首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this review we examine the fascinating array of microbial and enzymatic transformations of ferulic acid. Ferulic acid is an extremely abundant, preformed phenolic aromatic chemical found widely in nature. Ferulic acid is viewed as a commodity scale, renewable chemical feedstock for biocatalytic conversion to other useful aromatic chemicals. Most attention is focused on bioconversions of ferulic acid itself. Topics covered include cinnamoyl side-chain cleavage; nonoxidative decarboxylation; mechanistic details of styrene formation; purification and characterization of ferulic acid decarboxylase; conversion of ferulic acid to vanillin;O-demethylation; and reduction reactions. Biotransformations of vinylgualacol are discussed, and selected biotransformations of vanillic acid including oxidative and nonoxidative decarboxylation are surveyed. Finally, enzymatic oxidative dimerization and polymerization reactions are reviewed.  相似文献   

2.
The initial steps of the anaerobic degradation of trihydroxylated aromatic monomers were investigated in a strain (AG2) isolated on gallic acid and identified as Pelobacter acidigallici. Kinetic studies showed that strain AG2 fermented gallic acid into acetate with a transient accumulation of pyrogallol and phloroglucinol in the medium. In addition phloroglucinol was produced from all other trihydroxylated aromatic monomers and pyrogallol from 2,3,4-trihydroxybenzoate. Although protocatechuate did not support growth of the organism, it was partially decarboxylated by resting cells of strain AG2. Cell free extract of strain AG2 catalysed the oxidation of NADPH in presence of resorcinol, 2,4,6-trihydroxybenzoate and phloroglucinol. However, comparison of activities indicated that the latter was the true physiological electron acceptor. Phloroglucinol and its reduction product dihydrophloroglucinol appeared thus to play a key role in metabolism of trihydroxybenzenes and a unified pathway, involving a decarboxylation of trihydroxybenzoates, a para transhydroxylation of pyrogallol into phloroglucinol and the formation of dihydrophloroglucinol, was proposed.  相似文献   

3.
Aims: The anti‐enterovirus 71 (EV71) activity of six Nepalese plants’ extracts and gallic acid (GA) isolated from Woodfordia fruticosa Kurz (family; Lythaceae) flowers were evaluated in Vero cells. Methods and Results: The anti‐EV71 activity of tested compounds was evaluated by a cytopathic effect reduction method. Our results demonstrated that flowers’ extracts of W. fruticosa exerted strong anti‐EV71 activity, with a 50% inhibitory concentration (IC50) of 1·2 μg ml?1 and no cytotoxicity at a concentration of 100 μg ml?1, and the derived therapeutic index (TI) was more than 83·33. Rivabirin showed no antiviral activity against EV71. Furthermore, GA isolated from W. fruticosa flowers exhibited a higher anti‐EV71 activity than the extract of W. fruticosa flowers, with an IC50 of 0·76 μg ml?1 and no cytotoxicity at a concentration of 100 μg ml?1, and the derived TI was 99·57. Conclusions: This study demonstrated that flower extracts of W. fruticosa possessed anti‐EV71 activity and GA isolated from these flowers showed stronger anti‐EV71 activity than that the extracts. Significance and Impact of the Study: Our results suggest that the GA from W. fruticosa flowers may be used as a potential antiviral agent.  相似文献   

4.
Ferulic acid metabolism was studied in cultures of two micromycetes producing different amounts of phenol oxidases. In cultures of the low phenol oxidase producer Paecilomyces variotii, ferulic acid was decarboxylated to 4-vinylguaiacol, which was converted to vanillin and then either oxidized to vanillic acid or reduced to vanillyl alcohol. Vanillic acid underwent simultaneously an oxidative decarboxylation to methoxyhydroquinone and a nonoxidative decarboxylation to guaiacol. Methoxyhydroquinone and guaiacol were demethylated to yield hydroxyquinol and catechol, respectively. Catechol was hydroxylated to pyrogallol. Degradation of ferulic acid by Paecilomyces variotii proceeded mainly via methoxyhydroquinone. The high phenol oxidase producer Pestalotia palmarum catabolized ferulic acid via 4-vinylguaiacol, vanillin, vanillyl alcohol, vanillic acid, and methoxyhydroquinone. However, the main reactions observed with this fungus involved polymerization reactions.  相似文献   

