首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Climate extremes such as heat waves and droughts are projected to occur more frequently with increasing temperature and an intensified hydrological cycle. It is important to understand and quantify how forest carbon fluxes respond to heat and drought stress. In this study, we developed a series of daily indices of sensitivity to heat and drought stress as indicated by air temperature (Ta) and evaporative fraction (EF). Using normalized daily carbon fluxes from the FLUXNET Network for 34 forest sites in North America, the seasonal pattern of sensitivities of net ecosystem productivity (NEP), gross ecosystem productivity (GEP) and ecosystem respiration (RE) in response to Ta and EF anomalies were compared for different forest types. The results showed that warm temperatures in spring had a positive effect on NEP in conifer forests but a negative impact in deciduous forests. GEP in conifer forests increased with higher temperature anomalies in spring but decreased in summer. The drought‐induced decrease in NEP, which mostly occurred in the deciduous forests, was mostly driven by the reduction in GEP. In conifer forests, drought had a similar dampening effect on both GEP and RE, therefore leading to a neutral NEP response. The NEP sensitivity to Ta anomalies increased with increasing mean annual temperature. Drier sites were less sensitive to drought stress in summer. Natural forests with older stand age tended to be more resilient to the climate stresses compared to managed younger forests. The results of the Classification and Regression Tree analysis showed that seasons and ecosystem productivity were the most powerful variables in explaining the variation of forest sensitivity to heat and drought stress. Our results implied that the magnitude and direction of carbon flux changes in response to climate extremes are highly dependent on the seasonal dynamics of forests and the timing of the climate extremes.  相似文献   

2.
FLUXNET and modelling the global carbon cycle   总被引:3,自引:0,他引:3  
Measurements of the net CO2 flux between terrestrial ecosystems and the atmosphere using the eddy covariance technique have the potential to underpin our interpretation of regional CO2 source–sink patterns, CO2 flux responses to forcings, and predictions of the future terrestrial C balance. Information contained in FLUXNET eddy covariance data has multiple uses for the development and application of global carbon models, including evaluation/validation, calibration, process parameterization, and data assimilation. This paper reviews examples of these uses, compares global estimates of the dynamics of the global carbon cycle, and suggests ways of improving the utility of such data for global carbon modelling. Net ecosystem exchange of CO2 (NEE) predicted by different terrestrial biosphere models compares favourably with FLUXNET observations at diurnal and seasonal timescales. However, complete model validation, particularly over the full annual cycle, requires information on the balance between assimilation and decomposition processes, information not readily available for most FLUXNET sites. Site history, when known, can greatly help constrain the model‐data comparison. Flux measurements made over four vegetation types were used to calibrate the land‐surface scheme of the Goddard Institute for Space Studies global climate model, significantly improving simulated climate and demonstrating the utility of diurnal FLUXNET data for climate modelling. Land‐surface temperatures in many regions cool due to higher canopy conductances and latent heat fluxes, and the spatial distribution of CO2 uptake provides a significant additional constraint on the realism of simulated surface fluxes. FLUXNET data are used to calibrate a global production efficiency model (PEM). This model is forced by satellite‐measured absorbed radiation and suggests that global net primary production (NPP) increased 6.2% over 1982–1999. Good agreement is found between global trends in NPP estimated by the PEM and a dynamic global vegetation model (DGVM), and between the DGVM and estimates of global NEE derived from a global inversion of atmospheric CO2 measurements. Combining the PEM, DGVM, and inversion results suggests that CO2 fertilization is playing a major role in current increases in NPP, with lesser impacts from increasing N deposition and growing season length. Both the PEM and the inversion identify the Amazon basin as a key region for the current net terrestrial CO2 uptake (i.e. 33% of global NEE), as well as its interannual variability. The inversion's global NEE estimate of −1.2 Pg [C] yr−1 for 1982–1995 is compatible with the PEM‐ and DGVM‐predicted trends in NPP. There is, thus, a convergence in understanding derived from process‐based models, remote‐sensing‐based observations, and inversion of atmospheric data. Future advances in field measurement techniques, including eddy covariance (particularly concerning the problem of night‐time fluxes in dense canopies and of advection or flow distortion over complex terrain), will result in improved constraints on land‐atmosphere CO2 fluxes and the rigorous attribution of mechanisms to the current terrestrial net CO2 uptake and its spatial and temporal heterogeneity. Global ecosystem models play a fundamental role in linking information derived from FLUXNET measurements to atmospheric CO2 variability. A number of recommendations concerning FLUXNET data are made, including a request for more comprehensive site data (particularly historical information), more measurements in undisturbed ecosystems, and the systematic provision of error estimates. The greatest value of current FLUXNET data for global carbon cycle modelling is in evaluating process representations, rather than in providing an unbiased estimate of net CO2 exchange.  相似文献   

