首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Aim The relative importance of current climate and past historical legacies is hotly debated. Here, we assess their role in determining the global distribution and diversity patterns of palms (Arecaceae), a widespread, species‐rich group of keystone ecological importance in tropical ecosystems. Location Global. Methods We assembled country‐level species lists world‐wide and compiled associated data on potential contemporary environmental drivers (current climate, habitat heterogeneity, area, and insularity), Quaternary glacial–interglacial climate change and major biogeographic regions to evaluate to what extent the global distribution and species richness patterns in palms reflect Quaternary climatic oscillations or regional effects reflecting pre‐Quaternary legacies. We also assessed for the first time if historical legacies differ between continents and islands, providing novel insights into determinants of insular species richness. Results Palm species richness was significantly affected by Quaternary climate changes and further differed between biogeographic regions even when both current environmental conditions and Quaternary climate changes were accounted for. In contrast, global limits to the distribution of the palm family were best explained by current temperature while biogeographic regional differences were unimportant and Quaternary climate change caused only a small constraint. Historical legacies were weak on islands, with only a small regional effect and no effect of Quaternary climate changes. Main conclusions Strong historical legacies supplement current environment as determinants of palm species richness. These primarily comprise pre‐Quaternary historical effects, reflected in low African species richness (possibly linked to pre‐Quaternary extinctions) and outstandingly high Neotropical and Indomalayan palm species richness (possibly linked to these regions' long‐term climatic suitability for palms). In contrast to species richness, the global distribution of the family range is largely in equilibrium with current climate. The small historical effects on islands are consistent with climatic buffering from their oceanic environment.  相似文献   

2.
Southeast‐Asia (SEA) constitutes a global biodiversity hotspot, but is exposed to extensive deforestation and faces numerous threats to its biodiversity. Climate change represents a major challenge to the survival and viability of species, and the potential consequences must be assessed to allow for mitigation. We project the effects of several climate change scenarios on bat diversity, and predict changes in range size for 171 bat species throughout SEA. We predict decreases in species richness in all areas with high species richness (>80 species) at 2050–2080, using bioclimatic IPCC scenarios A2 (a severe scenario, continuously increasing human population size, regional changes in economic growth) and B1 (the ‘greenest’ scenario, global population peaking mid‐century). We also predicted changes in species richness in scenarios that project vegetation changes in addition to climate change up to 2050. At 2050 and 2080, A2 and B1 scenarios incorporating changes in climatic factors predicted that 3–9% species would lose all currently suitable niche space. When considering total extents of species distribution in SEA (including possible range expansions), 2–6% of species may have no suitable niche space in 2050–2080. When potential vegetation and climate changes were combined only 1% of species showed no changes in their predicted ranges by 2050. Although some species are projected to expand ranges, this may be ecologically impossible due to potential barriers to dispersal, especially for species with poor dispersal ability. Only 1–13% of species showed no projected reductions in their current range under bioclimatic scenarios. An effective way to facilitate range shift for dispersal‐limited species is to improve landscape connectivity. If current trends in environmental change continue and species cannot expand their ranges into new areas, then the majority of bat species in SEA may show decreases in range size and increased extinction risk within the next century.  相似文献   

3.
Anthropogenic climate change poses a major threat to global biodiversity with a potential to alter biological interactions at all spatial scales. Amphibians are the most threatened vertebrates and have been subject to increasing conservation attention over the past decade. A particular concern is the pandemic emergence of the parasitic chytrid fungus Batrachochytrium dendrobatidis, which has been identified as the cause of extremely rapid large-scale declines and species extinctions. Experimental and observational studies have demonstrated that the host-pathogen system is strongly influenced by climatic parameters and thereby potentially affected by climate change. Herein we project a species distribution model of the pathogen onto future climatic scenarios generated by the IPCC to examine their potential implications on the pandemic. Results suggest that predicted anthropogenic climate change may reduce the geographic range of B. dendrobatidis and its potential influence on amphibian biodiversity.  相似文献   

