首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. To improve mechanistic understanding of plankton responses to eutrophication, a mesocosm experiment was performed in the shallow littoral zone of a south Swedish lake, in which nutrient and fish gradients were crossed in a fully factorial design. 2. Food chain theory accurately predicted total biomass development of both phyto‐ and zooplankton. However, separating zooplankton and algae into finer taxonomic groups revealed a variety of responses to both nutrient and fish gradients. 3. That both nutrients and fish are important for phytoplankton dynamics was seen more clearly when viewing each algal group separately, than drawing conclusions only from broad system variables such as chlorophyll a concentration or total phytoplankton biovolume. 4. In some taxa, physiological constraints (e.g. sensitivity to high pH and low concentrations of free CO2) and differences in competitive ability may be more important for the biomass development than fish predation, grazing by herbivorous zooplankton, and nutrient availability. 5. We conclude that food chain theory accurately predicted responses in system variables, such as total zooplankton or algal biomass, which are shaped by the dynamics of certain strong interactors (‘keystone species’), such as large cladocerans, cyanobacteria and edible algae (<50 μm), whereas responses at finer taxonomic levels cannot be predicted from current theory.  相似文献   

2.
Indoor mesocosms were used to study the combined effect of warming and of different densities of overwintering mesozooplankton (mainly copepods) on the spring development of phytoplankton in shallow, coastal waters. Similar to previous studies, warming accelerated the spring phytoplankton peak by ca. 1 day °C?1 whereas zooplankton did not significantly influence timing. Phytoplankton biomass during the experimental period decreased with warming and with higher densities of overwintering zooplankton. Similarly, average cell size and average effective particle size (here: colony size) decreased both with zooplankton density and warming. A decrease in phytoplankton particle size is generally considered at typical footprint of copepod grazing. We conclude that warming induced changes in the magnitude and structure of the phytoplankton spring bloom cannot be understood without considering grazing by overwintering zooplankton.  相似文献   

3.
4.
Whereas many studies have addressed the mechanisms driving partial migration, few have focused on the consequences of partial migration on trophic dynamics, and integrated studies combining the two approaches are virtually nonexistent. Here we show that temperature affects seasonal partial migration of cyprinid fish from lakes to predation refuges in streams during winter and that this migration in combination with temperature affects the characteristics and phenology of lower trophic levels in the lake ecosystem. Specifically, our six‐year study showed that the proportion of fish migrating was positively related to lake temperature during the pre‐migration growth period, i.e. during summer. Migration from the lake occurred later when autumn water temperatures were high, and timing of return migration to the lake occurred earlier at higher spring water temperatures. Moreover, the winter mean size of zooplankton in the lake increased with the proportion of fish being away from the lake, likely as a consequence of decreased predation pressure. Peak biomass of phytoplankton in spring occurred earlier at higher spring water temperatures and with less fish being away from the lake. Accordingly, peak zooplankton biomass occurred earlier at higher spring water temperature, but relatively later if less fish were away from the lake. Hence, the time between phyto‐ and zooplankton peaks depended only on the amount of fish being away from the lake, and not on temperature. The intensity of fish migration thereby had a major effect on plankton spring dynamics. These results significantly contribute to our understanding of the interplay between partial migration and trophic dynamics, and suggest that ongoing climate change may significantly affect such dynamics.  相似文献   

