首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The successful navigation of malaria parasites through their life cycle, which alternates between vertebrate hosts and mosquito vectors, requires a complex interplay of metabolite synthesis and salvage pathways. Using the rodent parasite Plasmodium berghei, we have explored the synthesis and scavenging pathways for lipoic acid, a short‐chain fatty acid derivative that regulates the activity of α‐ketoacid dehydrogenases including pyruvate dehydrogenase. In Plasmodium, lipoic acid is either synthesized de novo in the apicoplast or is scavenged from the host into the mitochondrion. Our data show that sporozoites lacking the apicoplast lipoic acid protein ligase LipB are markedly attenuated in their infectivity for mice, and in vitro studies document a very late liver stage arrest shortly before the final phase of intra‐hepaticparasite maturation. LipB‐deficient asexual blood stage parasites show unimpaired rates of growth in normal in vitro or in vivo conditions. However, these parasites showed reduced growth in lipid‐restricted conditions induced by treatment with the lipoic acid analogue 8‐bromo‐octanoate or with the lipid‐reducing agent clofibrate. This finding has implications for understanding Plasmodium pathogenesis in malnourished children that bear the brunt of malarial disease. This study also highlights the potential of exploiting lipid metabolism pathways for the design of genetically attenuated sporozoite vaccines.  相似文献   

2.
Intracellular malaria parasites require lipids for growth and replication. They possess a prokaryotic type II fatty acid synthesis (FAS II) pathway that localizes to the apicoplast plastid organelle and is assumed to be necessary for pathogenic blood stage replication. However, the importance of FAS II throughout the complex parasite life cycle remains unknown. We show in a rodent malaria model that FAS II enzymes localize to the sporozoite and liver stage apicoplast. Targeted deletion of FabB/F , a critical enzyme in fatty acid synthesis, did not affect parasite blood stage replication, mosquito stage development and initial infection in the liver. This was confirmed by knockout of FabZ , another critical FAS II enzyme. However, FAS II-deficient Plasmodium yoelii liver stages failed to form exo-erythrocytic merozoites, the invasive stage that first initiates blood stage infection. Furthermore, deletion of FabI in the human malaria parasite Plasmodium falciparum did not show a reduction in asexual blood stage replication in vitro . Malaria parasites therefore depend on the intrinsic FAS II pathway only at one specific life cycle transition point, from liver to blood.  相似文献   

3.
Background information. The Plasmodium parasite, during its life cycle, undergoes three phases of asexual reproduction, these being repeated rounds of erythrocytic schizogony, sporogony within oocysts on the mosquito midgut wall and exo‐erythrocytic schizogony within the hepatocyte. During each phase of asexual reproduction, the parasite must ensure that every new daughter cell contains an apicoplast, as this organelle cannot be formed de novo and is essential for parasite survival. To date, studies visualizing the apicoplast in live Plasmodium parasites have been restricted to the blood stages of Plasmodium falciparum. Results. In the present study, we have generated Plasmodium berghei parasites in which GFP (green fluorescent protein) is targeted to the apicoplast using the specific targeting sequence of ACP (acyl carrier protein), which has allowed us to visualize this organelle in live Plasmodium parasites. During each phase of asexual reproduction, the apicoplast becomes highly branched, but remains as a single organelle until the completion of nuclear division, whereupon it divides and is rapidly segregated into newly forming daughter cells. We have shown that the antimicrobial agents azithromycin, clindamycin and doxycycline block development of the apicoplast during exo‐erythrocytic schizogony in vitro, leading to impaired parasite maturation. Conclusions. Using a range of powerful live microscopy techniques, we show for the first time the development of a Plasmodium organelle through the entire life cycle of the parasite. Evidence is provided that interference with the development of the Plasmodium apicoplast results in the failure to produce red‐blood‐cell‐infective merozoites.  相似文献   

