首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among 39 fungal species and one variety belonging to 16 genera isolated from 116 healthy tomato fruits collected from markets in Assiut, Egypt, during 1994,Aspergillus niger was found to be the most prevalent, being isolated from 84.6% of the samples. Of 11 species recovered from 156 diseased tomatoes,Alternaria alternata, Rhizopus stolonifer andA. niger were the most common and isolated from 52.7%, 35.9% and 25.0% of the samples, respectively. Experiments for comparison of the effects of medium containing tomato juice with synthetic medium on the mycelial growth of nine fungal species indicated that, the tomato juice medium was more suitable for growth of all fungal species. The effect of five commercial fungicides and sodium hypochlorite when applied as post-harvest dips after inoculation was studied in laboratory againstA. alternata, A. niger andR. stolonifer. At 10 and 100 µg ml–1, neither of the fungicide caused a noticeable inhibition ofAlternaria rot. At 1000 µg ml–1 benlate, rovral and sumisclex completely preventedAlternaria andAspergillus rot, whereas cuprosan and ridomil were ineffective against rotting caused byA. niger. Rhizopus rot development was inhibited by over 50% with one treatment only (rovral at 1000 µg ml–1). Sodium hypochlorite has good curative properties against fruit rots especially those caused byA. alternata andA. niger.  相似文献   

2.
The potential of using an antagonistic yeast alone or in combination with microwave treatment for controlling blue mould rot of jujube fruit, and its effect on postharvest quality of fruit, was investigated. The results showed that the growth of Penicillium citrinum was completely inhibited by a 2450‐MHz microwave heating for 2 or more minutes in vitro. The population density of P. citrinum in surface wounds of fruit treated with microwave treatment for 2–3 min was significantly lower than that of controls. When tested on jujube fruit, antagonistic yeast or microwave treatment, as stand‐alone treatment, the disease incidence of infected wounds was reduced from 100% to 45.0% and 36.0%, and lesion diameters were reduced from 1.92 cm to 1.50 cm and 1.38 cm, respectively. However, in fruit treated with a combination of Metschnikowia pulcherrima and microwave treatment, the disease incidence of infected wounds and lesion diameters was only 21.0% and 1.00 cm, respectively. The natural decay incidence on jujube fruit treated with the combination of microwave treatment and M. pulcherrima was 6.2% after storage at 2 ± 1°C for 45 days and at 22°C for 7 days. None of the treatments impaired quality parameters of fruits. Thus, the combination of microwave treatment and M. pulcherrima could provide an alternative to synthetic fungicides for controlling postharvest blue mould rot of jujube fruit.  相似文献   

3.
The biocontrol activity of Rhodotorula glutinis on gray mold decay and blue mold decay of apple caused by Botrytis cinerea and Penicillium expansum, respectively, was investigated, as well as its effects on postharvest quality of apple fruits. The results show there was a significant negative correlation between concentrations of the yeast cells and the disease incidence of the pathogens. The higher concentration of the R. glutinis, the better effect of the biocontrol capacity. At concentrations of R. glutinis 1 × 108 CFU ml?1, the amount of gray mold decay was completely inhibited after 5 days incubation at 20 °C, after challenge with B. cinerea spores suspension of 1 × 105 spores ml?1; While the blue mold decay was completely inhibited at concentrations of 5 × 108 CFU ml?1, at challenged with P. expansum spores suspension of 5 × 104 spores ml?1. These results demonstrated that the efficacy of R. glutinis in controlling of gray mold decay of apples was better than the efficacy of controlling blue mold. R. glutinis within inoculated wounds on apples increased in numbers at 20 °C from an initial level of 9.5 × 105 CFU per wound to 2.24 × 107 CFU at 20 °C after 1 day. The highest population of the yeast was recovered 4 days after inoculation, the yeast population in wounds increased by 56.9 times. After that, the population of the yeast began to decline very slowly. R. glutinis significantly reduced the incidence of natural infections on intact fruit from 75% in the control fruit to 28.3% after 5 days at 20 °C, and from 58.3 to 6.7% after 30 days at 4 °C followed by 4 days at 20 °C. R. glutinis treatment had no deleterious effect on quality parameters after 5 days at 20 °C or after 30 days at 4 °C followed by 4 days at 20 °C.  相似文献   

4.