5.
Horizontal and vertical heterogeneity as a result of size‐structured processes are important factors influencing indirect effects in food webs. In a whole‐lake experiment covering 5 years, we added the intermediate consumer roach (Rutilus rutilus) to two out of four lakes previously inhabited by the omnivorous top predator perch (Perca fluviatilis). We focused our study on the direct consumption effect of roach presence on zooplankton (and indirectly phytoplankton) versus the indirect effect of roach on zooplankton (and phytoplankton) mediated via effects on perch reproductive performance. The patterns in zooplankton and phytoplankton abundances were examined in relation to population density of roach and perch including young‐of‐the‐year (YOY) perch in the light of non‐equilibrium dynamics. The presence of roach resulted in changed seasonal dynamics of zooplankton with generally lower biomasses in May–June and higher biomasses in July–August in roach lakes compared to control lakes. Roach presence affected perch recruitment negatively and densities of YOY perch were on average higher in control lakes than in treatment lakes. In years when perch recruitment did not differ between lakes as a result of experimental addition of perch eggs, total zooplankton biomass was lower in treatment lakes than in control lakes. Phytoplankton biomass showed a tendency to increase in roach lakes compared to control lakes. Within treatment variation in response variables was related to differences in lake morphometry in treatment lakes. Analyses of the trophic dynamics of each lake separately showed strong cascading effects of both roach and YOY perch abundance on zooplankton and phytoplankton dynamics. Consideration of the long transients in the dynamics of top predators (fish) in aquatic systems that are related to their long life span involving ontogenetic niche shifts is essential for making relevant interpretations of experimental perturbations. This conclusion is further reinforced by the circumstance that the intrinsic dynamics of fish populations may in many cases involve high amplitude dynamics with long time lags.  相似文献   

6.
Increases in phytoplankton biomass have been widely observed over the past decades, even in lakes experiencing nutrient reduction. However, the mechanisms giving rise to this trend remain unclear. Here, we unveil the potential mechanisms through quantifying the relative contribution of bottom–up versus top–down control in determining biomasses of phytoplankton assemblages in Lake Geneva. Specifically, we apply nonlinear time series analysis, convergent cross mapping (CCM), to decipher the degree of bottom–up versus top–down control among phytoplankton assemblages via quantifying 1) causal links between environmental factors and various phytoplankton assemblages and 2) the relative importance of bottom–up, top–down, and environmental effects. We show that the recent increase in total phytoplankton biomass, albeit with phosphorus reduction, was mainly caused by a particular phytoplankton assemblage which was better adapted to the re‐oligotrophicated environment characterized by relatively low phosphorus concentrations and warm water temperature, and poorly controlled by zooplankton grazing. Our findings suggest that zooplankton act as a critical driver of phytoplankton biomass and strongly impact the dynamics of recovery from eutrophication. Therefore, our phytoplankton assemblage approach in combination with causal identification of top–down versus bottom–up controls provides insights into the reason why phytoplankton biomass may increase in lakes undergoing phosphorus reduction.  相似文献   

7.
Stocking piscivorous salmonids in Lake Michigan produced dramaticalterations in food-web structure, including higher numbersof large-bodied zooplankton (especially Daphnia pulicaria),lower summer chlorophyll concentrations and increased watertransparency. Experimental determinations of epilimnetic phytoplanktongrowth rates and of zooplankton grazing rates indicate thatherbivorous zooplankton controlled algal dynamics during thesummer of 1983 because grazers occupied the surface waters throughoutthe day. In 1985, however, both large- and small-bodied Daphniamade approximately equal contributions to total grazer biomass,and all grazers displayed pronounced diel vertical migrations,visiting epilimnetic waters only at night. This prohibited zooplanktonfrom controlling algal dynamics because grazing losses did notexceed phytoplankton growth rates. The changes in zooplanktoncommunity composition and behavior observed in summer 1985 probablyresulted from increased predation by visually orienting planktivorousfish, especially bloater chub (Coregonus hoyi). Effects of food-webmanipulations on phytoplankton dynamics were evident only duringJuly and August. During spring and early summer copepods dominateLake Michigan's zooplankton community. Owing to their smallbody size, copepods are less susceptible to fish predation andexhibit much lower filtering rates than Daphnia. Variabilityin zooplanktivorous fish abundance probably has little effecton phytoplankton dynamics during spring and early summer.  相似文献   