3.
Severe drought can cause lagged effects on tree physiology that negatively impact forest functioning for years. These “drought legacy effects” have been widely documented in tree‐ring records and could have important implications for our understanding of broader scale forest carbon cycling. However, legacy effects in tree‐ring increments may be decoupled from ecosystem fluxes due to (a) postdrought alterations in carbon allocation patterns; (b) temporal asynchrony between radial growth and carbon uptake; and (c) dendrochronological sampling biases. In order to link legacy effects from tree rings to whole forests, we leveraged a rich dataset from a Midwestern US forest that was severely impacted by a drought in 2012. At this site, we compiled tree‐ring records, leaf‐level gas exchange, eddy flux measurements, dendrometer band data, and satellite remote sensing estimates of greenness and leaf area before, during, and after the 2012 drought. After accounting for the relative abundance of tree species in the stand, we estimate that legacy effects led to ~10% reductions in tree‐ring width increments in the year following the severe drought. Despite this stand‐scale reduction in radial growth, we found that leaf‐level photosynthesis, gross primary productivity (GPP), and vegetation greenness were not suppressed in the year following the 2012 drought. Neither temporal asynchrony between radial growth and carbon uptake nor sampling biases could explain our observations of legacy effects in tree rings but not in GPP. Instead, elevated leaf‐level photosynthesis co‐occurred with reduced leaf area in early 2013, indicating that resources may have been allocated away from radial growth in conjunction with postdrought upregulation of photosynthesis and repair of canopy damage. Collectively, our results indicate that tree‐ring legacy effects were not observed in other canopy processes, and that postdrought canopy allocation could be an important mechanism that decouples tree‐ring signals from GPP.  相似文献   

4.
5.
季节性高温和干旱对亚热带毛竹林碳通量的影响   总被引:1,自引:0,他引:1  
采用涡度相关技术对安吉亚热带毛竹林生态系统碳通量进行连续观测,选取2011和2013年月尺度净生态系统生产力(NEP)、生态系统呼吸(Re)和总生态系统生产力(GEP)数据,探讨季节性高温、干旱对毛竹林生态系统碳通量的影响.结果表明: 安吉毛竹林年际间NEP有较大差异;2013年7和8月由于水热不同步而造成的高温干旱使其NEP明显下降,相比于2011年同期分别下降了59.9%和80.0%.对2011和2013年月尺度下NEP、Re和GEP与环境因子进行相关分析发现,Re和GEP与温度因子均呈显著相关(P<0.05),但两者对空气和土壤水分的响应方式和程度有所不同,GEP相比于Re更易受到土壤水分降低的影响,而饱和水汽压差的升高会在一定程度上促进Re、同时抑制GEP,这是造成2013年7和8月安吉毛竹林NEP降低的根本原因.  相似文献   

6.
The European CARBOEUROPE/FLUXNET monitoring sites, spatial remote sensing observations via the EOS‐MODIS sensor and ecosystem modelling provide independent and complementary views on the effect of the 2003 heatwave on the European biosphere's productivity and carbon balance. In our analysis, these data streams consistently demonstrate a strong negative anomaly of the primary productivity during the summer of 2003. FLUXNET eddy‐covariance data indicate that the drop in productivity was not primarily caused by high temperatures (‘heat stress’) but rather by limitation of water (drought stress) and that, contrary to the classical expectation about a heat wave, not only gross primary productivity but also ecosystem respiration declined by up to more than to 80 gC m−2 month−1. Anomalies of carbon and water fluxes were strongly correlated. While there are large between‐site differences in water‐use efficiency (WUE, 1–6 kg C kg−1 H2O) here defined as gross carbon uptake divided by evapotranspiration (WUE=GPP/ET), the year‐to‐year changes in WUE were small (<1 g kg−1) and quite similar for most sites (i.e. WUE decreased during the year of the heatwave). Remote sensing data from MODIS and AVHRR both indicate a strong negative anomaly of the fraction of absorbed photosynthetically active radiation in summer 2003, at more than five standard deviations of the previous years. The spatial differentiation of this anomaly follows climatic and land‐use patterns: Largest anomalies occur in the centre of the meteorological anomaly (central Western Europe) and in areas dominated by crops or grassland. A preliminary model intercomparison along a gradient from data‐oriented models to process‐oriented models indicates that all approaches are similarly describing the spatial pattern of ecosystem sensitivity to the climatic 2003 event with major exceptions in the Alps and parts of Eastern Europe, but differed with respect to their interannual variability.  相似文献   