5.
In the conversion of quinolinic acid to 6-hydroxypicolinic acid by whole cells of Alcaligenes sp. strain UK21, the enzyme reactions involved in the hydroxylation and decarboxylation of quinolinic acid were examined. Quinolinate dehydrogenase, which catalyzes the first step, the hydroxylation of quinolinic acid, was solubilized from a membrane fraction, partially purified, and characterized. The enzyme catalyzed the incorporation of oxygen atoms of H2O into the hydroxyl group. The dehydrogenase hydroxylated quinolinic acid and pyrazine-2,3-dicarboxylic acid to form 6-hydroxyquinolinic acid and 5-hydroxypyrazine-2,3-dicarboxylic acid, respectively. Phenazine methosulfate was the preferred electron acceptor for quinolinate dehydrogenase. 6-Hydroxyquinolinate decarboxylase, catalyzing the nonoxidative decarboxylation of 6-hydroxyquinolinic acid, was purified to homogeneity and characterized. The purified enzyme had a molecular mass of approximately 221 kDa and consisted of six identical subunits. The decarboxylase specifically catalyzed the decarboxylation of 6-hydroxyquinolinic acid to 6-hydroxypicolinic acid, without any co-factors. The N-terminal amino acid sequence was homologous with those of bacterial 4,5-dihydroxyphthalate decarboxylases.  相似文献   

6.
Gallic acid, a polyphenyl class natural product from gallnut and green tea, is known to be antioxidant, anti‐inflammatory and radical scavenger. In this study, we aimed to investigate the possible protective effects of gallic acid on paraoxonase and arylesterase activities in liver exposed to acute alcohol intoxication. Paraoxonase and arylesterase activities in liver tissue and serum aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase levels were measured. Histological investigations were also made. In our study, we observed a significant increase of serum alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase activities, which are indicators of liver damage after acute ethanol consumption. Gallic acid therapy has significantly reduced the increase in these biomarkers, indicating a possible hepatoprotective effect of gallic acid. Ethanol consumption caused a significant decrease in liver paraoxonase activity (P < 0.001). Gallic acid treatment partly restored this decreased paraoxonase activity, which resulted from ethanol administration. A gallic acid dose of 100 mg/kg was observed as highest restoring effect for paraoxonase activity (P < 0.05). The activity of arylesterase was decreased in the ethanol group as compared with the control group, but this was not significant. However, 50 mg/kg of gallic acid treatment restored the loss of this activity due to ethanol exposure (P < 0.001). We observed that gallic acid ameliorates the liver damage caused by excessive alcohol consumption in a dose‐dependent way. Our results in this study showed that gallic acid might have a protective effect against alcoholic liver disease. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A number of thermophilic bacteria capable of utilizing naphthalene as a sole source of carbon were isolated from a high-temperature oilfield in Lithuania. These isolates were able to utilize several other aromatic compounds, such as anthracene, benzene, phenol, benzene-1, 3-diol, protocatechuic acid as well. Thermophilic isolate G27 ascribed to Geobacillus genus was found to have a high aromatic compound degrading capacity. Spectrophotometric determination of enzyme activities in cell-free extracts revealed that the last aromatic ring fission enzyme in naphthalene biotransformation by Geobacillus sp. G27 was inducible via protocatechuate 3, 4-dioxygenase; no protocatechuate 4, 5-dioxygenase, protocatechuate 2, 3-dioxygenase activities were detected. Intermediates such as o-phthalic and protocatechuic acids detected in culture supernatant confirmed that the metabolism of naphthalene by Geobacillus sp. G27 can proceed through protocatechuic acid via ortho-cleavage pathway and thus differs from the pathways known for mesophilic bacteria.  相似文献   