4.
Aim Climate is an important determinant of species distributions. We assess different aspects of risk arising from future climate change by quantifying changes in the spatial distribution of future climatic conditions compared with the recent past. Location Europe. Methods A 10′ × 10′ resolution gridded data set of five climate variables was used to calculate expected changes to the area, distance and direction of 1931–60 climatic conditions under the HadCM3 climate model for four future climate scenarios based on different rates of greenhouse gas emissions (SRES scenarios). Three levels of tolerance ranges determined the thresholds for which future conditions are considered analogous to 1931–60 (pre‐warming) conditions. Results For many parts of Europe, areas with pre‐warming analogous climate conditions will be smaller and further away in the future than they are now. For any location in Europe, areas with pre‐warming analogous mean annual temperature conditions will, on average, be reduced between 23.7% (B1 scenario) and 49.7% (A1FI scenario) by 2100 when assuming a medium tolerance range. The mean distance to these areas will, on average, increase between 272 km (B1) and 645 km (A1FI). These changes are more pronounced for temperature than for water availability variables and also for narrow tolerance ranges compared to wide tolerance ranges. Using a combined measure of both temperature and precipitation variables, areas with prewarming analogous conditions are predicted to be in a more northeasterly direction in the future, but there are considerable regional differences within Europe. Main conclusions The results suggest that, for some parts of Europe, the loss of area with any suitable climatic conditions represents the greatest risk to biodiversity, but in other regions the distances that species may have to move to reach suitable climatic conditions may be a greater problem. Quantifying the distance and direction in analyses of change of climatically suitable areas can add additional information for climate change risk assessments.  相似文献   

5.
Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.  相似文献   

6.
This study assessed potential changes in the distributions of Australian butterfly species in response to global warming. The bioclimatic program, BIOCLIM, was used to determine the current climatic ranges of 77 butterfly species restricted to Australia. We found that the majority of these species had fairly wide climatic ranges in comparison to other taxa, with only 8% of butterfly species having a mean annual temperature range spanning less than 3 °C. The potential changes in the distributions of 24 butterfly species under four climate change scenarios for 2050 were also modelled using BIOCLIM. Results suggested that even species with currently wide climatic ranges may still be vulnerable to climate change; under a very conservative climate change scenario (with a temperature increase of 0.8–1.4 °C by 2050) 88% of species distributions decreased, and 54% of species distributions decreased by at least 20%. Under an extreme scenario (temperature increase of 2.1–3.9 °C by 2050) 92% of species distributions decreased, and 83% of species distributions decreased by at least 50%. Furthermore, the proportion of the current range that was contained within the predicted range decreased from an average of 63% under a very conservative scenario to less than 22% under the most extreme scenario. By assessing the climatic ranges that species are currently exposed to, the extent of potential changes in distributions in response to climate change and details of their life histories, we identified species whose characteristics may make them particularly vulnerable to climate change in the future.  相似文献   

7.
Questions: What is the climatic envelope of European Atlantic heathlands and the relationship between their floristic geographical variability and climatic parameters? Are the biogeographic patterns extracted from genuine heath plants comparable to those extracted from the accompanying flora? To what extent does the species composition extracted from phytosociological data support the current theory of refuge areas of heath vegetation in southern Atlantic Europe during the Pleistocene ice ages? Location: Atlantic Europe and NW Morocco. Methods: The geographical territory in which Atlantic heathlands occur was divided into 23 sectors following geographic and chorological criteria. A presence–absence table with 333 taxa was then constructed with the available phytosociological data. The taxa were classified into different groups according to their phytosociological affinity. Several types of numerical analysis were performed with this matrix and the climatic data obtained from meteorological sources. Results: Heathlands require a humid and oceanic climate and are limited by cold temperatures in the north and by summer droughts in the south. The highest floristic richness of this vegetation type is found in NW Iberia. Ordinations indicate a strong correlation between floristic composition of biogeographic sector and summer drought (Ios) and thermicity (It). Conclusions: The main climatic factors determining lowland heathland floristic distribution are thermicity and summer drought. The current optimal conditions for heath flora in NW Iberia suggest that there were southern refuges during the Pleistocene ice ages from which northward expansion has taken place.  相似文献   

8.
Understanding range limits is critical to predicting species responses to climate change. Subtropical environments, where many species overlap at their range margins, are cooler, more light‐limited and variable than tropical environments. It is thus likely that species respond variably to these multi‐stressor regimes and that factors other than mean climatic conditions drive biodiversity patterns. Here, we tested these hypotheses for scleractinian corals at their high‐latitude range limits in eastern Australia and investigated the role of mean climatic conditions and of parameters linked to abiotic stress in explaining the distribution and abundance of different groups of species. We found that environmental drivers varied among taxa and were predominantly linked to abiotic stress. The distribution and abundance of tropical species and gradients in species richness (alpha diversity) and turnover (beta diversity) were best explained by light limitation, whereas minimum temperatures and temperature fluctuations best explained gradients in subtropical species, species nestedness and functional diversity. Variation in community structure (considering species composition and abundance) was most closely linked to the combined thermal and light regime. Our study demonstrates the role of abiotic stress in controlling the distribution of species towards their high‐latitude range limits and suggests that, at biogeographic transition zones, robust predictions of the impacts of climate change require approaches that account for various aspects of physiological stress and for species abundances and characteristics. These findings support the hypothesis that abiotic stress controls high‐latitude range limits and caution that projections solely based on mean temperature could underestimate species’ vulnerabilities to climate change.  相似文献   