4.
Malaria parasites can synthesize fatty acids via a type II fatty acid synthesis (FASII) pathway located in their apicoplast. The FASII pathway has been pursued as an anti‐malarial drug target, but surprisingly little is known about its role in lipid metabolism. Here we characterize the apicoplast glycerol 3‐phosphate acyltransferase that acts immediately downstream of FASII in human (Plasmodium falciparum) and rodent (Plasmodium berghei) malaria parasites and investigate how this enzyme contributes to incorporating FASII fatty acids into precursors for membrane lipid synthesis. Apicoplast targeting of the P. falciparum and P. berghei enzymes are confirmed by fusion of the N‐terminal targeting sequence to GFP and 3′ tagging of the full length protein. Activity of the P. falciparum enzyme is demonstrated by complementation in mutant bacteria, and critical residues in the putative active site identified by site‐directed mutagenesis. Genetic disruption of the P. falciparum enzyme demonstrates it is dispensable in blood stage parasites, even in conditions known to induce FASII activity. Disruption of the P. berghei enzyme demonstrates it is dispensable in blood and mosquito stage parasites, and only essential for development in the late liver stage, consistent with the requirement for FASII in rodent malaria models. However, the P. berghei mutant liver stage phenotype is found to only partially phenocopy loss of FASII, suggesting newly made fatty acids can take multiple pathways out of the apicoplast and so giving new insight into the role of FASII and apicoplast glycerol 3‐phosphate acyltransferase in malaria parasites.  相似文献   

5.
Homofermentative production of reduced products requires additional reducing power output (NADH) from glucose catabolism. Anaerobic expression of the pyruvate dehydrogenase complex (PDH, encoded by aceEF‐lpd, a normal aerobic operon) is able to provide the additional NADH required for production of reduced products in Escherichia coli fermentation. The multiple promoters (pflBp(1–7)) of pyruvate formate lyase (pflB) were evaluated for anaerobic expression of the aceEF‐lpd operon. Four chromosomal constructs, pflBp(1–7)‐aceEF‐lpd, pflBp(1–6)‐aceEF‐lpd, pflBp(6,7)‐aceEF‐lpd, and pflBp6‐aceEF‐lpd efficiently expressed the PDH complex in anaerobically grown cells. Doubling the reducing power output was achieved when glucose was oxidized to acetyl‐CoA through glycolysis and pyruvate oxidation by the anaerobically expressed PDH complex (glucose →2 acetyl‐CoA + 4 NADH). This additional reducing power output can be used for production of reduced products in anaerobic E. coli fermentation. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

6.
Plasmodium parasites, the causative agents of malaria, first invade and develop within hepatocytes before infecting red blood cells and causing symptomatic disease. Because of the low infection rates in vitro and in vivo, the liver stage of Plasmodium infection is not very amenable to biochemical assays, but the large size of the parasite at this stage in comparison with Plasmodium blood stages makes it accessible to microscopic analysis. A variety of imaging techniques has been used to this aim, ranging from electron microscopy to widefield epifluorescence and laser scanning confocal microscopy. High‐speed live video microscopy of fluorescent parasites in particular has radically changed our view on key events in Plasmodium liver‐stage development. This includes the fate of motile sporozoites inoculated by Anopheles mosquitoes as well as the transport of merozoites within merosomes from the liver tissue into the blood vessel. It is safe to predict that in the near future the application of the latest microscopy techniques in Plasmodium research will bring important insights and allow us spectacular views of parasites during their development in the liver.  相似文献   

7.
Malaria parasites scavenge nutrients from their host but also harbour enzymatic pathways for de novo macromolecule synthesis. One such pathway is apicoplast‐targeted type II fatty acid synthesis, which is essential for late liver‐stage development in rodent malaria. It is likely that fatty acids synthesized in the apicoplast are ultimately incorporated into membrane phospholipids necessary for exoerythrocytic merozoite formation. We hypothesized that these synthesized fatty acids are being utilized for apicoplast‐targeted phosphatidic acid synthesis, the phospholipid precursor. Phosphatidic acid is typically synthesized in a three‐step reaction utilizing three enzymes: glycerol 3‐phosphate dehydrogenase, glycerol 3‐phosphate acyltransferase and lysophosphatidic acid acyltransferase. The Plasmodium genome is predicted to harbour genes for both apicoplast‐ and cytosol/endoplasmic reticulum‐targeted phosphatidic acid synthesis. Our research shows that apicoplast‐targeted Plasmodium yoelii glycerol 3‐phosphate dehydrogenase and glycerol 3‐phosphate acyltransferase are expressed only during liver‐stage development and deletion of the encoding genes resulted in late liver‐stage growth arrest and lack of merozoite differentiation. However, the predicted apicoplast‐targeted lysophosphatidic acid acyltransferase gene was refractory to deletion and was expressed solely in the endoplasmic reticulum throughout the parasite life cycle. Our results suggest that P. yoelii has an incomplete apicoplast‐targeted phosphatidic acid synthesis pathway that is essential for liver‐stage maturation.  相似文献   