8.
Aims: To isolate a new Halomonas sp. strain capable of degrading tyrosol, a toxic compound present in olive mill wastewater, through the homogentisic acid (HGA) pathway. Methods and Results: A moderately halophilic Gram‐negative bacterium belonging to the Halomonas genus and designated strain TYRC17 was isolated from olive processing effluents. This strain was able to completely degrade tyrosol (2‐(p‐hydroxyphenyl)‐ethanol), a toxic compound found in such effluent. Tyrosol degradation begins by an oxidation to 4‐hydroxyphenylacetic acid (HPA), which is then converted into HGA by an HPA 1‐monooxygenase, while closest Halomonas species degrade tyrosol through 3,4‐dihydroxyphenylacetic acid (DHPA). In the presence of transition metals, HGA underwent a pH‐dependent abiotic conversion into benzoquinone acetic acid, then into 2,5‐dihydroxybenzaldehyde (gentisaldehyde) and pyomelanin, by oxidative decarboxylation and polymerization, respectively. Conclusions: Tyrosol degradation via HGA by the new Halomonas sp. strain TYRC17 was complete in the absence of trace elements. In their presence, HGA was abiotically converted into gentisaldehyde and pyomelanin. Significance and Impact of the Study: This is the first report on tyrosol degradation via the HGA pathway under hypersaline conditions and on the oxidative decarboxylation of HGA into gentisaldehyde. It underlines the importance of the Halomonas genus in the bioremediation of toxic‐contaminated sites.  相似文献   

9.
The nonoxidative decarboxylation of aromatic acids occurs in a range of microbes and is of interest for bioprocessing and metabolic engineering. Although phenolic acid decarboxylases provide useful tools for bioindustrial applications, the molecular bases for how these enzymes function are only beginning to be examined. Here we present the 2.35-Å-resolution X-ray crystal structure of the ferulic acid decarboxylase (FDC1; UbiD) from Saccharomyces cerevisiae. FDC1 shares structural similarity with the UbiD family of enzymes that are involved in ubiquinone biosynthesis. The position of 4-vinylphenol, the product of p-coumaric acid decarboxylation, in the structure identifies a large hydrophobic cavity as the active site. Differences in the β2e-α5 loop of chains in the crystal structure suggest that the conformational flexibility of this loop allows access to the active site. The structure also implicates Glu285 as the general base in the nonoxidative decarboxylation reaction catalyzed by FDC1. Biochemical analysis showed a loss of enzymatic activity in the E285A mutant. Modeling of 3-methoxy-4-hydroxy-5-decaprenylbenzoate, a partial structure of the physiological UbiD substrate, in the binding site suggests that an ∼30-Å-long pocket adjacent to the catalytic site may accommodate the isoprenoid tail of the substrate needed for ubiquinone biosynthesis in yeast. The three-dimensional structure of yeast FDC1 provides a template for guiding protein engineering studies aimed at optimizing the efficiency of aromatic acid decarboxylation reactions in bioindustrial applications.  相似文献   

10.
Hypertension causes cardiac hypertrophy and leads to heart failure. Apoptotic cells are common in hypertensive hearts. Ca2+/calmodulin‐dependent protein kinase II (CaMKII) is associated with apoptosis. We recently demonstrated that gallic acid reduces nitric oxide synthase inhibition‐induced hypertension. Gallic acid is a trihydroxybenzoic acid and has been shown to have beneficial effects, such as anti‐cancer, anti‐calcification and anti‐oxidant activity. The purpose of this study was to determine whether gallic acid regulates cardiac hypertrophy and apoptosis in essential hypertension. Gallic acid significantly lowered systolic and diastolic blood pressure in spontaneously hypertensive rats (SHRs). Wheat germ agglutinin (WGA) and H&E staining revealed that gallic acid reduced cardiac enlargement in SHRs. Gallic acid treatment decreased cardiac hypertrophy marker genes, including atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), in SHRs. The four isoforms, α, β, δ and γ, of CaMKII were increased in SHRs and were significantly reduced by gallic acid administration. Gallic acid reduced cleaved caspase‐3 protein as well as bax, p53 and p300 mRNA levels in SHRs. CaMKII δ overexpression induced bax and p53 expression, which was attenuated by gallic acid treatment in H9c2 cells. Gallic acid treatment reduced DNA fragmentation and the TUNEL positive cells induced by angiotensin II. Taken together, gallic acid could be a novel therapeutic for the treatment of hypertension through suppression of CaMKII δ‐induced apoptosis.  相似文献   