9.
Future climate change has been predicted to affect the potential distribution of plant species. However, only few studies have addressed how invasive species may respond to future climate change despite the known effects of plant species invasion on nutrient cycles, ecosystem functions, and agricultural yields. In this study, we predicted the potential distributions of two invasive species, Rumex crispus and Typha latifolia, under current and future (2050) climatic conditions. Future climate scenarios considered in our study include A1B, A2, A2A, B1, and B2A. We found that these two species will lose their habitat under the A1B, A2, A2A, and B1 scenarios. Their distributions will be maintained under future climatic conditions related to B2A scenarios, but the total area will be less than 10% of that under the current climatic condition. We also investigated variations of the most influential climatic variables that are likely to cause habitat loss of the two species. Our results demonstrate that rising mean annual temperature, variations of the coldest quarter, and precipitation of the coldest quarter are the main factors contributing to habitat loss of R. crispus. For T. latifolia, the main factors are rising mean annual temperature, variations in temperature of the coldest quarter, mean annual precipitation, and precipitation of the coldest quarter. These results demonstrate that the warmer and wetter climatic conditions of the coldest season (or month) will be mainly responsible for habitat loss of R. crispus and T. latifolia in the future. We also discuss uncertainties related to our study (and similar studies) and suggest that particular attention should be directed toward the manner in which invasive species cope with rapid climate changes because evolutionary change can be rapid for species that invade new areas.  相似文献   

10.
Many studies have investigated the potential impacts of climate change on the distribution of plant species, but few have attempted to constrain projections through plant dispersal limitations. Instead, most studies published so far have simplified dispersal as either unlimited or null. However, depending on the dispersal capacity of a species, landscape fragmentation, and the rate of climatic change, these assumptions can lead to serious over- or underestimation of the future distribution of plant species.
To quantify the discrepancies between simulations accounting for dispersal or not, we carried out projections of future distribution over the 21st century for 287 mountain plant species in a study area of the western Swiss Alps. For each species, simulations were run for four dispersal scenarios (unlimited dispersal, no dispersal, realistic dispersal, and realistic dispersal with long-distance dispersal events) and under four climate change scenarios.
Although simulations accounting for realistic dispersal limitations did significantly differ from those considering dispersal as unlimited or null in terms of projected future distribution, the unlimited dispersal simplification did nevertheless provide good approximations for species extinctions under more moderate climate change scenarios. Overall, simulations accounting for dispersal limitations produced, for our mountainous study area, results that were significantly closer to unlimited dispersal than to no dispersal. Finally, analysis of the temporal pattern of species extinctions over the entire 21st century revealed that important species extinctions for our study area might not occur before the 2080–2100 period, due to the possibility of a large number of species shifting their distribution to higher elevation.  相似文献   

11.
Aim  To predict how the bioclimatic envelope of the broad-headed snake (BHS) ( Hoplocephalus bungaroides ) may be redistributed under future climate warming scenarios.
Location  South-eastern New South Wales, Australia.
Methods  We used 159 independent locations for the species and 35 climatic variables to model the bioclimatic envelope for the BHS using two modelling approaches – B ioclim and M axent . Predictions were made under current climatic conditions and we also predicted the species distribution under low and high climate change scenarios for 2030 and 2070.
Results  Broad-headed snakes currently encompass their entire bioclimatic envelope. Both modelling approaches predict that suitable climate space for BHS will be lost to varying degrees under both climate warming scenarios, and under the worst case, only 14% of known snake populations may persist.
Main conclusions  Areas of higher elevation within the current range will be most important for persistence of this species because they will remain relatively moist and cool even under climate change and will match the current climate envelope. Conservation efforts should focus on areas where suitable climate space may persist under climate warming scenarios. Long-term monitoring programs should be established both in these areas and where populations are predicted to become extirpated, so that we can accurately determine changes in the distribution of this species throughout its range.  相似文献   