8.
The relict plastid (apicoplast) of apicomplexan parasites synthesizes fatty acids and is a promising drug target. In plant plastids, a pyruvate dehydrogenase complex (PDH) converts pyruvate into acetyl-CoA, the major fatty acid precursor, whereas a second, distinct PDH fuels the tricarboxylic acid cycle in the mitochondria. In contrast, the presence of genes encoding PDH and related enzyme complexes in the genomes of five Plasmodium species and of Toxoplasma gondii indicate that these parasites contain only one single PDH. PDH complexes are comprised of four subunits (E1alpha, E1beta, E2, E3), and we confirmed four genes encoding a complete PDH in Plasmodium falciparum through sequencing of cDNA clones. In apicomplexan parasites, many nuclear-encoded proteins are targeted to the apicoplast courtesy of two-part N-terminal leader sequences, and the presence of such N-terminal sequences on all four PDH subunits as well as phylogenetic analyses strongly suggest that the P. falciparum PDH is located in the apicoplast. Fusion of the two-part leader sequences from the E1alpha and E2 genes to green fluorescent protein experimentally confirmed apicoplast targeting. Western blot analysis provided evidence for the expression of the E1alpha and E1beta PDH subunits in blood-stage malaria parasites. The recombinantly expressed catalytic domain of the PDH subunit E2 showed high enzymatic activity in vitro indicating that pyruvate is converted to acetyl-CoA in the apicoplast, possibly for use in fatty acid biosynthesis.  相似文献   

9.
Eukaryotic pathogens of the phylum Apicomplexa contain a non-photosynthetic plastid, termed apicoplast. Within this organelle distinct iron-sulfur [Fe-S] cluster proteins are likely central to biosynthesis pathways, including generation of isoprenoids and lipoic acid. Here, we targeted a nuclear-encoded component of the apicoplast [Fe-S] cluster biosynthesis pathway by experimental genetics in the murine malaria parasite Plasmodium berghei. We show that ablation of the gene encoding a nitrogen fixation factor U (NifU)-like domain containing protein (NFUapi) resulted in parasites that were able to complete the entire life cycle indicating redundant or non-essential functions. nfu parasites displayed reduced merosome formation in vitro, suggesting that apicoplast NFUapi plays an auxiliary role in establishing a blood stage infection. NFUapi fused to a combined fluorescent protein-epitope tag delineates the Plasmodium apicoplast and was tested to revisit inhibition of liver stage development by azithromycin and fosmidomycin. We show that the branched apicoplast signal is entirely abolished by azithromycin treatment, while fosmidomycin had no effect on apicoplast morphology. In conclusion, our experimental genetics analysis supports specialized and/or redundant role(s) for NFUapi in the [Fe-S] cluster biosynthesis pathway in the apicoplast of a malarial parasite.  相似文献   

10.
Export of most malaria proteins into the erythrocyte cytosol requires the Plasmodium translocon of exported proteins (PTEX) and a cleavable Plasmodium export element (PEXEL). In contrast, the contribution of PTEX in the liver stages and export of liver stage proteins is unknown. Here, using the FLP/FRT conditional mutatagenesis system, we generate transgenic Plasmodium berghei parasites deficient in EXP2, the putative pore‐forming component of PTEX. Our data reveal that EXP2 is important for parasite growth in the liver and critical for parasite transition to the blood, with parasites impaired in their ability to generate a patent blood‐stage infection. Surprisingly, whilst parasites expressing a functional PTEX machinery can efficiently export a PEXEL‐bearing GFP reporter into the erythrocyte cytosol during a blood stage infection, this same reporter aggregates in large accumulations within the confines of the parasitophorous vacuole membrane during hepatocyte growth. Notably HSP101, the putative molecular motor of PTEX, could not be detected during the early liver stages of infection, which may explain why direct protein translocation of this soluble PEXEL‐bearing reporter or indeed native PEXEL proteins into the hepatocyte cytosol has not been observed. This suggests that PTEX function may not be conserved between the blood and liver stages of malaria infection.  相似文献   