8.
We developed a mechanistic model of nutrient, phytoplankton, zooplankton and fish interactions to test the effects of phytoplankton food quality for herbivorous zooplankton on planktonic food web processes. When phytoplankton food quality is high strong trophic cascades suppress phytoplankton biomass, the zooplankton can withstand intense zooplanktivory, and energy is efficiently transferred through the food web sustaining higher trophic level production. Low food quality results in trophic decoupling at the plant-animal interface, with phytoplankton biomass determined primarily by nutrient availability, zooplankton easily eliminated by fish predation, and poor energy transfer through the food web. At a given nutrient availability, food quality and zooplanktivory interact to determine zooplankton biomass which in turn determines algal biomass. High food quality resulted in intense zooplankton grazing which favored fast-growing phytoplankton taxa, whereas fish predation favored slow-growing phytoplankton. These results suggest algal food quality for herbivorous zooplankton can strongly influence the nature of aquatic food web dynamics, and can have profound effects on water quality and fisheries production. Handling editor: D. Hamilton  相似文献   

9.
Ocean warming has been implicated in the observed decline of oceanic phytoplankton biomass. Some studies suggest a physical pathway of warming via stratification and nutrient flux, and others a biological effect on plankton metabolic rates; yet the relative strength and possible interaction of these mechanisms remains unknown. Here, we implement projections from a global circulation model in a mesocosm experiment to examine both mechanisms in a multi‐trophic plankton community. Warming treatments had positive direct effects on phytoplankton biomass, but these were overcompensated by the negative effects of decreased nutrient flux. Zooplankton switched from phytoplankton to grazing on ciliates. These results contrast with previous experiments under nutrient‐replete conditions, where warming indirectly reduced phytoplankton biomass via increased zooplankton grazing. We conclude that the effect of ocean warming on marine plankton depends on the nutrient regime, and provide a mechanistic basis for understanding global change in marine ecosystems.  相似文献   

10.
Forty-eight-hour experimental manipulations of zooplankton biomass were performed to examine the potential effects of zooplankton on nutrient availability and phytoplankton biomass (as measured by seston concentration) and C : N : P stoichiometry in eutrophic nearshore waters of Lake Biwa, Japan. Increasing zooplankton, both mixed-species communities and Daphnia alone, consistently reduced seston concentration, indicating that nearshore phytoplankton were generally edible. The zooplankton clearance rates of inshore phytoplankton were similar to rates measured previously for offshore phytoplankton. Increased zooplankton biomass led to increased concentrations of nutrients (NH4-N, soluble reactive phosphorus [SRP]). Net release rates were higher than those found in previous measurements made offshore, reflecting the nutrient-rich nature of inshore seston. Zooplankton nutrient recycling consistently decreased TIN : SRP ratios (TIN = NH4 + NO3 + NO2). This effect probably resulted from the low N : P ratios of nearshore seston, which were lower than those commonly found in crustacean zooplankton and thus resulted in low retention efficiency of P (relative to N) by the zooplankton. Thus, zooplankton grazing inshore may ameliorate algal blooms due to direct consumption but tends to create nutrient supply conditions with low N : P, potentially favoring cyanobacteria. In comparison with previous findings for offshore, it appears that potential zooplankton effects on phytoplankton and nutrient dynamics differ qualitatively in inshore and offshore regions of Lake Biwa. Received: September 4, 2000 / Accepted: January 23, 2001  相似文献   

11.
Schalau K  Rinke K  Straile D  Peeters F 《Oecologia》2008,157(3):531-543
Plankton succession during spring/early summer in temperate lakes is characterised by a highly predictable pattern: a phytoplankton bloom is grazed down by zooplankton (Daphnia) inducing a clear-water phase. This sequence of events is commonly understood as a cycle of consumer-resource dynamics, i.e. zooplankton growth is driven by food availability. Here we suggest, using a modelling study based on a size-structured Daphnia population model, that temperature and not food is the dominant factor driving interannual variability of Daphnia population dynamics during spring. Simply forcing this model with a seasonal temperature regime typical for temperate lakes is sufficient for generating the distinctive seasonal trajectory of Daphnia abundances observed in meso-eutrophic temperate lakes. According to a scenario analysis, a forward shift of the vernal temperature increase by 60 days will advance the timing of the Daphnia maximum on average by 54 days, while a forward shift in the start of the spring bloom by 60 days will advance the Daphnia maximum only by less than a third (17 days). Hence, the timing of temperature increase was more important for the timing of Daphnia development than the timing of the onset of algal growth. The effect of temperature is also large compared to the effect of applying different Daphnia mortality rates (0.055 or 0.1 day(-1), 38 days), an almost tenfold variation in phytoplankton carrying capacity (25 days) and a tenfold variation in Daphnia overwintering abundance (3 days). However, the standing stock of Daphnia at its peak was almost exclusively controlled by the phytoplankton carrying capacity of the habitat and seems to be essentially independent of temperature. Hence, whereas food availability determines the standing stock of Daphnia at its spring maximum, temperature appears to be the most important factor driving the timing of the Daphnia maximum and the clear-water phase in spring.  相似文献   

