首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diphtheria toxin (DT)* is the paradigm of the powerful A-B toxins. These bacterial poisons bind to cells, are endocytosed, and inject their catalytic domain into the cytosol causing the irreversible modification of a key component of the the host cellular machinery. The mechanism by which the hydrophilic enzymatic fragment of DT crosses the endosomal membrane and is released into the cytosol remains controversial. In this issue, Ratts et al. (2003) demonstrate that delivery of the DT catalytic domain from the lumen of purified early endosomes to the external medium requires the addition of a cytosolic translocation factor complex composed in part of Hsp90 and thioredoxin reductase.  相似文献   

2.
The homodimeric ATP‐binding cassette (ABC) transport complex TAPL (transporter associated with antigen processing‐like, ABCB9) translocates a broad spectrum of peptides from the cytosol into the lumen of lysosomes. The presence of an extra N‐terminal transmembrane domain (TMD0) lacking any sequence homology to known proteins distinguishes TAPL from most other ABC transporters of its subfamily. By dissecting TAPL, we could assign distinct functions to the core complex and TMD0. The core‐TAPL complex, composed of six predicted transmembrane helices and a nucleotide‐binding domain, is sufficient for peptide transport, showing that the core transport complex is correctly targeted to and assembled in the membrane. Strikingly, in contrast to the full‐length transporter, the core translocation complex is targeted preferentially to the plasma membrane. However, TMD0 alone, comprising a putative four transmembrane helix bundle, traffics to lysosomes. Upon coexpression, TMD0 forms a stable non‐covalently linked complex with the core translocation machinery and guides core‐TAPL into lysosomal compartments. Therefore, TMD0 represents a unique domain, which folds independently and encodes the information for lysosomal targeting. These outcomes are discussed in respect of trafficking, folding and function of TAPL.  相似文献   

3.
The transporter associated with antigen processing (TAP) translocates antigenic peptides from the cytosol into the endoplasmic reticular lumen for subsequent loading onto major histocompatibility complex (MHC) class I molecules. These peptide-MHC complexes are inspected at the cell surface by cytotoxic T-lymphocytes. Assembly of the functional peptide transport and loading complex depends on intra- and intermolecular packing of transmembrane helices (TMs). Here, we have examined the membrane topology of human TAP1 within an assembled and functional transport complex by cysteine-scanning mutagenesis. The accessibility of single cysteine residues facing the cytosol or endoplasmic reticular lumen was probed by a minimally invasive approach using membrane-impermeable, thiol-specific fluorophores in semipermeabilized "living" cells. TAP1 contains ten transmembrane segments, which place the N and C termini in the cytosol. The transmembrane domain consists of a translocation core of six TMs, a building block conserved among most ATP-binding cassette transporters, and a unique additional N-terminal domain of four TMs, essential for tapasin binding and assembly of the peptide-loading complex. This study provides a first map of the structural organization of the TAP machinery within the macromolecular MHCI peptide-loading complex.  相似文献   

4.
In vitro delivery of the diphtheria toxin catalytic (C) domain from the lumen of purified early endosomes to the external milieu requires the addition of both ATP and a cytosolic translocation factor (CTF) complex. Using the translocation of C-domain ADP-ribosyltransferase activity across the endosomal membrane as an assay, the CTF complex activity was 650-800-fold purified from human T cell and yeast extracts, respectively. The chaperonin heat shock protein (Hsp) 90 and thioredoxin reductase were identified by mass spectrometry sequencing in CTF complexes purified from both human T cell and yeast. Further analysis of the role played by these two proteins with specific inhibitors, both in the in vitro translocation assay and in intact cell toxicity assays, has demonstrated their essential role in the productive delivery of the C-domain from the lumen of early endosomes to the external milieu. These results confirm and extend earlier observations of diphtheria toxin C-domain unfolding and refolding that must occur before and after vesicle membrane translocation. In addition, results presented here demonstrate that thioredoxin reductase activity plays an essential role in the cytosolic release of the C-domain. Because analogous CTF complexes have been partially purified from mammalian and yeast cell extracts, results presented here suggest a common and fundamental mechanism for C-domain translocation across early endosomal membranes.  相似文献   