11.
The malaria‐causing parasite, Plasmodium, contains a unique non‐photosynthetic plastid known as the apicoplast. The apicoplast is an essential organelle bound by four membranes. Although membrane transporters are attractive drug targets, only two transporters have been characterised in the malaria parasite apicoplast membranes. We selected 27 candidate apicoplast membrane proteins, 20 of which are annotated as putative membrane transporters, and performed a genetic screen in Plasmodium berghei to determine blood stage essentiality and subcellular localisation. Eight apparently essential blood stage genes were identified, three of which were apicoplast‐localised: PbANKA_0614600 (DMT2), PbANKA_0401200 (ABCB4), and PbANKA_0505500. Nineteen candidates could be deleted at the blood stage, four of which were apicoplast‐localised. Interestingly, three apicoplast‐localised candidates lack a canonical apicoplast targeting signal but do contain conserved N‐terminal tyrosines with likely roles in targeting. An inducible knockdown of an essential apicoplast putative membrane transporter, PfDMT2, was only viable when supplemented with isopentenyl diphosphate. Knockdown of PfDMT2 resulted in loss of the apicoplast, identifying PfDMT2 as a crucial apicoplast putative membrane transporter and a candidate for therapeutic intervention.  相似文献   

12.
The malaria parasite Plasmodium falciparum and related organisms possess a relict plastid known as the apicoplast. Apicoplast protein synthesis is a validated drug target in malaria because antibiotics that inhibit translation in prokaryotes also inhibit apicoplast protein synthesis and are sometimes used for malaria prophylaxis or treatment. We identified components of an indirect aminoacylation pathway for Gln-tRNAGln biosynthesis in Plasmodium that we hypothesized would be essential for apicoplast protein synthesis. Here, we report our characterization of the first enzyme in this pathway, the apicoplast glutamyl-tRNA synthetase (GluRS). We expressed the recombinant P. falciparum enzyme in Escherichia coli, showed that it is nondiscriminating because it glutamylates both apicoplast tRNAGlu and tRNAGln, determined its kinetic parameters, and demonstrated its inhibition by a known bacterial GluRS inhibitor. We also localized the Plasmodium berghei ortholog to the apicoplast in blood stage parasites but could not delete the PbGluRS gene. These data show that Gln-tRNAGln biosynthesis in the Plasmodium apicoplast proceeds via an essential indirect aminoacylation pathway that is reminiscent of bacteria and plastids.  相似文献   

13.
Malaria parasites retain a relict plastid (apicoplast) from a photosynthetic ancestor. The apicoplast is a useful drug target but the specificity of compounds believed to target apicoplast fatty acid biosynthesis has become uncertain, as this pathway is not essential in blood stages of the parasite. Herbicides that inhibit the plastid acetyl Coenzyme A (Co-A) carboxylase of plants also kill Plasmodium falciparum in vitro, but their mode of action remains undefined. We characterised the gene for acetyl Co-A carboxylase in P. falciparum. The P. falciparum acetyl-CoA carboxylase gene product is expressed in blood stage parasites and accumulates in the apicoplast. Ablation of the gene did not render parasites insensitive to herbicides, suggesting that these compounds are acting off-target in blood stages of P. falciparum.  相似文献   

14.
Toxoplasma gondii belongs to the coccidian subgroup of the Apicomplexa phylum. The Coccidia are obligate intracellular pathogens that establish infection in their mammalian host via the enteric route. These parasites lack a mitochondrial pyruvate dehydrogenase complex but have preserved the degradation of branched‐chain amino acids (BCAA) as a possible pathway to generate acetyl‐CoA. Importantly, degradation of leucine, isoleucine and valine could lead to concomitant accumulation of propionyl‐CoA, a toxic metabolite that inhibits cell growth. Like fungi and bacteria, the Coccidia possess the complete set of enzymes necessary to metabolize and detoxify propionate by oxidation to pyruvate via the 2‐methylcitrate cycle (2‐MCC). Phylogenetic analysis provides evidence that the 2‐MCC was acquired via horizontal gene transfer. In T. gondii tachyzoites, this pathway is split between the cytosol and the mitochondrion. Although the rate‐limiting enzyme 2‐methylisocitrate lyase is dispensable for parasite survival, its substrates accumulate in parasites deficient in the enzyme and its absence confers increased sensitivity to propionic acid. BCAA is also dispensable in tachyzoites, leaving unresolved the source of mitochondrial acetyl‐CoA.  相似文献   

