suppression of the unproductive state of dynein rather than from a fundamental change in dynein's mechanochemical cycle. CONCLUSIONS: Multiple dyneins working together suppress shortcomings of a single motor and generate robust motion under in vitro conditions. There appears to be no need for additional cofactors (e.g., dynactin) for this improvement. Because cargos are often driven by multiple dyneins in vivo, our results show that changing the number of dynein motors could allow modulation of dynein function from the mediocre single-dynein limit to robust in vivo-like dynein-driven motion.  相似文献   

20.
We have tested the hypothesis that kinesin-1A (formerly KIF5A) is an anterograde motor for axonal neurofilaments. In cultured sympathetic neurons from kinesin-1A knockout mice, we observed a 75% reduction in the frequency of both anterograde and retrograde neurofilament movement. This transport defect could be rescued by kinesin-1A, and with successively decreasing efficacy by kinesin-1B and kinesin-1C. In wild-type neurons, headless mutants of kinesin-1A and kinesin-1C inhibited both anterograde and retrograde movement in a dominant-negative manner. Because dynein is thought to be the retrograde motor for axonal neurofilaments, we investigated the effect of dynein inhibition on anterograde and retrograde neurofilament transport. Disruption of dynein function by using RNA interference, dominant-negative approaches, or a function-blocking antibody also inhibited both anterograde and retrograde neurofilament movement. These data suggest that kinesin-1A is the principal but not exclusive anterograde motor for neurofilaments in these neurons, that there may be some functional redundancy among the kinesin-1 isoforms with respect to neurofilament transport, and that the activities of the anterograde and retrograde neurofilament motors are tightly coordinated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号