首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Pleurotus ostreatus showed atypical laccase production in submerged vs. solid-state fermentation. Cultures grown in submerged fermentation produced laccase at 13,000 U l−1, with a biomass production of 5.6 g l−1 and four laccase isoforms. However, cultures grown in solid-state fermentation had a much lower laccase activity of 2,430 U l−1, biomass production of 4.5 g l−1, and three laccase isoforms. These results show that P. ostreatus performs much better in submerged fermentation than in solid-state fermentation. This is the first report that shows such atypical behavior in the production of extracellular laccases by fungi.  相似文献   

2.
The method of liquefaction of gel from cross-linked cellulose was used for monitoring the cellulolytic activity of 114 cultures of higher fungi, 47 of which belonged toPleurotus ostreatus. All cultures ofP. ostreatus had a low activity. The highest cellulase activity, manifested byPiptoporus betulinus, was comparable with that ofTrichoderma viride QM6a.  相似文献   

3.
Laccases have great biotechnological potential in diverse industries as they catalyze the oxidation of a broad variety of chemical compounds. Production of laccases by basidiomycetes has been broadly studied as they secrete the enzymes, grow on cheap substrates, and they generally produce more than one isoenzyme (constitutive and/or inducible). Laccase production and isoenzyme profile can be modified through medium composition and the use of inducers. The objective of this work was to increase laccase production by Pleurotus ostreatus CP-50 through culture medium optimization and the simultaneous use of copper and lignin as inducers. Increased fungal growth was obtained through the use of a factorial fractional experimental design 26–2 where the influence of the nature and concentration of carbon and nitrogen sources was assessed. Although specific laccase production (U/mg biomass) decreased when malt extract medium was supplemented with carbon and nitrogen sources, fungal growth and laccase volumetric activity increased four and sixfold, respectively. The effect of media supplementation with copper and/or lignin on laccase production by P. ostreatus CP-50 was studied. A positive synergistic effect between copper and lignin was observed on laccase production. Overall, the use of an optimized medium and the simultaneous addition of copper and lignin improved growth, laccase volumetric activity, and process productivity by 4-, 60-, and 10-fold, respectively.  相似文献   

4.
The effect of Phanerochaete chrysosporium and Pleurotus ostreatus whole cells and their ligninolytic enzymes on models of colored industrial wastewaters was evaluated. Models of acid, direct and reactive dye wastewaters from textile industry have been defined on the basis of discharged amounts, economic relevance and representativeness of chemical structures of the contained dyes. Phanerochaete chrysosporium provided an effective decolourization of direct dye wastewater model, reaching about 45% decolourization in only 1 day of treatment, and about 90% decolourization within 7 days, whilst P. ostreatus was able to decolorize and detoxify acid dye wastewater model providing 40% decolourization in only 1 day, and 60% in 7 days. P. ostreatus growth conditions that induce laccase production (up to 130,000 U/l) were identified, and extra-cellular enzyme mixtures, with known laccase isoenzyme composition, were produced and used in wastewater models decolourization. The mixtures decolorized and detoxified the acid dye wastewater model, suggesting laccases as the main agents of wastewater decolourization by P. ostreatus. A laccase mixture was immobilized by entrapment in Cu-alginate beads, and the immobilized enzymes were shown to be effective in batch decolourization, even after 15 stepwise additions of dye for a total exposure of about 1 month.  相似文献   

5.
6.
Industrial Dye Decolorization by Laccases from Ligninolytic Fungi   总被引:14,自引:0,他引:14  
White-rot fungi were studied for the decolorization of 23 industrial dyes. Laccase, manganese peroxidase, lignin peroxidase, and aryl alcohol oxidase activities were determined in crude extracts from solid-state cultures of 16 different fungal strains grown on whole oats. All Pleurotus ostreatus strains exhibited high laccase and manganese peroxidase activity, but highest laccase volumetric activity was found in Trametes hispida. Solid-state culture on whole oats showed higher laccase and manganese peroxidase activities compared with growth in a complex liquid medium. Only laccase activity correlated with the decolorization activity of the crude extracts. Two laccase isoenzymes from Trametes hispida were purified, and their decolorization activity was characterized. Received: 26 May 1998 / Accepted: 7 August 1998  相似文献   