15.
The metabolic pathways associated with the mitochondrion and the apicoplast in Plasmodium, 2 parasite organelles of prokaryotic origin, are considered as suitable drug targets. In the present study, we have identified functional role of a novel ovarian tumour unit (OTU) domain‐containing cysteine protease of Plasmodium falciparum (PfOTU). A C‐terminal regulatable fluorescent affinity tag on native protein was utilised for its localization and functional characterization. Detailed studies showed vesicular localization of PfOTU and its association with the apicoplast. Degradation‐tag mediated knockdown of PfOTU resulted in abnormal apicoplast development and blocked development of parasites beyond early‐schizont stages in subsequent cell cycle; downregulation of PfOTU hindered apicoplast protein import. Further, the isoprenoid precursor‐mediated parasite growth‐rescue experiments confirmed that PfOTU knockdown specifically effect development of functional apicoplast. We also provide evidence for a possible biological function of PfOTU in membrane deconjugation of Atg8, which may be linked with the apicoplast protein import. Overall, our results show that the PfOTU is involved in apicoplast homeostasis and associates with the noncanonical function of Atg8 in maintenance of parasite apicoplast.  相似文献   

16.
The active-site-directed reagent, bromopyruvate has been used to covalently label the pyruvate binding site of pyruvate carboxylase (E.C.6.4.1.1.) isolated from sheep liver. Oxalo-acetate proved to be the most effective reaction component in protecting the enzyme against inactivation; pyruvate was less effective although its efficiency was enhanced by the presence of acetyl CoA. The other reaction components, MgATP2? and HCO3? failed to protect the enzyme against inactivation. Using bromo[214C]pyruvate, it was shown that at 100% inactivation, 1.5 pyruvyl residues were bound per mole of biotin and when the reaction was carried out in the presence of acetyl CoA, this ratio was reduced to 1.0. Analysis of pronase digests of the enzyme revealed that more than 90% of the radioactivity was present as carboxy-hydroxyethyl cysteine.  相似文献   

17.
Recently, we described the existence of the ubiquitin fold modifier 1 (Ufm1) and its conjugation pathway in Leishmania donovani. We demonstrated the conjugation of Ufm1 to proteins such as mitochondrial trifunctional protein (MTP) that catalyses β‐oxidation of fatty acids in L. donovani. To elucidate the biological roles of the Ufm1‐mediated modifications, we made an L. donovani Ufm1 null mutant (Ufm1?/?). Loss of Ufm1 and consequently absence of Ufm1 conjugation with MTP resulted in diminished acetyl‐CoA, the end‐product of the β‐oxidation in the Ufm1?/? amastigote stage. The Ufm1?/? mutants showed reduced survival in the amastigote stage in vitro and ex vivo in human macrophages. This survival was restored by re‐expression of wild‐type Ufm1 with concomitant induction of acetyl‐CoA but not by re‐expressing the non‐conjugatable Ufm1, indicating the essential nature of Ufm1 conjugation and β‐oxidation. Both cell cycle analysis and ultrastructural studies of Ufm1?/? parasites confirmed the role of Ufm1 in amastigote growth. The defect in vitro growth of amastigotes in human macrophages was further substantiated by reduced survival. Therefore, these studies suggest the importance of Ufm1 in Leishmania pathogenesis with larger impact on other organisms and further provide an opportunity to test Ufm1?/? parasites as drug and vaccine targets.  相似文献   