Aims

This study aimed to investigate the antifungal mechanism of carvacrol and eugenol to inhibit Rhizopus stolonifer and the control of postharvest soft rot decay in peaches.

Methods and Results

To investigate the antifungal mechanism, the effects of carvacrol and eugenol on the mycelium growth, leakages of cytoplasmic contents, mycelium morphology, cell membrane and membrane composition of R. stolonifer were studied. Carvacrol and eugenol both exhibited dose‐dependent antifungal activity against R. stolonifer, carvacrol at a concentration of 2 μl per plant and eugenol at a concentration of 4 μl per plant inhibited fungal growth completely. The two essential oils (EOs) increased cell membrane penetrability and caused the leakage of cytoplasm, nucleic acid and protein content. The observation using scanning electron microscopy and fluorescent microscopy showed modification of the hyphal morphology and breakage of the cell plasma membrane. Decreased ergosterol contents confirmed that the two EOs could destroy the membrane of R. stolonifer. For the in vivo test, the inhibition of soft rot disease and the induction of defence‐related enzymes were investigated. Carvacrol and eugenol significantly reduced the incidence and severity of soft rot decay in inoculated peaches. The best treatments for controlling soft rot decay were obtained at 0·5 μl l?1 for carvacrol and 1 μl l?1 for eugenol. The activities of defence‐related enzymes in peaches were also enhanced by fumigation with two EOs.

Conclusion

This study showed that carvacrol and eugenol could effectively inhibit the growth of R. stolonifer in vitro and successfully control the incidence of soft rot decay in honey peaches.

Significance and Impact of the Study

The above findings may be the main antifungal mechanism of carvacrol and eugenol on R. stolonifer. Furthermore, carvacrol and eugenol are helpful for their commercial application on the preservation of fresh fruit.  相似文献   

5.
The effect of the yeast antagonist Pichia membranaefaciens for control of green mould decay caused by Penicillium citrinum or Verticicladiella abietina and natural decay in postharvest Chinese bayberries (Myrica rubra Seib & Zucc.), and the possible mechanisms were investigated. The results showed that 1 × 109 colony‐forming units (CFU)/ml of washed cell suspensions of the yeast provided better control of green mould decay than yeast in culture broth at the same concentration. Treatment with cell‐free culture filtrates or autoclaved cell cultures had little effect on disease incidence. The concentration of a washed cell suspension of P. membranaefaciens had a significant effect on efficacy in controlling disease incidence. At a concentration range from 1 × 106 to 1 × 109 CFU/ml, the higher the concentration of the antagonist, the lower was the incidence of the disease. In the inoculated wounds of Chinese bayberries, populations of P. membranaefaciens increased by approximately 145‐ and 41‐fold, respectively, after incubation at 20°C for 2 day or at 1°C for 8 day. P. membranaefaciens significantly induced activities of two defence‐related enzymes chitinase and β‐1, 3‐glucanase in Chinese bayberries. The in vitro experiment showed that spore germination and germ tube elongation of the two pathogens were markedly inhibited by washed cell suspensions of P. membranaefaciens. In addition, P. membranaefaciens significantly reduced natural decay in Chinese bayberries. These results indicate that P. membranaefaciens can effectively reduce fruit decay possibly by directly inhibiting pathogen growth and indirectly by inducing disease resistance. Thus, we suggest that P. membranaefaciens has potential as a biocontrol agent to control fruit decay in Chinese bayberries during postharvest storage.  相似文献   

