首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Initiation and re-initiation of chromosomal DNA replication in bacteria rely on divergent multiprotein assemblies, which direct the functional delivery of the replicative helicase on single-stranded DNA (ssDNA) at specific sites. These two processes are triggered either at the single chromosomal origin oriC or at arrested forks by the conserved DnaA and PriA proteins respectively. In Bacillus subtilis, these two pathways further require the three essential proteins DnaB, DnaD and DnaI, restrictively encoded in Gram positive bacteria of low GC content. We have recently shown that DnaI and DnaB act as a pair of loaders of the DnaC replicative helicase. The role of DnaD appeared more enigmatic. It was previously shown to interact with DnaA and to display weak ssDNA binding activity. Here, we report that purified DnaD can interact physically with PriA and with DnaB. We show that the lethality of the temperature-sensitive dnaD23 mutant can be suppressed by different DnaB point mutants, which were found to be identical to the suppressors of priA null mutants. The DnaD23 protein displays lower ssDNA binding activity than DnaD. Conversely, the DnaB75 protein, the main dnaD23 suppressor, has gained affinity for ssDNA. Finally, we observed that this interplay between DnaD and DnaB is crucial for their concerted interaction with SSB-coated ssDNA, which is the expected substrate for the loading of the replicative helicase in vivo. Altogether, these results highlight the need for both DnaD and DnaB to interact individually and together with ssDNA during the early stages of initiation and re-initiation of chromosomal DNA replication. They also point at a main structural role of DnaD in the multiprotein assemblies built during these two essential processes.  相似文献   

3.
Shogo Ozaki  Tsutomu Katayama   《Plasmid》2009,62(2):71-82
Escherichia coli DnaA is the initiator of chromosomal replication. Multiple ATP-DnaA molecules assemble at the oriC replication origin in a highly regulated manner, and the resultant initiation complexes promote local duplex unwinding within oriC, resulting in open complexes. DnaB helicase is loaded onto the unwound single-stranded region within oriC via interaction with the DnaA multimers. The tertiary structure of the functional domains of DnaA has been determined and several crucial residues in the initiation process, as well as their unique functions, have been identified. These include specific DNA binding, inter-DnaA interaction, specific and regulatory interactions with ATP and with the unwound single-stranded oriC DNA, and functional interaction with DnaB helicase. An overall structure of the initiation complex is also proposed. These are important for deepening our understanding of the molecular mechanisms that underlie DnaA assembly, oriC duplex unwinding, regulation of the initiation reaction, and DnaB helicase loading. In this review, we summarize recent progress on the molecular mechanisms of the functions of DnaA on oriC. In addition, some members of the AAA+ protein family related to the initiation of replication and its regulation (e.g., DnaA) are briefly discussed.  相似文献   

4.
Phenotypes of Bacillus subtilis priA mutants suggest that they are deficient in the restart of stalled chromosomal replication forks. The presumed activity of PriA in the restart process is to promote the assembly of a multiprotein complex, the primosome, which functions to recruit the replication fork helicase onto the DNA. We have proposed previously that three proteins involved in the initiation of replication at oriC in B. subtilis, DnaB, DnaD and DnaI, are components of the PriA primosome in this bacterium. However, the involvement of these proteins in replication restart has not yet been studied. Here, we describe dnaB mutations that suppress the phenotypes of B. subtilis priA mutants. In a representative mutant, the DnaC helicase is loaded onto single-stranded DNA in a PriA-independent, DnaD- and DnaI-dependent manner. These observations confirm that DnaB, DnaD and DnaI are primosomal proteins in B. subtilis. Moreover, their involvement in the suppression of priA phenotypes shows that they participate in replication fork restart in B. subtilis.  相似文献   

5.
DNA replication is a fundamental biological process that is tightly regulated in all cells. In bacteria, DnaA controls when and where replication begins by building a step‐wise complex that loads the replicative helicase onto chromosomal DNA. In many low‐GC Gram‐positive species, DnaA recruits the DnaD and DnaB proteins to function as adaptors to assist in helicase loading. How DnaA, its adaptors and the helicase form a complex at the origin is unclear. We addressed this question using the bacterial two‐hybrid assay to determine how the initiation proteins from Bacillus subtilis interact with each other. We show that cryptic interaction sites play a key role in this process and we map these regions for the entire pathway. In addition, we found that the SirA regulator that blocks initiation in sporulating cells binds to a surface on DnaA that overlaps with DnaD. The interaction between DnaA and DnaD was also mapped to the same DnaA surface in the human pathogen Staphylococcus aureus, demonstrating the broad conservation of this surface. Therefore, our study has unveiled key protein interactions essential for initiation and our approach is widely applicable for mapping interactions in other signaling pathways that are governed by cryptic binding surfaces.  相似文献   

