首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
A general method for calculating doses absorbed from isotopes released in nuclear accidents is presented. As an example, this method was used to calculate doses for inhabitants of Southern Poland due to inhalation of 131I released due to the Fukushima nuclear plant accident. 131I activity measurements in the air of that region provided the basis for the study. The proposed model is based on a complex biokinetic model for iodine merging the Leggett model developed in 2010 with the human respiratory tract and gastrointestinal tract models recommended by the International Commission on Radiological Protection (ICRP). This model is described here, and it is demonstrated that resulting dose estimates are consistent with those obtained using the ICRP methodology. Using the developed model, total doses were calculated for six age groups of both genders, for gaseous and aerosol fractions alike. The committed effective dose, H 50, for an adult man reached 16 nSv, which is lower than 0.001% of the background dose. The dose for the thyroid of an adult reached 0.33 μSv, which corresponds to circa 0.0007% of the dose to the population of Southern Poland after the Chernobyl nuclear plant accident.  相似文献   

2.
The assessment doses due to ingestion of 137Cs and 90Sr for the population suffering from the Chernobyl accident was performed on the basis of the new mechanistic ecological model for assessment of radiological consequences of agricultural lands contamination (EMARC). The EMARC model allows estimation of internal doses based on ecological factors influencing the contamination of foodstuff, for the post-accidental years in the countries of the former Soviet Union. The EMARC model allows estimation of all quantities required in radiation hygiene practice. For example, the proposed analytical method may be used for both retrospective dose reconstruction and prospective estimates of annual dose and integrated “life-time” dose, for different age intervals. According to the EMARC model, estimated reference “life-time” doses for adults are between 7 and 269 μSv kBq−1 m2 for 137Cs, and between 25 and 235 μSv kBq−1 m2 for 90Sr. Maximal doses were estimated for persons who were 3, 9 and 11 years old, at the time of the accident and these doses exceed those for adults by a factors of 1, 5 for 90Sr, and 1.4 for 137Cs.  相似文献   

3.
For assessment of external radiation doses to frogs in a wetland area contaminated with 137Cs, frog phantoms were constructed from polymethyl methacrylate (PMMA). The frog phantoms contained thermoluminescence (TL) chips and were used in situ at two study sites to measure doses. To test if higher doses are received by the sensitive skin of frogs, extra-thin TL chips were applied close to the surface of the frog phantoms. In addition, the measured doses were compared with those calculated on the basis of soil sample data from the wetland multiplied with dose-conversion coefficients from the US Department of Energy’s RESRAD-BIOTA code and from the ERICA assessment tool. Measured doses were generally lower than those calculated to ellipsoids used to model frogs. Higher doses were measured at the frog phantoms’ surfaces in comparison to inner parts at one of the two sites indicating that the frogs’ thin skin could receive a higher radiation dose than expected. In the efforts to assure protection of non-human biota, in situ measurements with phantoms provide valuable dose information and input to dose models in site-specific risk assessments of areas contaminated with radionuclides.  相似文献   

4.
The objective of the present work is to apply the plasma clearance parameters to strontium, previously determined in our laboratory, to improve the biokinetic and dosimetric models of strontium-90 (90Sr) used in radiological protection; and also to apply this data for the estimation of the radiation doses from strontium-89 (89Sr) after administration to patients for the treatment of the painful bone metastases. Plasma clearance and urinary excretion of stable strontium tracers of strontium-84 (84Sr) and strontium-86 (86Sr) were measured in GSF-National Research Center for Environment and Health (GSF) in 13 healthy German adult subjects after intravenous injection and oral administration. The biological half-life of strontium in plasma was evaluated from 49 plasma concentration data sets following intravenous injections. This value was used to determine the transfer rates from plasma to other organs and tissues. At the same time, the long-term retention of strontium in soft tissue and whole body was constrained to be consistent with measured values available. A physiological urinary path was integrated into the biokinetic model of strontium. Parameters were estimated using our own measured urinary excretion values. Retention and excretion of strontium were modeled using compartmental transfer rates published by the International Commission on Radiological Protection (ICRP), the SENES Oak Ridge Inc. (SENES), and the Urals Research Center for Radiation Medicine (TBM). The results were compared with values calculated by applying our GSF parameters (GSF). For the dose estimation of 89Sr, a bone metastases model (GSF-M) was developed by adding a compartment, representing the metastases, into the strontium biokinetic model. The related parameters were evaluated based on measured data available in the literature. A set of biokinetic parameters was optimized to represent not only the early plasma kinetics of strontium but also the long-term retention measured in soft tissue and whole body. The ingestion dose coefficients of 90Sr were computed and compared with different biokinetic model parameters. The ingestion dose coefficients were calculated as 2.8 × 10−8, 2.1 × 10−8, 2.5 × 10−8 and 3.8 × 10−8 Sv Bq−1 for ICRP, SENES, TBM and GSF model parameters, respectively. Moreover, organ absorbed dose for the radiopharmaceutical of 89Sr in bone metastases therapy was estimated based on the GSF and ICRP biokinetic model parameters. The effective doses were 3.3, 1.8 and 1.2 mSv MBq−1 by GSF, GSF-M, and ICRP Publication 67 model parameters, respectively, compared to the value of 3.1 mSv MBq−1 reported by ICRP Publication 80. The absorbed doses of red bone marrow and bone surface, 17 and 21 mGy MBq−1 calculated by GSF parameters, and 7.1 and 8.8 mGy MBq−1 by GSF-M parameters, are comparable to the clinical results of 3–19 mGy MBq−1 for bone marrow and 16 mGy MBq−1 for bone surface. Based on the GSF-M model, the absorbed dose of 89Sr to metastases was estimated to be 434 mGy MBq−1. The strontium clearance half-life of 0.25 h from the plasma obtained in the present study is obviously faster than the value of 1.1 h recommended by ICRP. There are no significant changes for ingestion dose coefficients of 90Sr using different model parameters. A model including the metastases was particularly developed for dose estimation of 89Sr treatment for the pain of bone metastases.  相似文献   