5.
Equilibrative nucleoside transporters play essential roles in nutrient uptake, cardiovascular and renal function, and purine analog drug chemotherapies. Limited structural information is available for this family of transporters; however, residues in transmembrane domains 1, 2, 4, and 5 appear to be important for ligand and inhibitor binding. In order to identify regions of the transporter that are important for ligand specificity, a genetic selection for mutants of the inosine-guanosine-specific Crithidia fasciculata nucleoside transporter 2 (CfNT2) that had gained the ability to transport adenosine was carried out in the yeast Saccharomyces cerevisiae. Nearly all positive clones from the genetic selection carried mutations at lysine 155 in transmembrane domain 4, highlighting lysine 155 as a pivotal residue governing the ligand specificity of CfNT2. Mutation of lysine 155 to asparagine conferred affinity for adenosine on the mutant transporter at the expense of inosine and guanosine affinity due to weakened contacts to the purine ring of the ligand. Following systematic cysteine-scanning mutagenesis, thiol-specific modification of several positions within transmembrane domain 4 was found to interfere with inosine transport capability, indicating that this helix lines the water-filled ligand translocation channel. Additionally, the pattern of modification of transmembrane domain 4 suggested that it may deviate from helicity in the vicinity of residue 155. Position 155 was also protected from modification in the presence of ligand, suggesting that lysine 155 is in or near the ligand binding site. Transmembrane domain 4 and particularly lysine 155 appear to play key roles in ligand discrimination and translocation by CfNT2.  相似文献   

6.
Pseudomonas exotoxin A (PE) is a cytotoxin composed of three structural domains. Domain I is responsible for cell binding, domain II for membrane translocation enabling access to the cytosol, and domain III for the catalytic inactivation of protein synthesis, which results in cell death. To investigate the role of the six alpha-helices (A-F) that form the translocation domain, we deleted them successively one at a time. All mutants showed native cell-binding and catalytic activities, indicating that deletions specifically affected translocation activity. This step of the intoxication procedure was examined directly using a cell-free translocation assay, and indirectly by monitoring cytotoxicity. Translocation activity and log(cytotoxicity) were highly correlated, directly indicating that translocation is rate limiting for PE intoxication. Deletion of B, C and D helices resulted in non-toxic and non-translocating molecules, whereas mutants lacking the A or E helix displayed significant cytotoxicity albeit 500-fold lower than native PE. We concluded that B, C and D helices, which make up the core of domain II, are essential, whereas the more peripheral A and E helices are comparatively dispensable. The last helix (F) is inhibitory for translocation because its deletion produced a mutant displaying a translocation activity 60% higher than PE, along with a three- to sixfold increase in cytotoxicity in all tested cell lines. This toxin is the most in vitro active PE mutant obtained until now. Finally, partial duplication of domain II did not give rise to a more actively translocated PE, but rather to a threefold less active molecule.  相似文献   

7.
The Rho-GTPases-activating toxin CNF1 (cytotoxic necrotizing factor 1) delivers its catalytic activity into the cytosol of eukaryotic cells by a low pH membrane translocation mechanism reminiscent of that used by diphtheria toxin (DT). As DT, CNF1 exhibits a translocation domain (T) containing two predicted hydrophobic helices (H1-2) (aa 350-412) separated by a short peptidic loop (CNF1-TL) (aa 373-386) with acidic residues. In the DT loop, the loss of charge of acidic amino acids, as a result of protonation at low pH, is a critical step in the transfer of the DT catalytic activity into the cytosol. To determine whether the CNF1 T domain operates similarly to the DT T domain, we mutated several ionizable amino acids of CNF1-TL to lysine. Single substitutions such as D373K or D379K strongly decreased the cytotoxic effect of CNF1 on HEp-2 cells, whereas the double substitution D373K/D379K induced a nearly complete loss of cytotoxic activity. These single or double substitutions did not modify the cell-binding, enzymatic or endocytic activities of the mutant toxins. Unlike the wild-type toxin, single- or double-substituted CNF1 molecules bound to the HEp-2 plasma membrane could not translocate their enzymatic activity directly into the cytosol following a low pH pulse.  相似文献   