6.
Primosomal protein cascades load the replicative helicase onto DNA. In Bacillus subtilis a putative primosomal cascade involving the DnaD-DnaB-DnaI proteins has been suggested to participate in both the DnaA and PriA-dependent loading of the replicative helicase DnaC onto the DNA. Recently we discovered that DnaD has a global remodelling DNA activity suggesting a more widespread role in bacterial nucleoid architecture. Here, we show that DnaB forms a "square-like" tetramer with a hole in the centre and suggest a model for its interaction with DNA. It has a global DNA remodelling activity that is different from that of DnaD. Whereas DnaD opens up supercoiled DNA, DnaB acts as a lateral compaction protein. The two competing activities can act together on a supercoiled plasmid forming two topologically distinct poles; one compacted with DnaB and the other open with DnaD. We propose that the primary roles of DnaB and DnaD are in bacterial nucleoid architecture control and modulation, and their effects on the initiation of DNA replication are a secondary role resulting from architectural perturbations of chromosomal DNA.  相似文献   

7.
Primosomes are nucleoprotein assemblies designed for the activation of DNA replication forks. Their primary role is to recruit the replicative helicase onto single-stranded DNA. The "replication restart" primosome, defined in Escherichia coli, is involved in the reactivation of arrested replication forks. Binding of the PriA protein to forked DNA triggers its assembly. PriA is conserved in bacteria, but its primosomal partners are not. In Bacillus subtilis, genetic analysis has revealed three primosomal proteins, DnaB, DnaD, and DnaI, that have no obvious homologues in E. coli. Interestingly, they are involved in primosome function both at arrested replication forks and at the chromosomal origin. Our biochemical analysis of the DnaB and DnaD proteins unravels their role in primosome assembly. They are both multimeric and bind individually to DNA. Furthermore, DnaD stimulates DnaB binding activities. DnaD alone and the DnaD/DnaB pair interact specifically with PriA of B. subtilis on several DNA substrates. This suggests that the nucleoprotein assembly is sequential in the PriA, DnaD, DnaB order. The preferred DNA substrate mimics an arrested DNA replication fork with unreplicated lagging strand, structurally identical to a product of recombinational repair of a stalled replication fork.  相似文献   

8.
ATP-DnaA binds to multiple DnaA boxes in the Escherichia coli replication origin (oriC) and forms left-half and right-half subcomplexes that promote DNA unwinding and DnaB helicase loading. DnaA forms homo-oligomers in a head-to-tail manner via interactions between the bound ATP and Arg-285 of the adjacent protomer. DnaA boxes R1 and R4 reside at the outer edges of the DnaA-binding region and have opposite orientations. In this study, roles for the protomers bound at R1 and R4 were elucidated using chimeric DnaA molecules that had alternative DNA binding sequence specificity and chimeric oriC molecules bearing the alternative DnaA binding sequence at R1 or R4. In vitro, protomers at R1 and R4 promoted initiation regardless of whether the bound nucleotide was ADP or ATP. Arg-285 was shown to play an important role in the formation of subcomplexes that were active in oriC unwinding and DnaB loading. The results of in vivo analysis using the chimeric molecules were consistent with the in vitro data. Taken together, the data suggest a model in which DnaA subcomplexes form in symmetrically opposed orientations and in which the Arg-285 fingers face inward to mediate interactions with adjacent protomers. This mode is consistent with initiation regulation by ATP-DnaA and bidirectional loading of DnaB helicases.  相似文献   

9.
The delivery of a ring-shaped hexameric helicase onto DNA is a fundamental step of DNA replication, conserved in all cellular organisms. We report the biochemical characterization of the bacterial hexameric replicative helicase DnaC of Bacillus subtilis with that of the two replication initiation proteins DnaI and DnaB. We show that DnaI and DnaB interact physically and functionally with the DnaC helicase and mediate its functional delivery onto DNA. Thus, DnaB and DnaI form a pair of helicase loaders, revealing a two-protein strategy for the loading of a replicative helicase. We also present evidence that the DnaC helicase loading mechanism appears to be of the ring-assembly type, proceeding through the recruitment of DnaC monomers and their hexamerization around single-stranded DNA by the coordinated action of DnaI and DnaB.  相似文献   