12.
13.
The effects of nutrient loading on phytoplankton, zooplankton and macrozoobenthos in experimental ecosystems was studied in a 7-month experiment. The mesocosms were designed to mimic the major physical characteristics (irradiance, temperature, mixing) of the Dutch coastal zone in the river Rhine plume. Three different nutrient loading scenarios were used, representing present and future conditions. The level of the spring phytoplankton bloom was determined by phosphorus loading, whereas during summer the nitrogen loading determined phytoplankton biomass. The differences in nutrient loading did not result in shifts in phytoplankton species composition. With exception of the early phase of the spring bloom, diatoms dominated phytoplankton biomass in all nutrient treatments. This was ascribed to microzooplankton grazing on smaller algal species. Microzooplankton biomass showed a positive correlation with primary production, and also significant differences between nutrient treatments. Copepod development was limited, probably due to competition with microzooplankton and predation by benthic fauna. Macrobenthos biomass correlated with primary production, and was lower in the lowest nutrient treatment.  相似文献   

14.
Can a community of small-bodied grazers control phytoplankton in rivers?   总被引:4,自引:0,他引:4  
1. Phytoplankton, zooplankton and grazing were monitored throughout the growing season for three years (1994–96) in the Belgian section of the River Meuse.
2. A size structure analysis of the algal community shows that there was a summer shift toward larger algal units, following a decline in phytoplankton biomass. These changes occurred after an increase in zooplankton biomass and diversity.
3. Daily filtration rates of grazers ranged from 1 to 113% day–1 and maxima were observed during the summer period. Higher rates tended to correspond with peaks of rotifer biomass. A decline in total phytoplankton biomass within two weeks followed the increase in zooplankton biomass and filtration rate. A rapid biomass recovery was then observed, along with a shift of the algal community toward larger units. When grazing activity was not sustained, due to zooplankton fluctuations, the change in phytoplankton size structure was less marked.
4. We suggest that the composition of the phytoplankton community of large rivers may at times be controlled by grazers. However, such biotic interactions can take place only when physical constraints are reduced, i.e. when discharge is low, and when increased transfer time, high temperature and availability of grazeable algae allow high zooplankton biomass.  相似文献   

15.
1. In situ enclosure experiments were performed in the mesotrophic Bermejales reservoir to evaluate the algal response to changes in the nutrient supply and in the zooplankton size structure and density in a 2 × 2 factorial design. The experiments were conducted during the spring bloom of nanoplanktonic diatoms in 1989. 2. Nutrient enrichment promoted a great increase of phytoplankton biomass indicating a strong nutrient limitation on phytoplankton growth. Total phytoplankton biomass was significantly lower in the Daphina-added enclosures at a given nutrient level and strong direct an indirect effect of zooplankton on phytoplankton community structure and nutrient availability were observed. 3. Most of the nanoplanktonic species were effectively grazed but species with protective coverings and large size colonies were favoured by grazers and small chlorococcales were unaffected probably because of their compensatory high growth rates. The decrease in total biomass imposed by grazers is attributable mainly to the decrease of Cyclotella ocellata, the most abundant species. This taxon suffers two net effects of zooplankton: direct grazing and the indirect decrease of Si availability caused by the growth of C. ocellata which was promoted by P excretion by zooplankton. Indirect effects of grazers on Si availability should, therefore, be taken into account in explaining phytoplankton succession and community structure. 4. In this experiment grazers affected considerably the nanoplanktonic community in Bermejales reservoir. The extent which they were affected, however, depended not only on the algal size as a determinant of edibility but also greatly on the specific nutrient requirements and taxonomic features of the algal species.  相似文献   