7.
The measured net ecosystem exchange (NEE) of CO2 between the ecosystem and the atmosphere reflects the balance between gross CO2 assimilation [gross primary production (GPP)] and ecosystem respiration (Reco). For understanding the mechanistic responses of ecosystem processes to environmental change it is important to separate these two flux components. Two approaches are conventionally used: (1) respiration measurements made at night are extrapolated to the daytime or (2) light–response curves are fit to daytime NEE measurements and respiration is estimated from the intercept of the ordinate, which avoids the use of potentially problematic nighttime data. We demonstrate that this approach is subject to biases if the effect of vapor pressure deficit (VPD) modifying the light response is not included. We introduce an algorithm for NEE partitioning that uses a hyperbolic light response curve fit to daytime NEE, modified to account for the temperature sensitivity of respiration and the VPD limitation of photosynthesis. Including the VPD dependency strongly improved the model's ability to reproduce the asymmetric diurnal cycle during periods with high VPD, and enhances the reliability of Reco estimates given that the reduction of GPP by VPD may be otherwise incorrectly attributed to higher Reco. Results from this improved algorithm are compared against estimates based on the conventional nighttime approach. The comparison demonstrates that the uncertainty arising from systematic errors dominates the overall uncertainty of annual sums (median absolute deviation of GPP: 47 g C m?2 yr?1), while errors arising from the random error (median absolute deviation: ~2 g C m?2 yr?1) are negligible. Despite site‐specific differences between the methods, overall patterns remain robust, adding confidence to statistical studies based on the FLUXNET database. In particular, we show that the strong correlation between GPP and Reco is not spurious but holds true when quasi‐independent, i.e. daytime and nighttime based estimates are compared.  相似文献   

8.
 干旱对陆地生态系统的影响已成为全球变化研究的焦点问题之一。该研究基于生态系统过程模型——CEVSA2, 结合涡度相关通量观测, 分析了不同程度干旱对亚热带人工针叶林碳交换的影响及其关键控制因素。结果表明: 1)干旱使生态系统碳交换显著下降, 2003和2004年的干旱使得年净生态系统生产力(Net ecosystem production, NEP)相比无干旱影响情景的模拟结果分别减少了63%和47%; 2)光合和呼吸对干旱具有不同的响应, 干旱时光合的下降比呼吸更为显著, 这导致了NEP的显著下降; 3)当饱和水气压差(Vapor pressure deficit, VPD)达到1.5 kPa以上时, 生态系统的光合、呼吸和净碳吸收均开始下降, 当VPD大于2.5 kPa、土壤相对含水量(土壤含水量/土壤饱和含水量)(Relative soil water content, RSW)低于40%时, 生态系统的碳收支由碳汇转为碳源; 4)土壤干旱是造成碳交换下降的主要驱动因素, 对年NEP下降的平均贡献率为46%, 而大气干旱的贡献率仅为4%。  相似文献   