10.
11.
We examined the intracellular distribution of Bacillus subtilis Dna-initiation proteins by immunofluorescence microscopy to visualize the initiation complex of replication in vivo. DnaA was distributed throughout the cytoplasm, but both DnaB and DnaI were always detected as foci during the cell-division cycle. Interaction of DnaI with the DnaC helicase by the yeast two-hybrid assay suggests that DnaI acts as a helicase loader. The number of DnaB and DnaI foci within the cell exceeded that of oriC. Although the foci were not always co-localized with oriC, they seemed to be localized near the outer or inner edges of the nucleoids at initiation of replication. When the replication cycle was synchronized in cells using a temperature-sensitive dnaA mutant, duplication of the oriC region was observed predominantly near an edge of the nucleoid. Before initiation occurred, each one of the DnaB and DnaI foci was frequently observed near there. Furthermore, DnaX-GFP (DnaX is a component of DNA polymerase III) foci were detected near either of the edges of the nucleoids at the onset of replication. These results suggest that the replisome is recruited into oriC near either edge of the nucleoids to initiate chromosome replication in B. subtilis.  相似文献   

12.
The Bacillus subtilis proteins DnaD and DnaB are essential for replication initiation and are conserved in low G+C content Gram-positive bacteria. Previous work indicated that DnaD and DnaB are involved in helicase loading during the process of restarting stalled replication forks. We have investigated the roles of DnaD and DnaB in replication initiation at oriC in vivo. Using chromatin immunoprecipitation (ChIP), we found that DnaD and DnaB functions are needed to load the replicative helicase at oriC. To investigate further the functions of DnaD and DnaB in replication initiation, we isolated and characterized suppressors of the temperature sensitivity of dnaD and dnaB mutant cells. In both cases, we isolated the identical missense mutation in dnaB, dnaBS371P. Using yeast two-hybrid analysis, we found that dnaBS371P uncovers a previously undetected physical interaction between DnaD and DnaB. We also found that DnaBS371P constitutively recruits DnaD to the membrane fraction of cells, where DnaB and oriC are enriched. Phenotypes of cells expressing DnaBS371P are consistent with aberrant replication control. We hypothesize that B. subtilis regulates replication initiation by regulating a physical interaction between two proteins essential for helicase loading at chromosomal origins.  相似文献   

13.
Replicative helicases are essential proteins that unwind DNA in front of replication forks. Their loading depends on accessory proteins and in bacteria, DnaC and DnaI are well characterized loaders. However, most bacteria do not express either of these two proteins. Instead, they are proposed to rely on DciA, an ancestral protein unrelated to DnaC/I. While the DciA structure from Vibrio cholerae shares no homology with DnaC, it reveals similarities with DnaA and DnaX, two proteins involved during replication initiation. As other bacterial replicative helicases, VcDnaB adopts a toroid-shaped homo-hexameric structure, but with a slightly open dynamic conformation in the free state. We show that VcDnaB can load itself on DNA in vitro and that VcDciA stimulates this function, resulting in an increased DNA unwinding. VcDciA interacts with VcDnaB with a 3/6 stoichiometry and we show that a determinant residue, which discriminates DciA- and DnaC/I-helicases, is critical in vivo. Our work is the first step toward the understanding of the ancestral mode of loading of bacterial replicative helicases on DNA. It sheds light on the strategy employed by phage helicase loaders to hijack bacterial replicative helicases and may explain the recurrent domestication of dnaC/I through evolution in bacteria.  相似文献   