18.
Repeated immunizations with whole Plasmodium blood stage parasites and concomitant drug cure of infection confer protective immunity against parasite challenge in mice, monkeys and humans. Moreover, it was recently shown that infections with genetically modified rodent malaria blood stage parasites conferred sterile protection against lethal blood stage challenge. However, in these models vaccination resulted in high parasitemias and, in consequence, carries risk of vaccine‐induced pathology and death. Herein, we generated a novel, completely blood stage‐attenuated P. yoelii rodent malaria strain by targeted deletion of parasite nucleoside transporter 1 (NT1). Immunization of inbred and outbred mouse strains with a single low dose of Pynt1 blood stages did not induce any patent infections and conferred complete sterile protection against lethal heterologous blood stage and sporozoite challenges. Partial protection was observed against lethal challenges with another parasite species, P. berghei. Importantly, subcutaneous immunization with Pynt1 conferred sterile protection against lethal blood stage challenges. We show that cellular and humoral immune responses are both essential for sterile protection. The study demonstrates that genetic manipulation provides a platform for the designed, complete attenuation of malaria parasite blood stages and suggests testing the safety and efficacy of P. falciparum NT1 knockout strains in humans.  相似文献   

19.
The pathway of autotrophic CO2 fixation in Methanobacterium thermoautotrophicum has been investigated by long term labelling of the organism with isotopic acetate and pyruvate while exponentially growing on H2 plus CO2. Maximally 2% of the cell carbon were derived from exogeneous tracer, 98% were synthesized from CO2. Since growth was obviously autotrophic the labelled compounds functioned as tracers of the cellular acetyl CoA and pyruvate pool during cell carbon synthesis from CO2. M. thermoautotrophicum growing in presence of U-14C acetate incorporated 14C into cell compounds derived from acetyl CoA (N-acetyl groups) as well as into compounds derived from pyruvate (alanine), oxaloacetate (aspartate), -ketoglutarate (glutamate), hexosephosphates (galactosamine), and pentosephosphates (ribose). The specific radioactities of N-acetylgroups and of the three amino acids were identical. The hexosamine exhibited a two times higher specific radioactivity, and the pentose a 1.6 times higher specific radioactivity than e.g. alanine. M. thermoautotrophicum growing in presence of 3-14C pyruvate, however, did not incorporate 14C into cell compounds directly derived from acetyl CoA. Those compounds derived from pyruvate, dicarboxylic acids and hexosephosphates became labelled. The specific radioactivities of alanine, aspartate and glutamate were identical; the hexosamine had a specific radioactivity twice as high as e.g. alanine.The finding that pyruvate was not incorporated into compounds derived from acetyl CoA, whereas acetate was incorporated into derivatives of acetyl CoA and pyruvate in a 1:1 ratio demonstrates that pyruvate is synthesized by reductive carboxylation of acetyl CoA. The data further provide evidence that in this autotrophic CO2 fixation pathway hexosephosphates and pentosephosphates are synthesized from CO2 via acetyl CoA and pyruvate.  相似文献   

20.
《Autophagy》2013,9(2):269-284
Plasmodium parasites successfully colonize different habitats within mammals and mosquitoes, and adaptation to various environments is accompanied by changes in their organelle composition and size. Previously, we observed that during hepatocyte infection, Plasmodium discards organelles involved in invasion and expands those implicated in biosynthetic pathways. We hypothesized that this process is regulated by autophagy. Plasmodium spp. possess a rudimentary set of known autophagy-related proteins that includes the ortholog of yeast Atg8. In this study, we analyzed the activity of the ATG8-conjugation pathway over the course of the lifecycle of Plasmodium falciparum and during the liver stage of Plasmodium berghei. We engineered a transgenic P. falciparum strain expressing mCherry-PfATG8. These transgenic parasites expressed mCherry-PfATG8 in human hepatocytes and erythrocytes, and in the midgut and salivary glands of Anopheles mosquitoes. In all observed stages, mCherry-PfATG8 was localized to tubular structures. Our EM and colocalization studies done in P. berghei showed the association of PbATG8 on the limiting membranes of the endosymbiont-derived plastid-like organelle known as the apicoplast. Interestingly, during parasite replication in hepatocytes, the association of PbATG8 with the apicoplast increases as this organelle expands in size. PbATG3, PbATG7 and PbATG8 are cotranscribed in all parasitic stages. Molecular analysis of PbATG8 and PbATG3 revealed a novel mechanism of interaction compared with that observed for other orthologs. This is further supported by the inability of Plasmodium ATG8 to functionally complement atg8Δ yeast or localize to autophagosomes in starved mammalian cells. Altogether, these data suggests a unique role for the ATG8-conjugation system in Plasmodium parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号