16.
Duncan  Annie 《Hydrobiologia》1990,(1):541-548
Low algal biomasses and high water transparencies are a feature of the storage reservoirs that supply most of London's treated water. This is a result of knowledgeable limnological management and biomanipulation and despite the eutrophic nature of the River Thames with its high nutrients (7 gN m−3; 1 gP m−3) and particulate organic carbon (2 gC m−3). Built-in possibilities of jetting input water are managed to prevent stratification, to ensure isothermy, to mix chemicals and plankton vertically and horizontally and to manipulate the mixed-depth of the algal populations such that their potential for biomass growth is reduced by light-energy limitation. Spring algal growth is delayed and the spring peak is reduced and curtailed by the grazing impact of considerable biomasses of large-bodied daphnid populations (Daphnia magna, pulicaria & hyalina) whose development is also supported by the continuous input of high riverine algal crops. The existence of a large-bodied daphnid zooplankton in the reservoirs is associated with low levels of fish predation since the late 1960s. Variations in the intensity and nature of this vertebrate predation during the subsequent twenty years (1968–88) are illustrated by the changes that have occurred in the relationship between the phytoplankton and zooplankton biomasses of the April-May-June quarter of the year. This example of the London reservoirs serves to illustrate biomanipulation in deep water bodies by bottom-up as well as top-down effects.  相似文献   

17.
Christopher F. Steiner 《Oikos》2003,101(3):569-577
If prey species exhibit trade-offs in their ability to utilize resources versus their ability to avoid predation, predators can facilitate prey turnover along gradients of productivity, shifting dominance from edible to inedible prey (the keystone predator effect). I tested this model under controlled, laboratory conditions, using a model aquatic system composed of zooplankton as the top consumer, a diverse community of algae as prey, and nutrients as basal resources. Nutrient manipulations (low and high) were crossed with presence–absence of zooplankton. Results supported theoretical predictions. Algal biomass increased in response to enrichment regardless of predator presence/absence. However, predators and nutrients had an interactive effect on algal biomass and size structure. At the low nutrient level, algal-prey were dominated by edible forms and attained similar biomass regardless of zooplankton presence/absence. At the high level of enrichment, presence of zooplankton favored higher levels of algal biomass and shifted dominance to large, inedible taxa. At the termination of the experiment, I performed a series of lab-based assays on the resultant algal community in order to quantify trade-offs among algal size classes in maximal population growth rates (as a measure of competitive ability for nutrients) and susceptibility to zooplankton grazing. Assays provided support for a size-based keystone trade-off. Small size classes of algae displayed higher maximal growth rates but were more susceptible to grazing effects. Large size classes were protected from grazing but showed low rates of population growth in response to enrichment.  相似文献   

18.
19.
We report here the results of an experimental study designed to compare algal responses to short-term manipulations of zooplankton in three California lakes which encompass a broad range of productivity (ultra-oligotrophic Lake Tahoe, mesotrophic Castle Lake, and strongly eutrophic Clear Lake). To assess the potential strength of grazing in each lake, we evaluated algal responses to a 16-fold range of zooplankton biomass. To better compare algal responses among lakes, we determined algal responses to grazing by a common grazer (Daphnia sp.) over a range ofDaphnia densities from 1 to 16 animals per liter. Effects of both ambient grazers andDaphnia were strong in Castle Lake. However, neither ambient zooplankton norDaphnia had much impact on phytoplankton in Clear Lake. In Lake Tahoe, no grazing impacts could be demonstrated for the ambient zooplankton butDaphnia grazing had dramatic effects. These results indicate weak coupling between phytoplankton and zooplankton in Clear Lake and Lake Tahoe, two lakes which lie near opposite extremes of lake trophic status for most lakes. These observations, along with work reported by other researchers, suggest that linkages between zooplankton and phytoplankton may be weak in lakes with either extremely low or high productivity. Biomanipulation approaches to recover hypereutrophic lakes which aim only to alter zooplankton size structure may be less effective if algal communities are dominated by large, inedible phytoplankton taxa.  相似文献   