14.
DNA replication in Helicobacter pylori is initiated from a unique site (oriC) on its chromosome where several proteins assemble to form a functional replisome. The assembly of H. pylori replication machinery is similar to that of the model gram negative bacterium Escherichia coli except for the absence of DnaC needed to recruit the hexameric DnaB helicase at the replisome assembly site. In the absence of an obvious DnaC homologue in H. pylori, the question arises as to whether HpDnaB helicase is loaded at the Hp-replication origin by itself or is assisted by other unidentified protein(s). A high-throughput yeast two-hybrid study has revealed two proteins of unknown functions (Hp0897 and Hp0340) that interact with HpDnaB. Here we demonstrate that Hp0897 interacts with HpDnaB helicase in vitro as well as in vivo. Furthermore, the interaction stimulates the DNA binding activity of HpDnaB and modulates its adenosine triphosphate hydrolysis and helicase activities significantly. Prior complex formation of Hp0897 and HpDnaB enhances the binding/loading of DnaB onto DNA. Hp0897, along with HpDnaB, colocalizes with replication complex at initiation but does not move with the replisome during elongation. Together, these results suggest a possible role of Hp0897 in loading of HpDnaB at oriC.  相似文献   

15.
Chromosomal replication initiation requires the regulated formation of dynamic higher order complexes. Escherichia coli ATP-DnaA forms a specific multimer on oriC, resulting in DNA unwinding and DnaB helicase loading. DiaA, a DnaA-binding protein, directly stimulates the formation of ATP-DnaA multimers on oriC and ensures timely replication initiation. In this study, DnaA Phe-46 was identified as the crucial DiaA-binding site required for DiaA-stimulated ATP-DnaA assembly on oriC. Moreover, we show that DiaA stimulation requires only a subgroup of DnaA molecules binding to oriC, that DnaA Phe-46 is also important in the loading of DnaB helicase onto the oriC-DnaA complexes, and that this process also requires only a subgroup of DnaA molecules. Despite the use of only a DnaA subgroup, DiaA inhibited DnaB loading on oriC-DnaA complexes, suggesting that DiaA and DnaB bind to a common DnaA subgroup. A cellular factor can relieve the DiaA inhibition, allowing DnaB loading. Consistently, DnaA F46A caused retarded initiations in vivo in a DiaA-independent manner. It is therefore likely that DiaA dynamics are crucial in the regulated sequential progress of DnaA assembly and DnaB loading. We accordingly propose a model for dynamic structural changes of initial oriC complexes loading DiaA or DnaB helicase.In many cellular organisms, multiple proteins form dynamic complexes on the chromosomal origin for the initiation of DNA replication. In Escherichia coli, ATP-DnaA forms a specific multimeric complex on the origin (oriC), resulting in an initiation complex that is competent in the replicational initiation (13). ATP-DnaA complexes, but not ADP-DnaA complexes, unwind the DNA duplex within the oriC DNA unwinding element (DUE)2 with the aid of superhelicity of oriC DNA and heat energy, resulting in the formation of open complexes (4, 5). At the unwound region, the loading of a DnaB replicative helicase is mediated by a DnaC helicase loader, resulting in the formation of the prepriming complex (6, 7). DnaG primase then complexes with DnaB loaded on the single-stranded (ss) region, which leads to primer synthesis and the loading of DNA polymerase III holoenzyme (8). The cellular ATP-DnaA level fluctuates during the replication cycle with a peak around the time of initiation (9). At the post-initiation stage, DnaA-ATP is hydrolyzed in a manner depending on ADP-Hda protein and the DNA-loaded form of the β-clamp subunit of the polymerase III holoenzyme, yielding inactive ADP-DnaA (1013). This DnaA inactivation system is called RIDA (regulatory inactivation of DnaA). Hda consists of a short N-terminal region bearing a clamp-binding motif and a C-terminal AAA+ domain. This protein is activated by ADP binding, which allows interaction with ATP-DnaA in a DNA-loaded β-clamp-dependent manner. RIDA decreases the level of