11.
Gallic acid acts as a precursor molecule to synthesize various tannin molecules. These are plant polyphenols and were proved to be good anti-oxidant, anti-cancerous, anti-inflammatory, anti-microbial compounds. In order to fully exploit prominent biological activities of specific tannins and to develop tannin-based new medicines, it is necessary to obtain their pure preparations with an aim of high yield and specificity. In the present study, gallic acid is synthesized by the hydrolysis of tannic acid using a microbial based transformation process. The microorganism was isolated and identified. The ability of the isolated microorganism to covert tannic acid into gallic acid was determined by HPLC and enzyme production.
  • Highlights
  • The present investigation signifies the role of Enterobacter spp. in various processes:

  • ??To synthesize gallic acid (a precursor for food oxidant such as propyl gallate) and a bacteriostatic antibiotic (trimethoprim).

  • ??To protect the environment from tannery’s discharge through the process of biodegradation.

  • ??To reduce the toxicity of tannins in animal feed.

  相似文献   

12.

The biphenyl-degrading Gram-negative bacterium Cupriavidus basilensis (formerly Ralstonia sp.) SBUG 290 uses various aromatic compounds as carbon and energy sources and has a high capacity to transform bisphenol A (BPA), which is a hormonally active substance structurally related to biphenyl. Biphenyl-grown cells initially hydroxylated BPA and converted it to four additional products by using three different transformation pathways: (a) formation of multiple hydroxylated BPA, (b) ring fission, and (c) transamination followed by acetylation or dimerization. Products of the ring fission pathway were non-toxic and all five products exhibited a significantly reduced estrogenic activity compared to BPA. Cell cultivation with phenol and especially in nutrient broth (NB) resulted in a reduced biotransformation rate and lower product quantities, and NB-grown cells did not produce all five products in detectable amounts. Thus, the question arose whether enzymes of the biphenyl degradation pathway are involved in the transformation of BPA and was addressed by proteomic analyses.

  相似文献   

13.
Melon fruit fly, Bactrocera cucurbitae (Coquillett) is an important pest of cucurbits and other vegetable crops. It is not only a serious pest of cucurbit crops but sometimes also attacks non-host plants. In an endeavour to explore secondary metabolites as important and safe means of pest management, we investigated the effects of gallic acid, a phenolic compound, on the growth and development of melon fruit fly, B. cucurbitae. Larval survival and emergence were severely affected by gallic acid treatment. Both decreased in a concentration dependent manner with increase in concentration. Gallic acid-treated larvae took longer duration to pupate and reach the adult stage as compared to control larvae. Inhibitory effects of gallic acid were also observed on larval weight, pupal weight, mean relative growth rate and food assimilated which decreased with treatment. The ability of gallic acid to disrupt the development of B. cucurbitae suggests that the phenolic compound might have caused oxidative stress in the body of the insect.  相似文献   