8.
Acidic conditions within the endosomal lumen induce the T domain of receptor-bound diphtheria toxin (DT) to insert into the endosomal membrane and mediate translocation of the toxin's catalytic domain to the cytosol. A conformational rearrangement in the toxin occurring near pH5 allows a buried apolar helical hairpin of the native T domain (helices TH8 and TH9) to undergo membrane insertion. If the inserted hairpin spans the bilayer, as hypothesized, then the two acidic residues within the TL5 interhelical loop, Glu 349 and Asp 352, should become exposed at the neutral cytosolic face of the membrane and reionize. To investigate the roles of these residues in toxin action, we characterized mutant toxins in which one or both acidic residues had been replaced with nonionizable ones. Each of two double mutants examined showed a several-fold reduction in cytotoxicity in 24-h Vero cell assays (sixfold for E349A + D352A and fourfold for E349Q + D352N), whereas the individual E349Q and D352N mutations caused smaller reductions in toxicity. The single and double mutations also attenuated the toxin's ability to permeabilize Vero cells to Rb+ at low pH and decreased channel formation by the toxin in artificial planar bilayers. Neither of the double mutations affected the pH-dependence profile of the toxin's conformational rearrangement in solution, as measured by binding of the hydrophobic fluorophore, 2-p-toluidinyl-naphthalene 6-sulfonate. The results demonstrate that, although there is no absolute requirement for an acidic residue within the TL5 loop for toxicity, Glu 349 and Asp 352 do significantly enhance the biological activity of the protein. The data are consistent with a model in which ionization of these residues at the cytosolic face of the endosomal membrane stabilizes the TH8/TH9 hairpin in a transmembrane configuration, thereby facilitating channel formation and translocation of the toxin's catalytic chain.  相似文献   

9.
The binary Clostridium botulinum C2 toxin consists of the binding/translocation component C2IIa and the separate enzyme component C2I, which mono-ADP-ribosylates actin in eukaryotic cells. Pore formation of C2IIa in early endosomal membranes facilitates translocation of unfolded C2I into the cytosol. We discovered earlier that translocation of C2I depends on the activity of the host cell chaperone heat shock protein Hsp90. Here, we demonstrate that cyclosporin A, which inhibits the peptidyl-prolyl cis / trans isomerase activity of cyclophilins, inhibited intoxication of cells with C2 toxin and prevented uptake of C2I into the cytosol. Cyclosporin A blocked the pH-dependent translocation of C2I activity across membranes of intact cells and of partially purified early endosomes. In vitro , the addition of cytosol to C2 toxin-loaded endosomes induced translocation of C2I activity into the cytosol, which was prevented by pretreatment of the cytosol with an antibody against cyclophilin A. Pull-down experiments with lysates from C2 toxin-treated cells revealed specific binding of cyclophilin A to the N-terminal domain of C2I. In conclusion, our results suggest an essential role of cyclophilin A for translocation of C2I across endosomal membranes during the uptake of C2 toxin into mammalian cells.  相似文献   

10.
Vacuolar H(+)-pyrophosphatase (V-PPase; EC 3.6.1.1) plays a significant role in the maintenance of the pH in cytoplasm and vacuoles via proton translocation from the cytosol to the vacuolar lumen at the expense of PP(i) hydrolysis. The topology of V-PPase as predicted by TopPred II suggests that the catalytic site is putatively located in loop e and exposed to the cytosol. The adjacent transmembrane domain 6 (TM6) is highly conserved and believed to participate in the catalytic function and conformational stability of V-PPase. In this study, alanine-scanning mutagenesis along TM6 of the mung bean V-PPase was carried out to identify its structural and functional role. Mutants Y299A, A306S and L317A exhibited gross impairment in both PP(i) hydrolysis and proton translocation. Meanwhile, mutations at L307 and N318 completely abolished the targeting of the enzyme, causing broad cytosolic localization and implicating a possible role of these residues in protein translocation. The location of these amino acid residues was on the same side of the helix wheel, suggesting their involvement in maintaining the stability of enzyme conformation. G297A, E301A and A305S mutants showed declines in proton translocation but not in PP(i) hydrolysis, consequently resulting in decreases in the coupling efficiency. These amino acid residues cluster at one face of the helix wheel, indicating their direct/indirect participation in proton translocation. Taken together, these data indicate that TM6 is crucial to vacuolar H(+)-pyrophosphatase, probably mediating protein targeting, proton transport, and the maintenance of enzyme structure.  相似文献   