7.
Aims:  To select Trichoderma strains for enhanced laccase production in Pleurotus ostreatus or Agaricus bisporus cultures.
Methods and Results:  Laccase production by P. ostreatus and A. bisporus was evaluated in liquid (axenic) and solid (dual cultures) malt extract medium. Oxidation of ABTS, DMP and syringaldazine was evaluated in order to assess the potential of Trichoderma strains to enhance laccase production by basidiomycetes. Selected Pleurotus–Trichoderma interactions yielded higher increases in laccase volumetric activity and an additional laccase isoform was produced. By contrast, Agaricus–Trichoderma interactions lead to smaller increases on laccase volumetric activity, probably as result of repression (or degradation) towards one of the laccases isoforms.
Conclusions:  The strains of P. ostreatus and A. bisporus assessed in this work showed good potential as laccase producers. The Trichoderma -mediated biological stimulation of laccase production by P. ostreatus and A. bisporus is relevant in order to develop highly productive processes.
Significance and Impact of the Study:  Extracellular laccases from basidiomycetes are produced only in small amounts. It is therefore important to increase process productivity for potential industrial applications. The results from this study enable the selection Trichoderma strains capable of increasing laccase production by P. ostreatus or A. bisporus in dual cultures.  相似文献   

8.
The production of laccase in liquid cultures of the white-rot fungusPleurotus ostreatus was highly variable. During the first days of cultivation, the relative variability was as high as 80–100% and it decreased to 30% in the course of cultivation. The main source of variability was assumed to be the independent development of enzyme activity in individual cultures. Cultures with high laccase production showed also high production of the other ligninolytic enzyme—Mn-dependent peroxidase. The variability was probably due to the source of inoculum, deactivation of the enzyme in culture liquid and genetic variations among the cultures. Variability of laccase activities was lower during solid-state fermentation on wheat straw and during the growth in nonsterile soil.  相似文献   

9.
Aims: To achieve high laccase production from Pleurotus ostreatus in a bench top bioreactor and to utilize the enzyme for determination of the total antioxidant concentration (TAC) of human plasma. Methods and Results: Laccase production by P. ostreatus studied in a benchtop bioreactor was as high as, 874·0 U ml?1 in presence of copper sulfate. The enzyme was used to replace metmyoglobin and hydrogen peroxide for the estimation of TAC in human plasma. The trolox equivalent antioxidant concentrations determined by the laccase‐based method and metmyoglobin method ranged from 1·63 ± 0·011 to 1·80 ± 0·006 mmol l?1 and from 1·41 ± 0·004 to 1·51 ± 0·008 mmol l?1 plasma, respectively. Conclusions: Pleurotus ostreatus produced high amount of extracellular laccase in a benchtop bioreactor. The enzyme can be used to assay TAC of blood plasma without the interference encountered with the hydrogen peroxide and metmyoglobin mediated assay method. Significance and Impact of the Study: Laccase production by P. ostreatus obtained in this study was the highest among all reported laccase producing white‐rot fungi. Moreover, an accurate laccase‐based assay method was developed for detection of TAC in human plasma.  相似文献   

10.
The enzyme production of the white‐rot fungus, the edible mushroom Pleurotus ostreatus, was determined in shaken culture media containing extracts of agro‐industrial wastes (tomato, potato and pepper residues) as an unique carbon source. The activity of β‐glucosidase, xylanase, laccase as well as manganese‐dependent and independent peroxidases was measured at 0, 3.5, 7.0, 10.5, 14.0, 17.5, 21.0, 24.5, 28.0 and 31.5 days of cultivation. A spectral mapping technique and non‐linear mapping were employed for the calculation of the relationships among the fermentation parameters, such as fermentation time, enzyme activity and selectivity of enzyme production. It was established that P. ostreatus produced β‐glucosidase, xylanase, laccase, manganese‐dependent and independent peroxidases in each culture medium and that the enzyme activities were higher in cultures containing agro‐industrial wastes than in the control containing glucose as a carbon source. The spectral mapping technique allowed demonstrating that the enzyme activities were the highest in the culture completed with pepper extract followed by cultures containing potato and tomato extracts. The differences among the selectivity of the enzyme activities were negligible up to 21.0 days of fermentation and reached the maximum at the end of the fermentation process. The production of laccase as well as manganese‐dependent and independent peroxidases showed similar patterns while the selectivity patterns of xylanase and β‐galactoside production were different. In addition, it became evident that the agro‐industrial wastes influenced the enzyme production in a distinct way.  相似文献   