9.
This paper discusses the advantages and disadvantages of the different methods that separate net ecosystem exchange (NEE) into its major components, gross ecosystem carbon uptake (GEP) and ecosystem respiration (Reco). In particular, we analyse the effect of the extrapolation of night‐time values of ecosystem respiration into the daytime; this is usually done with a temperature response function that is derived from long‐term data sets. For this analysis, we used 16 one‐year‐long data sets of carbon dioxide exchange measurements from European and US‐American eddy covariance networks. These sites span from the boreal to Mediterranean climates, and include deciduous and evergreen forest, scrubland and crop ecosystems. We show that the temperature sensitivity of Reco, derived from long‐term (annual) data sets, does not reflect the short‐term temperature sensitivity that is effective when extrapolating from night‐ to daytime. Specifically, in summer active ecosystems the long‐term temperature sensitivity exceeds the short‐term sensitivity. Thus, in those ecosystems, the application of a long‐term temperature sensitivity to the extrapolation of respiration from night to day leads to a systematic overestimation of ecosystem respiration from half‐hourly to annual time‐scales, which can reach >25% for an annual budget and which consequently affects estimates of GEP. Conversely, in summer passive (Mediterranean) ecosystems, the long‐term temperature sensitivity is lower than the short‐term temperature sensitivity resulting in underestimation of annual sums of respiration. We introduce a new generic algorithm that derives a short‐term temperature sensitivity of Reco from eddy covariance data that applies this to the extrapolation from night‐ to daytime, and that further performs a filling of data gaps that exploits both, the covariance between fluxes and meteorological drivers and the temporal structure of the fluxes. While this algorithm should give less biased estimates of GEP and Reco, we discuss the remaining biases and recommend that eddy covariance measurements are still backed by ancillary flux measurements that can reduce the uncertainties inherent in the eddy covariance data.  相似文献   

10.
  • 1 Severe or extreme droughts occurred about 10% of the time over a 105‐year record from central New Mexico, U.S.A., based on the Palmer Drought Severity Index.
  • 2 Drought lowers water tables, creating extensive areas of groundwater recharge and fragmenting reaches of streams and rivers. Deeper groundwater inputs predominate as sources of surface flows during drought. Nutrient inputs to streams and rivers reflect the biogeochemistry of regional ground waters with longer subsurface residence times.
  • 3 Inputs of bioavailable dissolved organic carbon to surface waters decrease during drought, with labile carbon limitation of microbial metabolism a byproduct of drought conditions.
  • 4 Decreased inputs of organic forms of carbon, nitrogen and phosphorus and a decrease in the organic : inorganic ratio of nutrient inputs favours autotrophs over heterotrophs during drought.
  • 5 The fate of autotrophic production during drought will be strongly influenced by the structure of the aquatic food web within impacted sites.
  相似文献   

11.
There is a major concern for the fate of Amazonia over the coming century in the face of anthropogenic climate change. A key area of uncertainty is the scale of rainforest dieback to be expected under a future, drier climate. In this study, we use the middle Holocene (ca. 6000 years before present) as an approximate analogue for a drier future, given that palaeoclimate data show much of Amazonia was significantly drier than present at this time. Here, we use an ensemble of climate and vegetation models to explore the sensitivity of Amazonian biomes to mid-Holocene climate change. For this, we employ three dynamic vegetation models (JULES, IBIS, and SDGVM) forced by the bias-corrected mid-Holocene climate simulations from seven models that participated in the Palaeoclimate Modelling Intercomparison Project 3 (PMIP3). These model outputs are compared with a multi-proxy palaeoecological dataset to gain a better understanding of where in Amazonia we have most confidence in the mid-Holocene vegetation simulations. A robust feature of all simulations and palaeodata is that the central Amazonian rainforest biome is unaffected by mid-Holocene drought. Greater divergence in mid-Holocene simulations exists in ecotonal eastern and southern Amazonia. Vegetation models driven with climate models that simulate a drier mid-Holocene (100–150 mm per year decrease) better capture the observed (palaeodata) tropical forest dieback in these areas. Based on the relationship between simulated rainfall decrease and vegetation change, we find indications that in southern Amazonia the rate of tropical forest dieback was ~125,000 km2 per 100 mm rainfall decrease in the mid-Holocene. This provides a baseline sensitivity of tropical forests to drought for this region (without human-driven changes to greenhouse gases, fire, and deforestation). We highlight the need for more palaeoecological and palaeoclimate data across lowland Amazonia to constrain model responses.  相似文献   