11.
The Pasteurella multocida toxin (PMT) is a potent mitogen which enters the cytosol of eukaryotic cells via a low pH membrane translocation event. In common with the Escherichia coli cytotoxic necrotizing factor 1 (CNF1), the core of the PMT translocation domain is composed of two predicted hydrophobic helices (H1 - residues 402-423, H2 - 437-457) linked by a hydrophilic loop (PMT-TL - 424-436). The peptide loop contains three acidic residues (D425, D431 and E434), which may play a role equivalent to D373, D379 and E382/383 in CNF1. To test this hypothesis, a series of point mutants was generated in which acidic residues were mutated into the permanently charged positive residue lysine. Individual mutation of D425, D431 and E434 each caused a four- to sixfold reduction in toxin activity. Interestingly, mutation of D401 located immediately outside the predicted helix-loop-helix motif completely abolished toxin activity. Individual mutations did not affect cell binding nor greatly altered toxin structure, but did prevent translocation of the surface-bound proteins into the cytosol after a low pH pulse. Moreover, we demonstrate using an in vitro assay that PMT undergoes a pH-dependent membrane insertion.  相似文献   

12.
The Bordetella pertussis adenylate cyclase toxin-hemolysin (ACT or CyaA) is a multifunctional protein. It forms small cation-selective channels in target cell and lipid bilayer membranes and it delivers into cell cytosol the amino-terminal adenylate cyclase (AC) domain, which catalyzes uncontrolled conversion of ATP to cAMP and causes cell intoxication. Here, we demonstrate that membrane translocation of the AC domain into cells is selectively dissociated from ACT membrane insertion and channel formation when a helix-breaking proline residue is substituted for glutamate 509 (Glu-509) within a predicted transmembrane amphipathic alpha-helix. Neutral substitutions of Glu-509 had little effect on toxin activities. In contrast, charge reversal by lysine substitutions of the Glu-509 or of the adjacent Glu-516 residue reduced the capacity of the toxin to translocate the AC domain across membrane and enhanced significantly its specific hemolytic activity and channel forming capacity in lipid bilayer membranes. Combination of the E509K and E516K mutations in a single molecule further exacerbated hemolytic and channel forming activity and ablated translocation of the AC domain into cells. The lysine substitutions strongly decreased the cation selectivity of the channels, indicating that Glu-509 and Glu-516 are located within or close to the membrane channel. These results suggest that the structure including glutamate residues 509 and 516 is critical for AC membrane translocation and channel forming activity of ACT.  相似文献   

13.
Pasteurella multocida toxin (PMT) is an AB toxin that causes pleiotropic effects in targeted host cells. The N-terminus of PMT (PMT-N) is considered to harbor the membrane receptor binding and translocation domains responsible for mediating cellular entry and delivery of the C-terminal catalytic domain into the host cytosol. Previous studies have implicated gangliosides as the host receptors for PMT binding. To gain further insight into the binding interactions involved in PMT binding to cell membranes, we explored the role of various membrane components in PMT binding, utilizing four different approaches: (a) TLC-overlay binding experiments with (125) I-labeled PMT, PMT-N or the C-terminus of PMT; (b) pull-down experiments using reconstituted membrane liposomes with full-length PMT; (c) surface plasmon resonance analysis of PMT-N binding to reconstituted membrane liposomes; (d) and surface plasmon resonance analysis of PMT-N binding to HEK-293T cell membranes without or with sphingomyelinase, phospholipase D or trypsin treatment. The results obtained revealed that, in our experimental system, full-length PMT and PMT-N did not bind to gangliosides, including monoasialogangliosides GM(1) , GM(2) or GM(3) , but instead bound to membrane phospholipids, primarily the abundant sphingophospholipid sphingomyelin or phosphatidylcholine with other lipid components. Collectively, these studies demonstrate the importance of sphingomyelin for PMT binding to membranes and suggest the involvement of a protein co-receptor.  相似文献   