11.
A strain of Pleurotus ostreatus was grown in tomato pomace as sole carbon source for production of laccase. The culture of P. ostreatus revealed a peak of laccase activity (147 U/L of fermentation broth) on the 4th day of culture with a specific activity of 2.8 U/mg protein. Differential chromatographic behaviour of laccase was investigated on affinity chromatographic matrices containing either urea, acetamide, ethanolamine or IDA as affinity ligands. Laccase exhibited retention on such affinity matrices and it was purified on a Sepharose 6B—BDGE—urea column with final enzyme recoveries of about 60%, specific activity of 6.0 and 18.0 U/mg protein and purification factors in the range of 14–46. It was also possible to demonstrate that metal-free laccase did not adsorb to Sepharose 6B—BDGE—urea column which suggests that adsorption of native laccase on this affinity matrix was apparently due to the specific interaction of carbonyl groups available on the matrix with the active site Cu (II) ions of laccase. The kinetic parameters (V max, K m , K cat, and K cat/K m ) of the purified enzyme for several substrates were determined as well as laccase stability and optimum pH and temperature of enzyme activity. This is the first report describing the production of laccase from P. ostreatus grown on tomato pomace and purification of this enzyme based on affinity matrix containing urea as affinity ligand.  相似文献   

12.
The exploration of seven physiologically different white rot fungi potential to produce cellulase, xylanase, laccase, and manganese peroxidase (MnP) showed that the enzyme yield and their ratio in enzyme preparations significantly depends on the fungus species, lignocellulosic growth substrate, and cultivation method. The fruit residues were appropriate growth substrates for the production of hydrolytic enzymes and laccase. The highest endoglucanase (111 U ml−1) and xylanase (135 U ml−1) activities were revealed in submerged fermentation (SF) of banana peels by Pycnoporus coccineus. In the same cultivation conditions Cerrena maxima accumulated the highest level of laccase activity (7,620 U l−1). The lignified materials (wheat straw and tree leaves) appeared to be appropriate for the MnP secretion by majority basidiomycetes. With few exceptions, SF favored to hydrolases and laccase production by fungi tested whereas SSF was appropriate for the MnP accumulation. Thus, the Coriolopsis polyzona hydrolases activity increased more than threefold, while laccase yield increased 15-fold when tree leaves were undergone to SF instead SSF. The supplementation of nitrogen to the control medium seemed to have a negative effect on all enzyme production in SSF of wheat straw and tree leaves by Pleurotus ostreatus. In SF peptone and ammonium containing salts significantly increased C. polyzona and Trametes versicolor hydrolases and laccase yields. However, in most cases the supplementation of media with additional nitrogen lowered the fungi specific enzyme activities. Especially strong repression of T. versicolor MnP production was revealed.  相似文献   