cellular ATP-DnaA in a replication-coordinated manner and represses extra initiation events (911).The timing of chromosomal replication initiation is strictly regulated and needs to be linked to the regulation of the dynamic conformational changes in the DnaA-oriC complexes, as well as to the cellular ATP-DnaA levels. DiaA is a DnaA-binding protein that stimulates ATP-DnaA assembly on oriC and thus the initiation of replication (14, 15). DiaA mutants show delayed initiation and even asynchronous initiations of multiple origins when cells are rapidly growing and multiple rounds of replication are progressing simultaneously. DiaA is a homotetramer, and each protomer has a DnaA-binding site, which allows the simultaneous binding of multiple DnaA molecules to the homotetramer and the stimulation of cooperative binding of ATP-DnaA molecules on oriC.DnaA consists of four functional domains as follows: the C-terminal domain IV has a DNA-binding helix-turn-helix structure (16) and domain III is an AAA+ domain that contains ATP-interacting motifs, homomultimer formation sites, and specific residues, termed B/H motifs, that can interact with ssDNA of the unwound DUE (1721). Domain III forms a head-to-tail homomultimer whose overall structure is altered by ATP binding. It is possible that this multimer forms a spiral shape, in which one round of the spiral contains approximately seven protomers, and the resultant central pore carries the B/H motifs on the surface (21, 22). Domain II is a flexible, unstructured linker (23, 24), and domain I has a compactly folded structure, which interacts with several proteins including domain I per se, DiaA, and DnaB helicase (14, 15, 23, 25, 26). Domain I most likely forms homodimers in a head-to-head manner, which would line up the DnaB-interacting sites within this domain, thereby promoting DnaB loading (23).E. coli oriC carries a dozen DnaA-binding sites, including the high affinity 9-mer DnaA boxes (R1 and R4 sites) and ATP-DnaA-preferential low affinity sites (ADLAS), which include the I and τ sites (20, 27). The interaction of ATP-DnaA with ADLAS is specifically important for the activation of DnaA-oriC complexes. DiaA stimulates the cooperative binding of ATP-DnaA on oriC, especially on ADLAS, resulting in the formation of open complexes (15). DnaB helicase stably complexes with DnaC, and the resulting DnaBC complexes can interact with open complexes, loading DnaB onto ssDNA of the unwound DUE. We have previously determined the tertiary structure of the DnaA domain I and found that DnaA Glu-21, within this domain, is a DnaB interaction site, specifically required for DnaB loading onto open complexes (23). The fundamental complex structure, the spatial organization of oriC-DnaA multimers complexed with DiaA, and those involved in the loading of DnaB onto oriC complexes have yet to be revealed.In this study, our first step was the determination of a crucial DiaA-binding site, Phe-46, on DnaA domain I, using NMR and mutant analyses. Next we found that this site is required for DiaA-dependent stimulation of initiation complex formation and that only a subgroup of DnaA molecules, assembled on oriC, is sufficient for DiaA stimulation. Furthermore, we revealed that DnaA Phe-46 is also important for interactions with DnaB helicase. Like the DiaA stimulation, the stimulation of DnaB loading requires only a subgroup of DnaA molecules assembled on oriC. Competition analyses suggested that DiaA and DnaB interact with a common DnaA subgroup on oriC. Only a specific DnaA subgroup in an initiation complex might expose domain I to a position available for the protein loading. Cells might contain a modulator for the inhibition of DnaB loading by DiaA. Thus we infer that DiaA can regulate the initiation of replication both positively and negatively, i.e. it promotes ATP-DnaA assembly and inhibits DnaB loading, thereby ensuring the sequential and regulated progress of initiation reactions. In addition we propose a novel model for the structure of initiation complexes that includes DiaA and suggest possible modes of interactions for DiaA and DnaB on the initial complexes.  相似文献   