14.
Clostridium difficile toxin B (269 kDa) is one of the causative agents of antibiotic-associated diarrhea and pseudomembranous colitis. Toxin B acts in the cytosol of eukaryotic target cells where it inactivates Rho GTPases by monoglucosylation. The catalytic domain of toxin B is located at the N terminus (amino acid residues 1-546). The C-terminal and the middle region of the toxin seem to be involved in receptor binding and translocation. Here we studied whether the full-length toxin or only a part of the holotoxin is translocated into the cytosol. Vero cells were treated with recombinant glutathione S-transferase-toxin B, and thereafter, toxin B fragments were isolated by affinity precipitation of the glutathione S-transferase-tagged protein from the cytosolic fraction of intoxicated cells. The toxin fragment (approximately 65 kDa) was recognized by an antibody against the N terminus of toxin B and was identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis as the catalytic domain of toxin B. The toxin fragment located in the cytosol possessed glucosyltransferase activity that could modify RhoA in vitro, but it was not able to intoxicate intact cells. After treatment of Vero cells with a radiolabeled fragment of toxin B (amino acid residues 547-2366), radioactivity was identified in the membrane fraction of Vero cells but not in the cytosolic fraction of Vero cells. Furthermore, analysis of cells by fluorescence microscopy revealed that the C terminus of toxin B was located in endosomes, whereas the N terminus was detected in the cytosol. Protease inhibitors, which were added to the cell medium, delayed intoxication of cells by toxin B and pH-dependent translocation of the toxin from the cell surface across the cell membrane. The data indicate that toxin B is proteolytically processed during its cellular uptake process.  相似文献   

15.
Numerous bacterial toxins exert their activity by inactivating or modulating a specific intracellular host target. For this purpose, these toxins have developed efficient strategies to overcome the different host cell defences including specific binding to cell surface, internalisation, passage through the endosome or plasma membrane, exploiting intracellular trafficking and addressing to intracellular targets. Several intracellularly active toxins deliver an active domain into the cytosol that interacts with a target localised to the inner face of the plasma membrane. Thus, the large clostridial glucosylating toxins (LCGTs) target Rho/Ras‐GTPases, certain virulence factors of Gram negative bacteria, Rho‐GTPases, while Pasteurella multocida toxin (PMT) targets trimeric G‐proteins. Others such as botulinum neurotoxins and tetanus neurotoxin have their substrate on synaptic vesicle membrane. LCGTs, PMT, and certain virulence factors from Vibrio sp. show a particular structure constituted of a four‐helix bundle membrane (4HBM) protruding from the catalytic site that specifically binds to the membrane phospholipids and then trap the catalytic domain at the proximity of the membrane anchored substrate. Structural and functional analysis indicate that the 4HBM tip of the Clostridium sordellii lethal toxin (TcsL) from the LCGT family contain two loops forming a cavity that mediates the binding to phospholipids and more specifically to phosphatidylserine.  相似文献   

16.
The interaction of anthrax toxin protective antigen (PA) and target cells was assessed, and the importance of the cytosolic domain of tumor endothelium marker 8 (TEM8) in its function as a cellular receptor for PA was evaluated. PA binding and proteolytic processing on the Chinese hamster ovary cell surface occurred rapidly, with both processes nearly reaching steady state in 5 min. Remarkably, the resulting PA63 fragment was present on the cell surface only as an oligomer, and furthermore, the oligomer was the only PA species internalized, suggesting that oligomerization of PA63 triggers receptor-mediated endocytosis. Following internalization, the PA63 oligomer was rapidly and irreversibly transformed to an SDS/heat-resistant form, in a process requiring an acidic compartment. This conformational change was functionally correlated with membrane insertion, channel formation, and translocation of lethal factor into the cytosol. To explore the role of the TEM8 cytosolic tail, a series of truncated TEM8 mutants was transfected into a PA receptor-deficient Chinese hamster ovary cell line. Interestingly, all of the cytosolic tail truncated TEM8 mutants functioned as PA receptors, as determined by PA binding, processing, oligomer formation, and translocation of an lethal factor fusion toxin into the cytosol. Moreover, cells transfected with a TEM8 construct truncated before the predicted transmembrane domain failed to bind PA, demonstrating that residues 321-343 are needed for cell surface anchoring. Further evidence that the cytosolic domain plays no essential role in anthrax toxin action was obtained by showing that TEM8 anchored by a glycosylphosphatidylinositol tail also functioned as a PA receptor.  相似文献   