13.
Liu HQ  Feng Y  Zhao DQ  Jiang JX 《Biodegradation》2012,23(3):465-472
Four fungal strains—Trichoderma viride, Aspergillus niger, Trichoderma koningii, and Trichoderma reesei—were selected for cellulase production using furfural residues and microcrystalline cellulose (MCC) as the substrates. The filter paper activity (FPA) of the supernatant from each fungus was measured, and the performance of the enzymes from different fungal strains was compared. Moreover, the individual activities of the three components of the cellulase system, i.e., β-glucosidase, endoglucanase, and exoglucanase were evaluated. T. koningii showed the highest activity (27.81 FPU/ml) on furfural residues, while T. viride showed an activity of 21.61 FPU/ml on MCC. The FPA of the crude enzyme supernatant from T. koningii was 30% higher on furfural residues than on MCC. T. koningii and T. viride exhibited high stability and productivity and were chosen for cellulases production. The crystallinity index (CrI) of the furfural residues varied after digested by the fungi. The results indicated differences in the functioning of the cellulase system from each fungus. In the case of T. koningii, T. reesei and T. viride, furfural residues supported a better environment for cellulase production than MCC. Moreover, the CrI of the furfural residues decreased, indicating that this material was largely digested by the fungi. Thus, our results suggest that it may be possible to use the cellulases produced from these fungi for the simultaneous saccharification and fermentation of lignocellulosic materials in ethanol production.  相似文献   

14.
Laccase is a widespread group of multi-copper enzymes which can catalyze the oxidation of a variety of organic compounds, with concomitant reduction of molecular oxygen to water. It has a wide application in industrial processes, particularly in renewable bio-energy industry. In this study, Pleurotus ostreatus strain 10969 with high yield of laccase, previously isolated from edible fungus growing on Juncao, was applied for optimization of fermentation media and growth parameters for the maximal enzyme production through response surface methodology and further characterization of the laccase activity. The results show that glucose and Mg2+ are the key ingredients for laccase production with the optimum concentration of 0.0988 g/mL and 7.3 mmol/L respectively. Compared to the initial medium, the highest laccase yield observed is approximately increased by 2.5 times under the optimized conditions. Extracellular laccase was then purified and its characters were analyzed. The molecular weight of the laccase is about 40 kDa, and the optimum pH and temperature for its activity is 4.0 and 50 °C with the corresponding Km and Vmax of 0.31 mmol/L and 303.25 mmol/min respectively. DTT, β-mercaptoethanol and NaN3 nearly inhibit all activity of the laccase, as well as the metal ions especially Ag+. In summary, our results will facilitate the utilization of plant lignin in biomass energy industry.  相似文献   

15.
Pellet size of white rot fungus, Pleurotus ostreatus may affect the secretion of its degradative enzymes and accompanying biodegrading capability, but could be controlled by several physical culture conditions in liquid culture. The pellet size of P. ostreatus was affected by the volume of inoculum, flask, and medium, but the agitation speed was the most important control factor. At the lower agitation speed of 100 rpm, the large pellets were formed and the laccase activity was higher than that of small pelleted culture at 150 rpm, which might be due to loose intrapellet structure. However, the biodegradation rates of benzylbutylphthalate and dimethylphthalate were higher in the small pelleted culture, which indicated the involvement of other degradative enzyme rather than laccase. The activity of esterase which catalyzes the nonphenolic compounds before the reaction of ligninolytic enzymes was higher in the small pelleted culture, and coincided with the degradation pattern of phthalates. This study suggests the optimization of pellet morphology and subsequent secretion of degradative enzymes is necessary for the efficient removal of recalcitrants by white rot fungi.  相似文献   

16.
Lentinula edodes (Berk.) Pegler was cultivated in liquid media containing malt and yeast extract. Extracellular laccase activity, measured in the culture fluids, was 5–18 times higher in cultures incubated for 29 days than in cultures incubated for 24 days. The addition of water-soluble lignin derivatives or Trichoderma sp. in cultures of L. edodes incubated for 11 days increased laccase activity 3- to 20 fold. The higher response was obtained with live mycelium of Trichoderma sp., but cell-free culture fluids of Trichoderma sp. in pure cultures were also effective. Trichoderma sp. induced changes in the laccase isoenzyme pattern as a result of the alteration of laccases secreted by L. edodes and not the induction of new isoforms. Received: 3 November 1997 /  Received revision: 19 January 1998 /  Accepted: 24 January 1998  相似文献   