6.
Decolourization of Direct Red 80 (DR-80) by the white rot fungus Phanerochaete chrysosporium MTCC 787 was investigated employing sequential design of experiments. Media components for growing the white rot fungus were first screened using Plackett-Burman design and then optimized using response surface methodology (RSM), which resulted in enhancement in the efficiency of dye removal by the fungus. For determining the effect of media constituents on the dye removal, both percent dye decolourization and specific dye removal due to maximum enzyme activity were chosen as the responses from the experiments, and the media constituents glucose, veratryl alcohol, KH2PO4, CaCl2 and MgSO4 were screened to be the most effective with P values less than 0.05. Central composite design (CCD) followed by RSM in the optimization study revealed the following optimum combinations of the screened media constituents: glucose, 11.9 g l−1; veratryl alcohol, 12.03 mM; KH2PO4, 23.08 g l−1; CaCl2, 2.4 g l−1; MgSO4, 10.47 g l−1. At the optimum settings of the media constituents, complete dye decolourization (100% removal efficiency) and a maximum specific dye removal due to lignin peroxidase enzyme of 0.24 mg U−1 by the white rot fungus were observed.  相似文献   

7.
1‐Methylcyclopropene (1‐MCP, 1 μl/L) and 1 × minimum fungicidal concentration (MFC) citral alone and in combination were used to treat on postharvest tomato fruits to investigate their influence on disease incidence and postharvest quality during fruit storage, which were stored at 90%–95% relative humidity and 25 ± 2°C. Weight loss, pH, hue angle (Hue°), total soluble solid (TSS), ascorbic acid content, firmness and antioxidant enzyme activities were evaluated after each storage period. 1 μl/L 1‐MCP or 1 × MFC citral reduced weight loss, retarded peel colour changes and retained postharvest fruit quality. 1 μl/L 1‐MCP + 1 × MFC citral could better maintain firmness and ascorbic acid content and increase antioxidant enzyme activities, compared to other treatments. Disease incidence of tomato fruit was significantly decreased, and spore germination and mycelia growth of Botrytis cinerea were suppressed by the combined treatment with 1 μl/L 1‐MCP and 1 × MFC citral. These results indicate that the combined treatment could effectively delay postharvest tomato fruits senescence and inhibit postharvest pathogens in vitro.  相似文献   

8.
Using nematophagous fungi for the biological control of animal parasitic nematodes will become one of the most promising strategies in the search for alternative chemical drugs. The purpose of this study was to check the in vitro activity of four anthelmintics, four chemical fungicides and two antifungal drugs on the spore germination of nematophagous fungi: Duddingtonia flagrans (SF170), Arthrobotrys oligospora (447), Arthrobotrys superba (435) and Arthrobotrys sp. (PS011). A modified 24-well cell culture plate assay was conducted to evaluate the susceptibility of nematophagous fungi against drugs tested by calculating the effective middle concentrations (EC50) of each tested drug to inhibit the germination of fungal spores. EC50 ranged between 0·7 and 47·2 μg ml−1 for fenbendazole, thiabendazole and ivermectin, except levamisole (546·5–4057·8 μg ml−1). EC50 of tested fungicides was 0·6–2·3 μg ml−1 for carbendazim, 55·9–247·4 μg ml−1 for metalaxyl, 24·4–45·2 μg ml−1 for difenoconazole, and 555·9–1438·3 μg ml−1 for pentachloronitrobenzene (PCNB). EC50 of two antifungal drugs was 0·03–3·4 μg ml−1 for amphotericin B and 0·3–10·9 μg ml−1 for ketoconazole. The results showed that 10 tested drugs, except for levamisole and PCNB, had in vitro inhibitory effects on nematophagous fungi. The chlamydospores of Dflagrans had the highest sensitivity to nine tested drugs, except for ketoconazole.  相似文献   