14.
p‐Coumaric acid decarboxylases (PDCs) catalyze the nonoxidative decarboxylation of hydroxycinnamic acids to generate the corresponding vinyl derivatives. Despite the biotechnological relevance of PDCs in food industry, their catalytic mechanism remains largely unknown. Here, we report insights into the structural basis of catalysis for the homodimeric PDC from Lactobacillus plantarum (LpPDC). The global fold of LpPDC is based on a flattened β‐barrel surrounding an internal cavity. Crystallographic and functional analyses of single‐point mutants of residues located within this cavity have permitted identifying a potential substrate‐binding pocket and also to provide structural evidences for rearrangements of surface loops so that they can modulate the accessibility to the active site. Finally, combination of the structural and functional data with in silico results enables us to propose a two‐step catalytic mechanism for decarboxylation of p‐coumaric acid by PDCs where Glu71 is involved in proton transfer, and Tyr18 and Tyr20 are involved in the proper substrate orientation and in the release of the CO2 product. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The yeast Trichosporon mucoides, grown on either glucose or phenol, was able to transform biphenyl into a variety of mono-, di-, and trihydroxylated derivatives hydroxylated on one or both aromatic rings. While some of these products accumulated in the supernatant as dead end products, the ortho-substituted dihydroxylated biphenyls were substrates for further oxidation and ring fission. These ring fission products were identified by high-performance liquid chromatography, gas chromatography-mass spectrometry, and nuclear magnetic resonance analyses as phenyl derivatives of hydroxymuconic acids and the corresponding pyrones. Seven novel products out of eight resulted from the oxidation and ring fission of 3,4-dihydroxybiphenyl. Using this compound as a substrate, 2-hydroxy-4-phenylmuconic acid, (5-oxo-3-phenyl-2,5-dihydrofuran-2-yl)acetic acid, and 3-phenyl-2-pyrone-6-carboxylic acid were identified. Ring cleavage of 3,4,4′-trihydroxybiphenyl resulted in the formation of [5-oxo-3-(4′-hydroxyphenyl)-2,5-dihydrofuran-2-yl]acetic acid, 4-(4′-hydroxyphenyl)-2-pyrone-6-carboxylic acid, and 3-(4′-hydroxyphenyl)-2-pyrone-6-carboxylic acid. 2,3,4-Trihydroxybiphenyl was oxidized to 2-hydroxy-5-phenylmuconic acid, and 4-phenyl-2-pyrone-6-carboxylic acid was the transformation product of 3,4,5-trihydroxybiphenyl. All these ring fission products were considerably less toxic than the hydroxylated derivatives.  相似文献   

16.
 The glucoamylase gene of the yeast Arxula adeninivorans was expressed in Kluyveromyces lactis by using the GAP promoter from Saccharomyces cerevisiae and a multicopy plasmid vector. The transformants secreted 90.1% of the synthesized glucoamylase into the culture medium. The secreted glucoamylase activities are about 20 times higher in comparison to those of Saccharomyces cerevisiae transformants using the same promoter. Secreted glucoamylase possesses identical N-terminal amino acid sequences to those secreted by A. adeninivorans showing that cleavage of the N-terminal signal peptide takes place at the same site. Biochemical characteristics of glucoamylase expressed by K. lactis and A. adeninivorans are very similar. Received: 12 June 1995/Received revision: 17 July 1995/Accepted: 26 July 1995  相似文献   