12.
Understanding and modeling ecosystem responses to their climatic controls is one of the major challenges for predicting the effects of global change. Usually, the responses are implemented in models as parameterized functional relationships of a fixed type. In contrast, the inductive approach presented here based on artificial neural networks (ANNs) allows the relationships to be extracted directly from the data. It has been developed to explore large, fragmentary, noisy, and multidimensional datasets, such as the carbon fluxes measured at the ecosystem level with the eddy covariance technique. To illustrate this, our approach has been systematically applied to the daytime carbon flux dataset of the deciduous broadleaf forest Hainich in Germany. The total explainable variability of the half‐hourly carbon fluxes from the driving climatic variables was 93.1%, showing the excellent data mining capability of the ANNs. Total photosynthetic photon flux density was identified as the dominant control of the daytime response, followed by the diffuse radiation. The vapor pressure deficit was the most important nonradiative control. From the ANNs, we were also able to deduce and visualize the dependencies and sensitivities of the response to its climatic controls. With respect to diffuse radiation, the daytime carbon response showed no saturation and the light use efficiency was three times greater for diffuse compared with direct radiation. However, with less potential radiation reaching the forest, the overall effect of diffuse radiation was slightly negative. The optimum uptake of carbon occurred at diffuse fractions between 30% and 40%. By identifying the hierarchy of the climatic controls of the ecosystem response as well as their multidimensional functional relationships, our inductive approach offers a direct interface to the data. This provides instant insight in the underlying ecosystem physiology and links the observational relationships to their representation in the modeling world.  相似文献   

13.
Annual budgets and fitted temperature response curves for soil respiration and ecosystem respiration provide useful information for partitioning annual carbon budgets of ecosystems, but they may not adequately reveal seasonal variation in the ratios of these two fluxes. Soil respiration (Rs) typically contributes 30–80% of annual total ecosystem respiration (Reco) in forests, but the temporal variation of these ratios across seasons has not been investigated. The objective of this study was to investigate seasonal variation in the Rs/Reco ratio in a mature forest dominated by conifers at Howland, ME, USA. We used chamber measurements of Rs and tower‐based eddy covariance measurements of Reco. The Rs/Reco ratio reached a minimum of about 0.45 in the early spring, gradually increased through the late spring and early summer, leveled off at about 0.65 for the summer, and then increased again to about 0.8 in the autumn. A spring pulse of aboveground respiration presumably causes the springtime minimum in this ratio. Soil respiration ‘catches up’ as the soils warm and as root growth presumably accelerates in the late spring, causing the Rs/Reco ratios to increase. The summertime plateau of Rs/Reco ratios is consistent with summer drought suppressing Rs that would otherwise be increasing, based on increasing soil temperature alone, thus causing the Rs/Reco ratios to not increase as soils continue to warm. Declining air temperatures and litter fall apparently contribute to increased Rs/Reco ratios in the autumn. Differences in phenology of growth of aboveground and belowground plant tissues, mobilization and use of stored substrates within woody plants, seasonal variation in photosynthate and litter substrates, and lags between temperature changes of air and soil contribute to a distinct seasonal pattern of Rs/Reco ratios.  相似文献   

14.
外生菌根对干旱胁迫的响应   总被引:3,自引:0,他引:3  
王琚钢  峥嵘  白淑兰  刘声  闫伟 《生态学杂志》2012,31(6):1571-1576
从外生菌根真菌、外生菌根共生体以及外生菌根的间接作用等方面阐述外生菌根如何抵制干旱胁迫,并对未来我国外生菌根的研究提出了建议。干旱可以抑制外生菌根真菌的生长并降低其群落中真菌的多样性,干旱胁迫下外生菌根真菌子实体可以利用深度30cm以下的土壤水,子实体的表面积和体积比可作为筛选抗旱真菌的一个重要因子;在遭受干旱胁迫时,外生菌根共生体可以发生形态变化来应对干旱,同时增加了植株水分的吸收并改善了植物的光合作用、活性氧以及激素等相关代谢;外生菌根对植物生长的促进作用、增加土壤碳汇以及对其他根际微生物生长的促进作用等对宿主植物应对干旱胁迫有利。未来我国外生菌根研究应加强对干旱区优良菌-树组合的筛选工作,同时加大对乡土外生菌根真菌资源的调查力度,未来研究应重点向分子生物学领域推进。  相似文献   