12.
To predict the response of aquatic ecosystems to future global climate change, data on the ecology and distribution of keystone groups in freshwater ecosystems are needed. In contrast to mid‐ and high‐latitude zones, such data are scarce across tropical South America (Neotropics). We present the distribution and diversity of chironomid species using surface sediments of 59 lakes from the Andes to the Amazon (0.1–17°S and 64–78°W) within the Neotropics. We assess the spatial variation in community assemblages and identify the key variables influencing the distributional patterns. The relationships between environmental variables (pH, conductivity, depth, and sediment organic content), climatic data, and chironomid assemblages were assessed using multivariate statistics (detrended correspondence analysis and canonical correspondence analysis). Climatic parameters (temperature and precipitation) were most significant in describing the variance in chironomid assemblages. Temperature and precipitation are both predicted to change under future climate change scenarios in the tropical Andes. Our findings suggest taxa of Orthocladiinae, which show a preference to cold high‐elevation oligotrophic lakes, will likely see range contraction under future anthropogenic‐induced climate change. Taxa abundant in areas of high precipitation, such as Micropsectra and Phaenopsectra, will likely become restricted to the inner tropical Andes, as the outer tropical Andes become drier. The sensitivity of chironomids to climate parameters makes them important bio‐indicators of regional climate change in the Neotropics. Furthermore, the distribution of chironomid taxa presented here is a vital first step toward providing urgently needed autecological data for interpreting fossil chironomid records of past ecological and climate change from the tropical Andes.  相似文献   

13.
Climate change may be a major threat to global biodiversity, especially to tropical species. Yet, why tropical species are more vulnerable to climate change remains unclear. Tropical species are thought to have narrower physiological tolerances to temperature, and they have already experienced a higher estimated frequency of climate-related local extinctions. These two patterns suggest that tropical species are more vulnerable to climate change because they have narrower thermal niche widths. However, no studies have tested whether species with narrower climatic niche widths for temperature have experienced more local extinctions, and if these narrower niche widths can explain the higher frequency of tropical local extinctions. Here, we test these ideas using resurvey data from 538 plant and animal species from 10 studies. We found that mean niche widths among species and the extent of climate change (increase in maximum annual temperatures) together explained most variation (>75%) in the frequency of local extinction among studies. Surprisingly, neither latitude nor occurrence in the tropics alone significantly predicted local extinction among studies, but latitude and niche widths were strongly inversely related. Niche width also significantly predicted local extinction among species, as well as among and (sometimes) within studies. Overall, niche width may offer a relatively simple and accessible predictor of the vulnerability of populations to climate change. Intriguingly, niche width has the best predictive power to explain extinction from global warming when it incorporates coldest yearly temperatures.  相似文献   

14.
Temperate zone bats may be more sensitive to climate change than other groups of mammals because many aspects of their ecology are closely linked to temperature. However, few studies have tried to predict the responses of bats to climate change. The Indiana bat (Myotis sodalis) is a federally listed endangered species that is found in the eastern United States. The northerly distribution of Indiana bat summer maternity colonies relative to their winter distributions suggests that warmer climates may result in a shift in their summer distribution. Our objectives were to determine the climatic factors associated with Indiana bat maternity range and forecast changes in the amount and distribution of the range under future climates. We used Maxent to model the suitable climatic habitat of Indiana bats under current conditions and four future climate forecasts for 2021–30, 2031–40, 2041–50, and 2051–60. Average maximum temperature across the maternity season (May–August) was the most important variable in the model of current distribution of Indiana bat maternity colonies with suitability decreasing considerably above 28ºC. The areal extent of the summer maternity distribution of Indiana bats was forecasted to decline and be concentrated in the northeastern United States and Appalachian Mountains; the western part of the current maternity range (Missouri, Iowa, Illinois, Kentucky, Indiana, and Ohio) was forecasted to become climatically unsuitable under most future climates. Our models suggest that high temperatures may be a factor in roost‐site selection at the regional scale and in the future, may also be an important variable at the microhabitat scale. When behavioral changes fail to mitigate the effects of high temperature, range shifts are likely to occur. Thus, habitat management for Indiana bat maternity colonies in the northeastern United States and Appalachian Mountains of the Southeast is critical as these areas will most likely serve as climatic refugia.  相似文献   