9.
Alternatives to hypochlorous acid and fungicides are needed for treatment of fruit and fruit-handling facilities. Chlorine dioxide was evaluated and found effective against common postharvest decay fungi and against filamentous fungi occurring on fruit packinghouse surfaces. In vitro tests with conidial or sporangiospore suspensions of Botrytis cinerea, Penicillium expansum, Mucor piriformis, and Cryptosporiopsis perennans demonstrated >99% spore mortality within 1 min when the fungi were exposed to aqueous chlorine dioxide at 3 or 5 μg · ml-1. Longer exposure times were necessary to achieve similar spore mortalities with 1 μg · ml-1. Of the fungi tested, B. cinerea and P. expansum were the least sensitive to ClO2. In comparison with the number recovered from untreated control areas, the number of filamentous fungi recovered was significantly lower in swipe tests from hard surfaces such as belts and pads in a commercial apple and pear packinghouse after treatment of surfaces with a 14.0- to 18.0-μg · ml-1 ClO2 foam formulation. Chlorine dioxide has desirable properties as a sanitizing agent for postharvest decay management when residues of postharvest fungicides are not desired or allowed.  相似文献   

10.
Aims: To investigate the effect of tea polyphenol (TP) and Candida ernobii alone or in combination against postharvest disease (Diplodia natalensis) in citrus fruit and to evaluate the possible mechanisms involved. Methods and Results: TP at concentrations of 0·1%, 0·5% and 1·0% alone, or in combination with C. ernobii (1 × 106 CFU ml?1), showed a lower infection rate of stem‐end rot. TP at the concentration of 0·5% or above significantly inhibited the spore germination of D. natalensis. TP at the concentration of 1·0% showed inhibitary ability on mycelium growth of D. natalensis. The addition of TP did not affect the growth of C. ernobii in vitro and significantly increased the population of C. ernobii in vivo. Conclusions: TP exhibited an inhibitory effect against D. natalensis and improved the biocontrol efficacy of C. ernobii. It was direct because of the inhibitory effects of TP on spore germination and mycelial growth of D. natalensis in vitro and indirect because of the increased populations of C. ernobii in vivo. Significance and Impact of the Study: The results suggested that TP alone or in combination with biocontrol agents has great potential in commercial management of postharvest diseases in fruits.  相似文献   

11.
Carbon dioxide (CO2) concentration in greenhouses is sub-optimal for vegetable production. Many techniques have been used to increase CO2 concentration in greenhouses but most of them are expensive with certain limitations and drawbacks. We adopted a new strategy to elevate CO2 concentration in the greenhouse throughout the day via crop residues and animal manure composting (CRAM). During the whole cultivation period, CRAM-treated greenhouse had doubled CO2 concentration which significantly increased the yield of cherry tomatoes (Solanum lycopersicum L.), i.e., up to 38%. The influence of CRAM procedure on cherry tomato quality was also investigated and the concentrations of total soluble solids (TSS) and soluble sugar were found to be significantly higher in cherry tomatoes grown under composting greenhouse than that of non-composting greenhouse. Additionally, CRAM-CO2 enrichment also resulted in increased concentrations of ascorbic acid (Vitamin C) and titrate acid as compared to control. In contrast, the concentration of nitrate was considerably decreased in cherry tomato grown under CO2 enriched condition than that of control. The increase in active oxygen metabolisms such as POD, CAT and SOD while a decrease in MDA, as well as APX was observed for cherry tomatoes grown under CO2 enriched condition. Hence, CO2 fertilization by using CRAM in greenhouse significantly improved quality and increased the yield of cherry tomatoes.  相似文献   

12.
The objectives of this work were to assess the optimum conditions for induction of acid tolerance in the marine yeast Rhodosporidium paludigenum and evaluate the biocontrol activity of non-adapted and acid-adapted yeasts in controlling apple blue mold caused by Penicillium expansum. R. paludigenum grown in malic and lactic acid treatments were stimulated after 12 h incubation. Moreover, medium modified with malic and lactic acid significantly enhanced the acid tolerance of R. paludigenum (p?<?0.05). In acid tolerance response test, the highest viability of R. paludigenum was obtained at initial pH of 5.5 in the NYDB medium modified with malic acid (91.6 %). In addition, all R. paludigenum treatments significantly reduced the disease incidences and lesion diameters of blue mold in apples. Furthermore, there was no significant difference between acid-adapted and unadapted yeasts in the apple wounds after 48 h dynamics. Acid stress improved R. paludigenum viability under acidic conditions. However, there was no significant difference between acid-adapted and unadapted yeasts in controlling P. expansum on apple fruit (p?<?0.05). These results indicate the potential for maintaining the survival level of biocontrol agents by physiological inducement strategy.  相似文献   