15.
Carbon‐use efficiency (CUE), the ratio of net primary production (NPP) to gross primary production (GPP), describes the capacity of forests to transfer carbon (C) from the atmosphere to terrestrial biomass. It is widely assumed in many landscape‐scale carbon‐cycling models that CUE for forests is a constant value of ∼0.5. To achieve a constant CUE, tree respiration must be a constant fraction of canopy photosynthesis. We conducted a literature survey to test the hypothesis that CUE is constant and universal among forest ecosystems. Of the 60 data points obtained from 26 papers published since 1975, more than half reported values of GPP that were not estimated independently from NPP; values of CUE calculated from independent estimates of GPP were greater than those calculated from estimates of GPP derived from NPP. The slope of the relationship between NPP and GPP for all forests was 0.53, but values of CUE varied from 0.23 to 0.83 for different forest types. CUE decreased with increasing age, and a substantial portion of the variation among forest types was caused by differences in stand age. When corrected for age the mean value of CUE was greatest for temperate deciduous forests and lowest for boreal forests. CUE also increased as the ratio of leaf mass‐to‐total mass increased. Contrary to the assumption of constancy, substantial variation in CUE has been reported in the literature. It may be inappropriate to assume that respiration is a constant fraction of GPP as adhering to this assumption may contribute to incorrect estimates of C cycles. A 20% error in current estimates of CUE used in landscape models (i.e. ranging from 0.4 to 0.6) could misrepresent an amount of C equal to total anthropogenic emissions of CO2 when scaled to the terrestrial biosphere.  相似文献   

16.
In 2000–03, continuous eddy covariance measurements of carbon dioxide (CO2) flux were made above mature boreal aspen, black spruce, and jack pine forests in Saskatchewan, Canada, prior to and during a 3-year drought. During the 1st drought year, ecosystem respiration (R) was reduced at the aspen site due to the drying of surface soil layers. Gross ecosystem photosynthesis (GEP) increased as a result of a warm spring and a slow decrease of deep soil moisture. These conditions resulted in the highest annual net ecosystem productivity (NEP) in the 9 years of flux measurements at this site. During 2002 and 2003, a reduction of 6% and 34% in NEP, respectively, compared to 2000 was observed as the result of reductions in both R and GEP, indicating a conservative response to the drought. Although the drought affected most of western Canada, there was considerable spatial variability in summer rainfall over the 100-km extent of the study area; summer rainfalls in 2001 and 2002 at the two conifer sites minimized the impact of the drought. In 2003, however, precipitation was similarly low at all three sites. Due to low topographic position and consequent poor drainage at the black spruce site and the coarse soil with low water-holding capacity at the jack pine site almost no reduction in R, GEP, and NEP was observed at these two sites. This study shows that the impact of drought on carbon sequestration by boreal forest ecosystems strongly depends on rainfall distribution, soil characteristics, topography, and the presence of vegetation that is well adapted to these conditions. The online version of the original article can be found under doi:  相似文献   

17.
The effect of exogenous abscisic acid and cAMP on synthesis of soluble proteins in wheat caryopses in drought has been studied. Both compounds affected the formation of the polypeptides whose synthesis was stimulated by dehydration: they increased the incorporation of the label into polypeptides of 13, 15, and 26 kD and decreased the incorporation of the label into polypeptides of 14, 64, and 77 kD. Abscisic acid and cAMP increased the level of the incorporation of [14C]leucine into the low-molecular-weight polypeptides of 12, 17, and 19 kD whose synthesis was suppressed by drought. These data suggest that the cyclic adenylate signal system is probably involved in the effect of abscisic acid on protein synthesis in drought.  相似文献   

18.
Bioenergy has been identified as a key component of climate change mitigation. Therefore, quantifying the net carbon balance of bioenergy feedstocks is crucial for accurate projections of climate mitigation benefits. Switchgrass (Panicum virgatum) has many characteristics of an ideal bioenergy crop with high yields, low maintenance, and deep roots with potential for belowground carbon sequestration. However, the assessments of net annual carbon exchange between switchgrass fields and the atmosphere are rare. Here we present observations of net carbon fluxes in a minimally managed switchgrass field in Virginia (Ameriflux site US-SB2) over 5 years (3–7 years since establishment). Average annual net ecosystem exchange (NEE) of carbon was near zero (60 g C m?2 year?1) but the net ecosystem carbon balance that includes harvested carbon (HC) was a net source of carbon to the atmosphere (313 g C m?2 year?1). The field alternated between a large and small source of carbon annually, with the interannual variability most strongly correlated with the day of the last frost and the interaction of temperature and precipitation. Overall, the consistent source of carbon to the atmosphere at US-SB2 differs substantially from other eddy covariance studies that report switchgrass fields to be either neutral or a sink of carbon when accounting for both NEE and HC. This study illustrates that predictions of net carbon climate benefits from bioenergy crops cannot assume that the ecosystem will be a net sink of carbon from the atmosphere. Background climate, management, and land-use history may determine whether widespread deployment of switchgrass as a bioenergy feedstock results in realized climate change mitigation.  相似文献   