17.
A solid‐state fermentation (SSF) system for production of an industrially important enzyme laccase by Pleurotus ostreatus was developed by using potato dextrose yeast extract medium and polyurethane foam as a supporting material. The maximum laccase production in the SSF system was as high as 3×105 U/L. Addition of inducers, such as copper and ferulic acid, further enhanced the laccase production in SSF. Moreover, the time required for the maximum laccase production was reduced to 6 days compared to 10 days reported earlier. The improvement achieved by the SSF system was investigated by comparing it to a submerged fermentation system (SmF), both experimentally and by using a standard theoretical model along with a parameter sensitivity analysis. Laccase production in SSF was found to be twice of that in SmF. One of the main reasons for higher laccase production in SSF compared to SmF was possibly due to the presence of higher proteolytic activity in SmF. Strong proteolytic activity in SmF presumably caused subsequent laccase degradation, which lowered the ultimate laccase production in SmF compared to SSF.  相似文献   

18.
Summary The effect of various carbon and nitrogen sources on laccase, manganese-dependent peroxidase (MnP), and peroxidase production by two strains of Pleurotus ostreatus was investigated. The maximal laccase yield of P. ostreatus 98 and P. ostreatus 108 varied depending upon the carbon source from 5 to 62 U l−1 and from 55 to 390 U l−1, respectively. The highest MnP and peroxidase activities were revealed in medium supplemented by xylan. Laccase, MnP, and peroxidase activities of mushrooms decreased with supplementation of defined medium by inorganic nitrogen sources. Peptone followed by casein hydrolysate appeared to be the best nitrogen sources for laccase accumulation by both fungi. However, their positive effects on enzyme accumulation were due to a higher biomass production. The secretion of MnP and peroxidase by P. ostreatus 108 was stimulated with supplementation of casein hydrolysate to the control medium since the specific MnP and peroxidase activities increased 15-fold and 3.5-fold, respectively.  相似文献   

19.
《Process Biochemistry》2007,42(10):1429-1435
In this study, decolorization of Remazol Brillant Blue Royal (RBBR) and Drimaren Blue CL-BR (DB) was investigated using three white rot fungi named as Pleurotus ostreatus (P. ostreatus), Coriolus versicolor (C. versicolor) and Funalia trogii (F. trogii). Decolorization studies were continued for 48 h under static conditions at 30 °C and pH 5.0. The degree of pH, dry mycelium weight (DMW), dye concentration, laccase activity and protein content were analyzed; the enzyme responsible for decolorization was detected for both dyes. Maximum and minimum decolorizations were obtained by F. trogii and P. ostreatus, respectively. Both dyes at all concentrations were found to be toxic for P. ostreatus growth, whereas only DB above 60 mg/L was found to be toxic for C. versicolor growth. Maximum and minimum laccase activities were detected in decolorization media of F. trogii and P. ostreatus, respectively. Results of activity staining following SDS-PAGE showed that laccase is the only enzyme that is responsible for decolorization of DB and RBBR.  相似文献   

20.

Aims

To investigate the effect of support and growth medium (GM) on Pleurotus ostreatus biofilm production, specific metabolic activity (SMA) and ultrastructure.

Methods and Results

Biofilms were developed on membranes covering a broad range of surface properties and, due to the applicative implications of mixed biofilms, on standard bacterial GM in stationary and shaken culture. Hydrophilic (glass fibre, Duran glass and hydroxyapatite) and mild hydrophobic (polyurethane, stainless steel, polycarbonate, nylon) supports were more adequate for biofilm attachment than the hydrophobic Teflon. Among the GM, sucrose–asparagine (SA) was more conducive to biofilm production than Luria–Bertani and M9. GM was more influential than support type on biofilm ultrastructure, and a high compactness was evident in biofilms developed on SA. Biofilms on Duran glass were more efficient than planktonic cultures in olive‐mill wastewater treatment.

Conclusions

The main effects of support and GM variables and their binary interactions on both biofilm production and SMA were all highly significant (P < 0·001): thus, the magnitude of the effect of each variable strongly depended on the level of the other one.

Significance and Impact of the Study

There is a lack of basic information regarding physiology and ultrastructure of P. ostreatus biofilms. To our knowledge, this is the first attempt to fill this gap, thus representing a basis for future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号