13.
Zhao  Lina  Wang  Yuanjian  Dhanasekaran  Solairaj  Guo  Zhipeng  Chen  Shangjian  Zhang  Xiaoyun  Zhang  Hongyin 《BioControl》2021,66(4):547-558

Blue mold decay is the one of most important postharvest disease of apples caused by the fungus, Penicillium expansum. This study aimed to investigate the biocontrol efficacy of the yeast, Wickerhamomyces anomalus, on postharvest blue mold decay of apples and the relative defense mechanisms. The results indicated that W. anomalus could significantly reduce the blue mold decay of apples, and the maximum inhibition was obtained when the concentration of W. anomalus was 1?×?108 cells ml?1. Furthermore, W. anomalus significantly reduced the fruit decay under ambient conditions, without generating any change in fruit quality. In vitro experiments showed that W. anomalus greatly inhibited the spore germination and germ tube elongation of P. expansum. Besides, its ease of adaptation, stable growth and potential colonization of in apple wounds or surfaces indicated that W. anomalus could compete with P. expansum for nutrients and space, leading to considerable inhibition blue mold decay. W. anomalus significantly induced the activities of polyphenol oxidase (PPO), peroxidase (POD), catalase (CAT), phenylalanine ammonia-lyase (PAL), and ascorbate peroxidase (APX) in apples. Moreover, W. anomalus increased the contents of flavonoid and total phenols. All these results suggested that W. anomalus has potential biocontrol efficacy to control the postharvest blue mold decay of apples

  相似文献   

14.
F. Yildiz    P. Kinay    M. Yildiz    F. Sen    I. Karacali 《Journal of Phytopathology》2005,153(2):94-98
In this study, an integrated approach was evaluated for the control of postharvest decays of mandarin including some pre‐ and post‐harvest treatments under storage conditions. The efficacy of the treatments both as alone and in combination was evaluated during 3 years. Preharvest application of benomyl resulted in significantly less decay of mandarin fruit after storage in 3‐year tests. Calcium chloride (CaCl2), 2,4‐dichlorophenoxyacetic acid (2,4‐D) and gibberellic acid (GA3) as stand‐alone treatments or combinations were not effective in controlling Penicillium and total decay infections on inoculated mandarin. Postharvest application of imazalil (200 μg/ml) in solution heated to 54°C for controlling postharvest green and total decay of mandarin was significantly effective for 3 months under storage conditions. The biocontrol activity of yeast (Metschnikowia pulcherrima) was improved when yeast treatment was combined with imazalil (200 μg/ml) at postharvest. The data suggest that preharvest application of benomyl and postharvest treatments of imazalil, hot water and yeast may reduce postharvest green mould and total decay of mandarin under storage conditions.  相似文献   