20.
1. The inter‐ and intra‐annual changes in the biomass, elemental (carbon (C), nitrogen (N) and phosphorus (P)) and taxonomical composition of the phytoplankton in a high mountain lake in Spain were studied during 3 years with different physical (fluctuating hydrological regime) and chemical conditions. The importance of internal and external sources of P to the phytoplankton was estimated as the amount of P supplied via zooplankton recycling (internal) or through ice‐melting and atmospheric deposition (external). 2. Inter‐annual differences in phytoplankton biomass were associated with temperature and total dissolved phosphorus. In 1995, phytoplankton biomass was positively correlated with total dissolved phosphorus. In contrast, the negative relationship between zooplankton and seston biomass (direct predatory effects) and the positive relationship between zooplankton P excretion and phytoplankton biomass in 1997 (indirect P‐recycling effects), reinforces the primary role of zooplankton in regulating the total biomass of phytoplankton but, at the same time, encouraging its growth via P‐recycling. 3. Year‐to‐year variations in seston C : P and N : P ratios exceeded intra‐annual variations. The C : P and N : P ratios were high in 1995, indicating strong P limitation. In contrast, in 1996 and 1997, these ratios were low during ice‐out (C : P < 100 and N : P < 10) and increased markedly as the season progressed. Atmospheric P load to the lake was responsible for the decline in C : P and N : P ratios. 4. Intra‐annual variations in zooplankton stoichiometry were more pronounced than the overall differences between 1995 and 1996. Thus, the zooplankton N : P ratio ranged from 6.9 to 40.1 (mean 21.4) in 1995, and from 10.4 to 42.2 (mean 24.9) in 1996. The zooplankton N : P ratio tended to be low after ice‐out, when the zooplankton community was dominated by copepod nauplii, and high towards mid‐ and late‐season, when these were replaced by copepodites and adults. 5. In 1995, the minimum demands for P of phytoplankton were satisfied by ice‐melting, atmospheric loading and zooplankton recycling over 100%. In order of importance, atmospheric inputs (> 1000%), zooplankton recycling (9–542%), and ice‐melting processes (0.37–5.16%) satisfied the minimum demand for P of phytoplankton during 1996 and 1997. Although the effect of external forces was rather sporadic and unpredictable in comparison with biologically driven recycle processes, both may affect phytoplankton structure and elemental composition. 6. We identified three conceptual models representing the seasonal phosphorus flux among the major compartments of the pelagic zone. While ice‐melting processes dominated the nutrient flow at the thaw, biologically driven processes such as zooplankton recycling became relevant as the season and zooplankton ontogeny progressed. The stochastic nature of P inputs associated with atmospheric events can promote rapid transitional changes between a community limited by internal recycling and one regulated by external load. 7. The elemental composition of the zooplankton explains changes in phytoplankton taxonomic and elemental composition. The elemental negative balance (seston N : P < zooplankton N : P, low N : P recycled) during the thaw, would promote a community dominated by species with a high demand for P (Cryptophyceae). The shift to an elemental positive balance (seston N : P > zooplankton N : P, high N : P recycled) in mid‐season would skew the N : P ratio of the recycled nutrients, favouring dominance by chrysophytes. The return to negative balance, as a consequence of the ontogenetic increase in zooplankton N : P ratio and the external P inputs towards the end of the ice‐free season, could alleviate the limitation of P and account for the appearance of other phytoplankton classes (Chlorophyceae or Dinophyceae).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号