15.
Anthropogenic global climate change has already led to alterations in biodiversity patterns by directly and indirectly affecting species distributions. It has been suggested that poikilothermic animals, including reptiles, will be particularly affected by global change and large‐scale reptile declines have already been observed. Currently, half of the world's freshwater turtles and tortoises are considered threatened with extinction, and climate change may exacerbate these declines. In this study, we assess how global chelonian species richness will change in the near future. We use species distribution models developed under current climate conditions for 78% of all extant species and project them onto different Intergovernmental Panel on Climate Change (IPCC) scenarios for 2080. We detect a strong dependence of temperature shaping most species ranges, which coincide with their general temperature‐related physiological traits (i.e., temperature‐dependent sex determination). Furthermore, the extent and distribution of the current bioclimatic niches of most chelonians may change remarkably in the near future, likely leading to a substantial decrease of local species abundance and ultimately a reduction in species richness. Future climatic changes may cause the ranges of 86% of the species to contract, and of these ranges, nearly 12% are predicted to be situated completely outside their currently realized niches. Hence, the interplay of increasing habitat fragmentation and loss due to climatic stress may result in a serious threat for several chelonian species.  相似文献   

16.
中国北方温带地区5种锦鸡儿植物的分布模拟   总被引:7,自引:1,他引:7       下载免费PDF全文
全面收集中国北方温带干旱–半干旱地区5种主要锦鸡儿植物的地理分布资料, 利用ArcGIS 9.0软件绘制现状分布图, 发现小叶锦鸡儿(Caragana microphylla)、中间锦鸡儿(C. intermedia)和柠条锦鸡儿(C. korshinskii)在空间上呈现出从东到西的地理替代分布格局, 继续向西南方向则分布有藏锦鸡儿(C. tibetica), 向西北方向分布有狭叶锦鸡儿(C. stenophylla), 但它们的分布范围又有一定的重叠。整理5种锦鸡儿分布区内的气象台站长期记录, 选择计算15个具有重要生物学意义的水热指标值; 进而用方差分析、多重比较和因子分析相结合的方法, 研究控制这5种锦鸡儿地理分布的主导驱动因子。结果表明: 控制小叶锦鸡儿和中间锦鸡儿间地理分布差异的主导因子是水分因子, 特别是湿度; 水分因子同样是控制中间锦鸡儿和柠条锦鸡儿间地理分布差异的主导因子, 特别是生长季及年降水量; 控制柠条锦鸡儿和藏锦鸡儿间地理分布差异的主导因子是夏季高温, 控制柠条锦鸡儿和狭叶锦鸡儿地理分布差异的是冬季低温。运用耦合BIOCLIM模型的软件包“DIVA-GIS”模拟预测这5种锦鸡儿的现状潜在分布区及未来气候变化的影响, 结果表明: 现状潜在分布区与实际分布区均有很好的一致性; 在CO2浓度加倍的未来气候情景下, 5种锦鸡儿植物都会向北大幅度迁移, 在我国的分布范围均缩小, 分布格局发生显著变化。用ROC曲线和Kappa统计值法验证模型表明, BIOCLIM的模拟精度较高。  相似文献   

17.
Recent efforts to incorporate migration processes into species distribution models (SDMs) are allowing assessments of whether species are likely to be able to track their future climate optimum and the possible causes of failing to do so. Here, we projected the range shift of European beech over the 21st century using a process‐based SDM coupled to a phenomenological migration model accounting for population dynamics, according to two climate change scenarios and one land use change scenario. Our model predicts that the climatically suitable habitat for European beech will shift north‐eastward and upward mainly because (i) higher temperature and precipitation, at the northern range margins, will increase survival and fruit maturation success, while (ii) lower precipitations and higher winter temperature, at the southern range margins, will increase drought mortality and prevent bud dormancy breaking. Beech colonization rate of newly climatically suitable habitats in 2100 is projected to be very low (1–2% of the newly suitable habitats colonised). Unexpectedly, the projected realized contraction rate was higher than the projected potential contraction rate. As a result, the realized distribution of beech is projected to strongly contract by 2100 (by 36–61%) mainly due to a substantial increase in climate variability after 2050, which generates local extinctions, even at the core of the distribution, the frequency of which prevents beech recolonization during more favourable years. Although European beech will be able to persist in some parts of the trailing edge of its distribution, the combined effects of climate and land use changes, limited migration ability, and a slow life‐history are likely to increase its threat status in the near future.  相似文献   