17.
Pseudomonas exotoxin A (PE) is a protein toxin composed of three structural domains. Functional analysis of PE has revealed that domain I is the cell-binding domain and that domain III functions in ADP ribosylation. Domain II was originally designated as the translocation domain, mediating the transfer of domain III to the cytosol, because mutations in this domain result in toxin molecules with normal cell-binding and ADP-ribosylation activities but which are not cytotoxic. However, the results do not rule out the possibility that regions of PE outside of domain II also participate in the translocation process. To investigate this problem, we have now constructed a toxin in which domain III of PE is replaced with barnase, the extracellular ribonuclease of Bacillus amyloliquefaciens. This chimeric toxin, termed PE1-412-Bar, is cytotoxic to a murine fibroblast cell line and to a murine hybridoma resistant to the ADP-ribosylation activity of PE. A mutant form of PE1-412-Bar with an inactivating mutation in domain II at position 276 was significantly less toxic. Because the cytotoxic effect of PE1-412-Bar was due to the ribonuclease-activity of barnase molecules which had been translocated to the cytosol, we conclude that domain II of PE is not only essential but also probably sufficient to carry out the translocation process.  相似文献   

18.
Bordetella pertussis adenylate cyclase (AC) toxin belongs to the RTX family of toxins but is the only member with a known catalytic domain. The principal pathophysiologic function of AC toxin appears to be rapid production of intracellular cyclic AMP (cAMP) by insertion of its catalytic domain into target cells (referred to as intoxication). Relative to other RTX toxins, AC toxin is weakly hemolytic via a process thought to involve oligomerization of toxin molecules. Monoclonal antibody (MAb) 3D1, which binds to an epitope (amino acids 373 to 399) at the distal end of the catalytic domain of AC toxin, does not affect the enzymatic activity of the toxin (conversion of ATP into cAMP in a cell-free system) but does prevent delivery of the catalytic domain to the cytosol of target erythrocytes. Under these conditions, however, the ability of AC toxin to cause hemolysis is increased three- to fourfold. To determine the mechanism by which the hemolytic potency of AC toxin is altered, we used a series of deletion mutants. A mutant toxin, DeltaAC, missing amino acids 1 to 373 of the catalytic domain, has hemolytic activity comparable to that of wild-type toxin. However, binding of MAb 3D1 to DeltaAC enhances its hemolytic activity three- to fourfold similar to the enhancement of hemolysis observed with 3D1 addition to wild-type toxin. Two additional mutants, DeltaN489 (missing amino acids 6 to 489) and DeltaN518 (missing amino acids 6 to 518), exhibit more rapid hemolysis with quicker onset than wild-type toxin does, while DeltaN549 (missing amino acids 6 to 549) has reduced hemolytic activity compared to wild-type AC toxin. These data suggest that prevention of delivery of the catalytic domain or deletion of the catalytic domain, along with additional amino acids distal to it, elicits a conformation of the toxin molecule that is more favorable for hemolysis.  相似文献   

19.
The mitochondrial, proton-pumping NADH:ubiquinone oxidoreductase consists of at least 35 subunits whose synthesis is divided between the cytosol and mitochondria; this complex I catalyzes the first steps of mitochondrial electron transfer and proton translocation. Radiolabel from [(3)H]myristic acid was incorporated by Neurospora crassa into the mitochondrial-encoded, approximately 70 kDa ND5 subunit of NADH dehydrogenase, as shown by immunoprecipitation. This myristate apparently was linked to the peptide through an amide linkage at an invariant lysine residue (Lys546), based upon analyses of proteolysis products. The myristoylated lysine residue occurs in the predicted transmembrane helix 17 (residues 539-563) of ND5. A consensus amino acid sequence around this conserved residue exists in homologous subunits of NADH dehydrogenase. Cytochrome c oxidase subunit 1, in all prokaryotes and eukaryotes, contains this same consensus sequence surrounding the lysine which is myristoylated in N. crassa.  相似文献   

20.
Diphtheria toxin (DT) binds to the EGF-like domain of the DT receptor (DTR), followed by internalization and translocation of the enzymatically active fragment A into the cytosol. The juxtamembrane domain (JM) of the DTR is the linker domain connecting the transmembrane and EGF-like domains. We constructed mutants of DTRs with altered JMs and studied their abilities for DT intoxication. Although DTR mutants with extended JMs showed normal DT binding activity, the cells expressing the mutants showed both reduced translocation of DT fragment A into the cytosol and reduced sensitivity to DT, when compared with cells expressing wild-type DTR. These results indicate that the JM contributes to DT intoxication by providing a space appropriate for the interaction of DT with the cell membrane. The present study also indicates that consideration of epitopes of an immunotoxins would be an important factor in the design of potent immunotoxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号