16.
The Bacillus subtilis DnaI, DnaB and DnaD proteins load the replicative ring helicase DnaC onto DNA during priming of DNA replication. Here we show that DnaI consists of a C-terminal domain (Cd) with ATPase and DNA-binding activities and an N-terminal domain (Nd) that interacts with the replicative ring helicase. A Zn2+-binding module mediates the interaction with the helicase and C67, C70 and H84 are involved in the coordination of the Zn2+. DnaI binds ATP and exhibits ATPase activity that is not stimulated by ssDNA, because the DNA-binding site on Cd is masked by Nd. The ATPase activity resides on the Cd domain and when detached from the Nd domain, it becomes sensitive to stimulation by ssDNA because its cryptic DNA-binding site is exposed. Therefore, Nd acts as a molecular ‘switch’ regulating access to the ssDNA binding site on Cd, in response to binding of the helicase. DnaI is sufficient to load the replicative helicase from a complex with six DnaI molecules, so there is no requirement for a dual helicase loader system.  相似文献   

17.
In bacteria, initiation of DNA replication requires the DnaA protein. Regulation of DnaA association and activity at the origin of replication, oriC, is the predominant mechanism of replication initiation control. One key feature known to be generally important for replication is DNA topology. Although there have been some suggestions that topology may impact replication initiation, whether this mechanism regulates DnaA‐mediated replication initiation is unclear. We found that the essential topoisomerase, DNA gyrase, is required for both proper binding of DnaA to oriC as well as control of initiation frequency in Bacillus subtilis. Furthermore, we found that the regulatory activity of gyrase in initiation is specific to DnaA and oriC. Cells initiating replication from a DnaA‐independent origin, oriN, are largely resistant to gyrase inhibition by novobiocin, even at concentrations that compromise survival by up to four orders of magnitude in oriC cells. Furthermore, inhibition of gyrase does not impact initiation frequency in oriN cells. Additionally, deletion or overexpression of the DnaA regulator, YabA, significantly modulates sensitivity to gyrase inhibition, but only in oriC and not oriN cells. We propose that gyrase is a negative regulator of DnaA‐dependent replication initiation from oriC, and that this regulatory mechanism is required for cell survival.  相似文献   

18.
In the pathogenic Mycobacterium tuberculosis H37Rv, the causative agent of tuberculosis, the genetic and biochemical mechanisms for initiation of DNA replication are largely unknown. In the present study, we have characterized the physical interactions between M. tuberculosis DnaA and DnaB using both in vivo methods, such as bacterial two-hybrid assays, and in vitro techniques, such as surface plasmon resonance (SPR) and Pull-down/Western blotting. The full-length N-terminus (1–206 residues) of DnaB was found to interact with DnaA, while the shorter N-terminal domain of DnaB (1–125 residues), which lacked the linker region, did not. Further SPR and electrophoretic mobility shift assays indicated that the N-terminus (1–206 residues) of DnaB also had a critical role in regulating DnaA complex formation at the origin of replication (OriC). This regulatory effect was not obviously observed for DNA substrates containing only two DnaA-boxes. This is the first report showing a physical interaction between DnaA and replicative helicase DnaB from M. tuberculosis and the role in subsequent DnaA-OriC interactions. The findings reported here further the understanding of the regulatory mechanisms for initiation of DNA replication in this important human pathogen.  相似文献   

19.
In Gram negative Escherichia coli there are two well-characterised primosomal assembly processes, the PriA- and DnaA-mediated cascades. The presence of PriA and DnaA proteins in Gram positive Bacillus spp. supports the assumption that both the PriA- and DnaA-mediated primosomal assembly cascades also operate in these organisms. However, the lack of sequence homology between the rest of the primosomal proteins indicates significant differences between these two bacterial species. Central to the process of primosomal assembly is the loading of the main hexameric replicative helicase (DnaB in E.coli and DnaC in Bacillus subtilis) on the DNA. This loading is achieved by specialised proteins known as ‘helicase loaders’. In E.coli DnaT and DnaC are responsible for loading DnaB onto the DNA during primosome assembly, in the PriA- and DnaA-mediated cascades, respectively. In Bacillus the identity of the helicase loader is still not established unequivocally. In this paper we provide evidence for a functional interaction between the primosomal protein DnaI from B.subtilis and the main hexameric replicative helicase DnaB from Bacillus stearothermophilus. Our results are consistent with the putative role of DnaI as the ‘helicase loader’ in the Gram positive Bacillus spp.  相似文献   

20.
Replication of a Bacillus subtilis oriC plasmid in vitro   总被引:4,自引:1,他引:3  
We constructed an in vitro replication system specific for a Bacillus subtilis oriC plasmid using a soluble fraction derived from cell extracts of B. subtilis. DNA polymerase III and two initiation proteins, DnaA and DnaB, were required for in vitro replication as observed in vivo. Both upstream and downstream DnaA box regions of the dnaA gene were required as cis-elements for in vitro synthesis of the B. subtilis oriC plasmid as well as for in vivo activity. The replication was semi-conservative and only one round of replication occurred within 15min. These results indicate that in vitro replication faithfully reproduced in vivo replication. To elucidate the site of initiation and the direction of replication, we analysed replicative intermediates generated in vitro in the presence of various concentrations of ddGTP by two methods. First, analysis of restriction fragments around the dnaA gene showed a high level of incorporation of the radioactive substrate, indicating that replication began within the vicinity of the dnaA gene. Second, using 2-dimensional gel electrophoresis, bubble arcs were detected only on fragments containing the DnaA box region downstream of the dnaA gene, indicating that the initiation site resided within this region. The distribution of the bubble arcs suggested that both bidirectional and unidirectional replication occurred in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号