18.
The Alpine marmot (Marmota marmota) is a social mammal living in mountainous grassland areas and has the particularity to hibernate in winter. Recent studies on a population in the French Alps found that climate change is affecting Alpine marmot population dynamics and might impact their overall distribution in the future. Using Species Distribution Models (SDMs), the effect of climate change on Alpine marmot's future distribution was investigated at a local scale, in the western part of the Pyrenean massif (New-Aquitaine region, France). This scale was chosen as an appropriate action scale for the conservation strategy for the species. Three climatic scenarios were used (RCP 2.6, RCP 4.5, and RCP 8.5) over three future 30-year periods (2021–2050, 2040–2070, 2071–2100) to predict the short- to long-term potential distribution of the target species. The results are consistent with naturalistic knowledge of the species´ ecological needs in terms of variable importance and response type. Mean maximum temperature in winter, standard-deviation of daily temperature in winter, along with the median rainfall amount in summer were the three most important climatic variables. Predictions under the two most pessimistic climate scenarios showed potential large habitat loss. In the long term, for RCP 4.5, an estimated habitat loss of 18% was predicted. In the case of RCP 8.5, a higher impact was predicted, with a 54% habitat loss. Our results show that high impact due to climate change can be expected at a long term. In addition, if winter climatic conditions are important for marmot survival through hibernation, drought in summer might be one of the drivers of future population dynamic and distribution. Our findings can be applied for other species living in grassland mountainous environments and for which access to food resources in summer is essential, facilitating the conservation of target areas.  相似文献   

19.

Aim

Climate change is affecting biodiversity at an accelerating rate. Despite the importance of fungi in ecosystems in general, and in the global carbon and nitrogen cycle in particular, there is little research on the response of fungi to climate change compared with plants and animals. Earlier studies show that climatic factors and tree species are key determinants of macrofungal diversity and distribution at large spatial scales. However, our knowledge of how climate change will affect macrofungal diversity and distribution in the future remains poorly understood.

Location

Europe.

Methods

Using openly available occurrence data of 1845 macrofungal species from eight European countries (i.e. Norway, Sweden, Finland, Denmark, Netherlands, Germany, France and Spain), we built ensemble species distribution models to predict macrofungal response to climate change alone and combined climate and tree distribution change under the IPCC special report on 2080 emissions scenarios (SRES A2 and B2).

Results

Considering climate change alone, we predict that about 77% (74.1%–80.7%) of the modelled species will expand their distribution range, and around 57% (56.1%–58.4%) of the modelled area will have an increase in macrofungal species richness. However, when considering the combined climate and tree species distribution change, only 50% (50%–50.9%) of the species are predicted to expand their distribution range and 49% (47.4%–51.1%) of the modelled area will experience an increase in macrofungal species richness.

Main Conclusions

Overall, our models projected that large areas would exhibit increased macrofungal species richness under future climate change. However, tree species distribution might play a restrictive role in the future distributional shifts of macrofungi. In addition, macrofungal responses appear heterogeneous, varying among species and regions. Our findings highlight the importance of including tree species in the projection of climate change impacts on the macrofungal diversity and distribution on a continental scale.  相似文献   

20.
The koala's Phascolarctos cinereus distribution is currently restricted to eastern and south‐eastern Australia. However, fossil records dating from 70 ± 4 ka (ka = 103 yr) from south‐western Australia and the Nullarbor Plain are evidence of subpopulation extinctions in the southwest at least after the Last Interglacial (~128–116 ka). We hypothesize that koala sub‐population extinctions resulted from the eastward retraction of the koala's main browse species in response to unsuitable climatic conditions. We further posit a general reduction in the distribution of main koala‐browse trees in the near future in response climate change. We modelled 60 koala‐browse species and constructed a set of correlative species distribution models for five time periods: Last Interglacial (~128–116 ka), Last Glacial Maximum (~23–19 ka), Mid‐Holocene (~7–5 ka), present (interpolations of observed data, representative of 1960–1990), and 2070. We based our projections on five hindcasts and one forecast of climatic variables extracted from WorldClim based on two general circulation models (considering the most pessimistic scenario of high greenhouse‐gas emissions) and topsoil clay fraction. We used 17 dates of koala fossil specimens identified as reliable from 70 (± 4) to 535 (± 49) ka, with the last appearance of koalas at 70 ka in the southwest. The main simulated koala‐browse species were at their greatest modelled extent of suitability during the Last Glacial Maximum, with the greatest loss of koala habitat occurring between the Mid‐Holocene and the present. We predict a similar habitat loss between the present and 2070. The spatial patterns of habitat change support our hypothesis that koala extinctions in the southwest, Nullarbor Plain and central South Australia resulted from the eastward retraction of the dominant koala‐browse species in response to long‐term climate changes. Future climate patterns will likely increase the extinction risk of koalas in their remaining eastern ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号