17.
Chemiluminescence (CL) from the oxidation of luminol with potassium periodate in strong alkaline solutions was greatly enhanced by the combined effect of gallic acid, acetaldehyde and Mn2+. The CL spectra exhibited only one emission band at 425 nm, indicating 3‐aminophthalate as the emitting species. Various scavengers for superoxide anion, hydroxyl radical and singlet oxygen quenched the CL emission very efficiently (74–100%), suggesting the possible involvement of these reactive oxygen species (ROS) in the CL reactions. It is postulated that oxidation of gallic acid and acetaldehyde by periodate catalyzed by Mn2+ generates these ROS, which then react with luminol to enhance the CL emission. We also found that the enhanced CL emission was strongly inhibited by catecholamines, probably because of their effective scavenging of ROS. Based on this observation, a simple, rapid and sensitive new CL method was developed for the determination of catecholamines. The detection limits (3σ) for dopamine, l‐ dopa, norepinephrine and epinephrine were 0.63, 1.37, 0.56 and 14.3 nmol/L, respectively. The linear range was 1–10 nmol/L; relative standard deviations were 0.71–1.34% for 0.1 µmol/mL catecholamines. This CL method was applied to the determination of catecholamines in pharmaceutical injections with satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The relatively unknown, non-pathogenic, dimorphic, haploid, ascomycetous yeast Arxula adeninivorans exhibits some unusual properties which are of biotechnological interest. The yeast is able to assimilate and ferment many compounds as sole source of carbon and/or nitrogen, it utilises n-alkanes and degrades starch efficiently. A. adeninivorans features such as thermo- and haloresistance as well as the yeast's uncommon growth and secretion behaviour should be especially emphasised. In media containing up to 20% NaCl, A. adeninivorans is able to grow at cultivation temperatures up to 48 °C. Additionally, the dimorphism of the yeast is unusual. Arxula grows at up temperatures of up to 42 °C as budding cells, which turn into mycelia at higher temperatures. This environmentally conditioned dimorphism is reversible and budding is reestablished when the cultivation temperature is decreased below 42 °C. Alteration of morphology correlates with changes in secretion behaviour. Mycelium cultures accumulate two-fold higher protein concentrations and contain two- to five-fold higher glucoamylase and invertase activities in the medium than budding cells. Based on these unusual properties, Arxula adeninivorans is used for heterologous gene expression and as a gene donor to construct more suitable yeasts for biotechnology. For example the Arxula glucoamylase gene was successfully expressed in Saccharomyces cerevisiae and Kluyveromyces lactis. Both transformed yeasts are able to assimilate and ferment starch as carbon source. A transformation system is used for heterologous gene expression which is based on integration of linearised DNA fragments in two to ten copies, e.g. into the 25S rDNA of A. adeninivorans by homologous recombination. The obtained transformants are mitotically stable. The expression of the lacZ gene from E. coli as well as the XylE gene from Pseudomonas putida indicates the suitability of A. adeninivorans as host for heterologous gene expression. Received: 25 February 2000 / Received revision: 8 June 2000 / Accepted: 9 June 2000  相似文献   

19.
Aims: To determine the influence of the flavanol catechin on key metabolic traits for the fermentation performance of Lactobacillus plantarum strain RM71 in different media and to evaluate the ability of this strain to catabolize catechin. Methods and Results: Growth monitoring and time course of sugar consumption data tracking in chemically defined medium (CDM), revealed that growth of Lact. plantarum strain RM71 upon catechin was characterized by a noticeable shorter lag period, outcome of earlier sugar consumption and lactic acid production courses. Catechin gave rise to higher cell densities compared to controls because of an increased extension of sugar utilization. Fermentation of media relevant for practical fermentation processes with Lact. plantarum strain RM71 showed that catechin sped up malic acid decarboxylation, which besides quicker and extended consumption of several sugars, resulted in faster and higher lactic acid production and growth. Spectrophotometric evaluation of catechin by HPLC‐DAD and the lack of catechin concentration‐dependent effects showed that the observed stimulations were uncoupled from catechin catabolism by Lact. plantarum. Conclusions: The flavanol catechin stimulated the growth of Lact. plantarum strain RM71 by promoting quicker sugar consumption, increasing the extension of sugar utilization and stimulating malic acid decarboxylation. These stimulations are uncoupled from catechin catabolism as Lact. plantarum did not catabolize it during fermentation. Significance and Impact of the Study: This study, for the first time, examined the influence of the flavanol catechin on the fermentation performance of a Lact. plantarum strain in several media under different fermentation conditions. The information could be relevant to control the production and obtain high‐quality food products fermented by this micro‐organism.  相似文献   

20.
A novel catabolic transformation of vanillic acid (4-hydroxy-3-methoxybenzoic acid) by microorganisms is reported. Several strains of Bacillus megaterium and a strain of Streptomyces are shown to convert vanillate to guaiacol (o-methoxyphenol) and CO2 by nonoxidative decarboxylation. Use of a modified most-probable-number procedure shows that numerous soils contain countable numbers (10(1) to 10(2) organisms per g of dry soil) of aerobic sporeformers able to convert vanillate to guaiacol. Conversion of vanillate to guaiacol by the microfloras of most-probable-number replicates was used as the criterion for scoring replicates positive or negative. Guaiacol was detected by thin-layer chromatography. These results indicate that the classic separations of catabolic pathways leading to specific ring-fashion substrates such as protocatechuate and catechol are often interconnectable by single enzymatic transformations, usually a decarboxylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号