19.
A century of fire suppression across the Western United States has led to more crowded forests and increased competition for resources. Studies of forest thinning or stand conditions after mortality events have provided indirect evidence for how competition can promote drought stress and predispose forests to severe fire and/or bark beetle outbreaks. Here, we demonstrate linkages between fire deficits and increasing drought stress through analyses of annually resolved tree‐ring growth, fire scars, and carbon isotope discrimination (Δ13C) across a dry mixed‐conifer forest landscape. Fire deficits across the study area have increased the sensitivity of leaf gas exchange to drought stress over the past >100 years. Since 1910, stand basal area in these forests has more than doubled and fire‐return intervals have increased from 25 to 140 years. Meanwhile, the portion of interannual variation in tree‐ring Δ13C explained by the Palmer Drought Severity Index has more than doubled in ca. 300–500‐year‐old Pinus ponderosa as well as in fire‐intolerant, ca. 90–190‐year‐old Abies grandis. Drought stress has increased in stands with a basal area of ≥25 m2/ha in 1910, as indicated by negative temporal Δ13C trends, whereas stands with basal area ≤25 m2/ha in 1910, due to frequent or intense wildfire activity in decades beforehand, were initially buffered from increased drought stress and have benefited more from rising ambient carbon dioxide concentrations, [CO2], as demonstrated by positive temporal Δ13C trends. Furthermore, the average Δ13C response across all P. ponderosa since 1830 indicates that photosynthetic assimilation rates and stomatal conductance have been reduced by ~10% and ~20%, respectively, compared to expected trends due to increasing [CO2]. Although disturbance legacies contribute to local‐scale intensity of drought stress, fire deficits have reduced drought resistance of mixed‐conifer forests and made them more susceptible to challenges by pests and pathogens and other disturbances.  相似文献   

20.
Forest age, which is affected by stand‐replacing ecosystem disturbances (such as forest fires, harvesting, or insects), plays a distinguishing role in determining the distribution of carbon (C) pools and fluxes in different forested ecosystems. In this synthesis, net primary productivity (NPP), net ecosystem productivity (NEP), and five pools of C (living biomass, coarse woody debris, organic soil horizons, soil, and total ecosystem) are summarized by age class for tropical, temperate, and boreal forest biomes. Estimates of variability in NPP, NEP, and C pools are provided for each biome‐age class combination and the sources of variability are discussed. Aggregated biome‐level estimates of NPP and NEP were higher in intermediate‐aged forests (e.g., 30–120 years), while older forests (e.g., >120 years) were generally less productive. The mean NEP in the youngest forests (0–10 years) was negative (source to the atmosphere) in both boreal and temperate biomes (?0.1 and –1.9 Mg C ha?1 yr?1, respectively). Forest age is a highly significant source of variability in NEP at the biome scale; for example, mean temperate forest NEP was ?1.9, 4.5, 2.4, 1.9 and 1.7 Mg C ha?1 yr?1 across five age classes (0–10, 11–30, 31–70, 71–120, 121–200 years, respectively). In general, median NPP and NEP are strongly correlated (R2=0.83) across all biomes and age classes, with the exception of the youngest temperate forests. Using the information gained from calculating the summary statistics for NPP and NEP, we calculated heterotrophic soil respiration (Rh) for each age class in each biome. The mean Rh was high in the youngest temperate age class (9.7 Mg C ha?1 yr?1) and declined with age, implying that forest ecosystem respiration peaks when forests are young, not old. With notable exceptions, carbon pool sizes increased with age in all biomes, including soil C. Age trends in C cycling and storage are very apparent in all three biomes and it is clear that a better understanding of how forest age and disturbance history interact will greatly improve our fundamental knowledge of the terrestrial C cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号