15.
The antagonistic effects of yeasts, L1 and L8, isolated from carposphere of ‘Redhaven’ peaches were tested for the first time in the same experiment against three Monilinia species (Monilinia laxa, Monilinia fructicola and Monilinia fructigena) in in vitro and in vivo trials. The two antagonists were selected after preliminary assays for their ability to reduce brown rot in peaches and nectarines, and both were identified by molecular and morphological tools as Aureobasidium pullulans. In in vivo trials, neither the autoclaved cells, nor the sterile culture filtrates of either antagonist showed any significant reduction of rot incidence produced by inocula of the three Monilinia species, while the washed cells of L1 and L8 completely inhibited M. laxa and M. fructicola rots and reduced M. fructigena infections by 70% and 90%, respectively. In other trials, nectarines treated with antagonist cells and inoculated with the pathogens were stored at 0 °C for 21 days, plus 7 days at 20 °C. The low temperature reduced brown rot development, since all fruit were free from disease symptoms on removal from cold storage. However after 7 d at 20 °C, untreated fruit were rotted over 45% depending on the Monilinia species but the antagonists completely inhibited M. laxa and M. fructicola, while M. fructigena infections were reduced by 89.8% and 91.2% by L1 and L8, respectively. For both strains, 108 CFU ml?1 was the most active concentration, although L1 showed good activity at a concentration of 107 CFU ml?1. Isolate L8 at the concentration of 107 CFU ml?1 was ineffective against M. fructicola and M. fructigena, showing no difference between treated fruit and the control, excepting the case of nectarines inoculated with M. laxa, where L8 at the concentration of 107 CFU ml?1 reduced the brown rot infections with respect to the control. The increase in population density of A. pullulans strains L1 and L8 in the wounds of nectarines stored at 0° or 20 °C was low but sufficient to control brown rot. In conclusion, the present preliminary study identified two antagonistic strains of A. pullulans as active ingredients for the development of biofungicides for postharvest application against three Monilinia species that are responsible for high economic losses in stone fruit crops.  相似文献   

16.
Fusarium wilt is caused by the soil-inhabiting fungus Fusarium oxysporum ff. spp. and is one of the most devastating plant diseases, resulting in losses and decreasing the quality and safety of agricultural crops. We recently reported the structures and biochemical properties of two biotin-binding proteins, streptavidin C1 and C2 (isolated from Streptomyces cinnamonensis strain KPP02129). In the present study, the potential of the biotin-binding proteins as antifungal agent for Fusarium wilt pathogens was investigated using recombinant streptavidin C1 and C2. The minimum inhibitory concentration of streptavidin C2 was found to be 16 µg ml–1 for inhibiting the mycelial growth of F. oxysporum f.sp. cucumerinum and F. oxysporum f.sp. lycopersici, while that of streptavidin C1 was found to be 64 µg ml–1. Compared with the nontreated control soil, the population density of F. oxysporum f.sp. lycopersici in the soil was reduced to 49·5% and 39·6% on treatment with streptavidin C1 (500 µg ml–1) and C2 (500 µg ml–1), respectively. A greenhouse experiment revealed that Fusarium wilt of tomato plants was completely inhibited on soil drenching using a 50-ml culture filtrate of the streptavidin-producing strain KPP02129.  相似文献   

17.
18.
The necrotrophic fungus Thanatephorus cucumeris (anamorph Rhizoctonia solani) is among the most important soil‐borne pathogens which causes tomato foot and root rot worldwide. We investigated virulence and genetic relationships among and within different taxonomic groups of R. solani from the tomato‐growing regions in the north‐east of Iran. Characterization of R. solani taxonomic groups revealed that, of 56 isolates, four were AG‐2‐1, 16 were AG‐3 PT, 21 were AG‐4 HG‐I and 15 were AG‐4 HG‐II. Because interprimer binding site (iPBS), which is based on amplification of retrotransposons, is known as novel and powerful DNA fingerprinting technology, we selected four iPBS primers, which can detect polymorphisms of tomato foot root and root rot pathogen, for investigating genotypic variability of the isolates. The iPBS analyses separated various taxonomic groups of R. solani and showed great diversity among the isolates, demonstrating that the R. solani isolates obtained from tomato were not a clonal population. Crop rotation strategies and geographic location seem to be important factors affecting genetic structure of the isolates. Pathogenicity tests on tomato cultivar ‘Mobil’ showed significant differences in the virulence of various isolates. The overall results indicated that isolates of AG‐3 and AG‐4 were more virulent than AG‐2‐1. There was no significant correlation between genetic diversity and virulence of the isolates. This is the first report of R. solani AG‐4 HG‐II, causing tomato foot and root rot. Also, our research is the first in assessment of genetic diversity in fungal populations using iPBS molecular markers.  相似文献   

19.
Aims: Developing new bio‐agents to control plant disease is desirable. Entomopathogenic bacteria Xenorhabdus spp. have potential antimicrobial activity in agriculture. This work was conducted to evaluate the antimicrobial activity of Xenorhabdus bovienii YL002 on plant pathogenic fungi and oomycete in vitro and the efficiency of this strain to reduce the in vivo incidence of grey mould rot on tomato plants caused by Botrytis cinerea and leaf scorch on pepper plants caused by Phytophthora capsici. Methods and Results: The antimicrobial activity of X. bovienii YL002 was firstly determined on in vitro plant pathogenic fungi and oomycete and then on tomato fruits and plants infected with B. cinerea and pepper plants infected with P. capsici. The cell‐free filtrate of X. bovienii YL002 exhibited highest inhibition effects (>98%) on mycelia growth of P. capsici and B. cinerea. The 50% inhibition concentration (EC50) of the methanol‐extracted bioactive compounds (methanol extract) of the cell‐free filtrate against P. capsici and B. cinerea were 164·83 and 42·16 μg ml?1. The methanol extract also had a strong effect on the spore germination of P. capsici and B. cinerea, with a EC50 of 70·38 and 69·33 μg ml?1, respectively. At 1000 μg ml?1, the methanol extract showed a therapeutic effect of 70·82% and a protective effect of 77·4% against B. cinerea on tomato plants compared with the control. The methanol extract also showed potent effect against P. capsici, with a therapeutic effect of 68·14% and a protective effect of 65·46% on pepper plants compared with the control. Conclusions: Xenorhabdus bovienii YL002 produces antimicrobial compounds with strong activity on plant pathogenic fungi and oomycete and has the potential for controlling grey mould rot of tomato plants and leaf scorch of pepper and could be useful in integrated control against diverse plant pathogenic fungi and oomycete. Significance and Impact of the Study: This study showed the potential that X. bovienii YL002 can be used to control the grey mould rot caused by B. cinerea on tomato plants and leaf scorch caused by P. capsici on pepper plants with the objective to reduce treatments with chemical fungicides.  相似文献   

20.
L. Xu    T. Nonomura    S. Suzuki    Y. Kitagawa    H. Tajima    K. Okada    S. Kusakari    Y. Matsuda    H. Toyoda 《Journal of Phytopathology》2006,154(10):577-586
The pathogenic isolates (Kin2001a, Kin2001b and Kin2003) of Fusarium oxysporum f. sp. radicis‐lycopersici were obtained from hydroponically cultured seedlings of pear tomato (Lycopersicon esculentum var. pyriforme) infected at different times and their pathogenicity examined in an in vitro assay system on cotyledonal seedlings of pear tomato, cherry tomato (L. esculentum var. cerasiforme) and common tomato (L. esculentum). With the in vitro assay, infection and subsequent disease progress could be microscopically observed. Pear and cherry tomatoes suppressed invasion by all isolates at the junctions of epidermal cells along the root, comparable with the resistant cultivars of common tomato. The pathogen entered pear and cherry tomatoes at the tips of lateral roots and tap roots, in contrast to infection of susceptible cultivars of common tomato. In Kin2003‐inoculated roots, the top of the lateral rootlets first became discoloured, followed by the cortical parenchyma, central xylem vessel and finally the crown. This dark‐brown discolouration expanded rapidly and severe rot developed in the discoloured regions. In contrast, the dark‐brown discolouration in Kin2001b‐infected roots expanded into the cortical parenchyma cells abutting the originally infected lateral rootlets and at a much slower rate. Kin2001a was in a new group that entered via the cortical cleavage formed by the emergence of lateral rootlets, in addition to the tips of taproots and lateral roots. In this in vitro assay system, the Japanese pathogenic isolates collected from different districts of Japan were characterized and classified by the mode of host invasion. Of 13 isolates, four were placed with Kin2003, six with Kin2001a and three with Kin2001b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号