5.
Associated with the present debate regarding the potential revival of nuclear energy there is an increased interest in assessing the radiological risk to the public and also the environment. Tritium and 14C are key radionuclides of interest in many circumstances (e.g. heavy water reactors, waste storage and fusion reactors). Because the stable analogues of these two radionuclides are integral to most biological compounds, their modelling should follow general principles from life sciences. In this paper, a model of the dynamics of 14C and 3H in mammals is proposed on the basis of metabolic understanding and of, as far as possible, readily available data (e.g. for organ composition and metabolism). The model is described together with validation tests (without calibration) for a range of farm animals. Despite simplifications, the model tests are encouraging for a range of animal types and products (tissues and milk), and further improvements are suggested.  相似文献   

6.
One of the three goals of the United Nations for sustainable food security is to ensure that all people have access to sufficient, nutritionally adequate, and safe food. Decades of tin mining in the Bitsichi area of the Jos Plateau, Nigeria, have left a legacy of polluted water supplies, impoverished agricultural land, and soil containing abnormally high levels of naturally occurring radioactive elements. In order to ascertain the radiological food safety of the population, different crops that constitute the major food nutritive requirements were collected directly across farmlands in the area. The activity concentrations of 226Ra, 228Th, and 40K were determined in the food and soil samples using γ-ray spectrometry. Additionally, in situ gamma dose rate measurements were performed on the farms using a pre-calibrated survey meter. The corresponding activity concentrations in the food crops ranged from below detection limit (BDL) to 684.5 Bq kg−1 for 40K, from BDL to 83.5 Bq kg−1 for 226Ra, and from BDL to 89.8 Bq kg−1 for 228Th. Activity concentrations of these radionuclides were found to be lower in cereals than in tubers and vegetables. As for the soil samples, activity concentrations of these radionuclides varied from BDL to 166.4 Bq kg−1, from 10.9 to 470.6 Bq kg−1, and from 122.7 to 2,189.5 Bq kg−1 for 40K, 226Ra, and 228Th, respectively. Average external gamma dose rates were found to vary across the farms from 0.50 ± 0.01 to 1.47 ± 0.04 μSv h−1. Due to past mining activities, the soil radioactivity in the area has been modified and the concentration level of the investigated natural radionuclides in the food crops has also been enhanced. However, the values obtained suggest that the dose from intake of these radionuclides by the food crops is low and that harmful health effects are not expected.  相似文献   

7.
There are few data reported on radionuclide contamination in Antarctica. The aim of this paper is to report 137Cs, 90Sr and 238,239+240Pu and 40K activity concentrations measured in biological samples collected from King George Island (Southern Shetlands, Antarctica), mostly during 2001–2002. The samples included: bones, eggshells and feathers of penguin Pygoscelis papua, bones and feathers of petrel Daption capense, bones and fur of seal Mirounga leonina, algae Himantothallus grandifolius, Desmarestia anceps and Cystosphaera jacquinotii, fish Notothenia corriceps, sea invertebrates Amphipoda, shells of limpet Nacella concina, lichen Usnea aurantiaco-atra, vascular plants Deschampsia antarctica and Colobanthus quitensis, fungi Omphalina pyxidata, moss Sanionia uncinata and soil. The results show a large variation in some activity concentrations. Samples from the marine environment had lower contamination levels than those from terrestrial ecosystems. The highest activity concentrations for all radionuclides were found in lichen and, to a lesser extent, in mosses, probably because lichens take up atmospheric pollutants and retain them. The only significant correlation (except for that expected between 238Pu and 239+240Pu) was noted for moss and lichen samples between plutonium and 90Sr. A tendency to a slow decrease with time seems to be occurring. Analyses of the activity ratios show varying fractionation between various radionuclides in different organisms. Algae were relatively more highly contaminated with plutonium and radiostrontium, and depleted with radiocesium. Feathers had the lowest plutonium concentrations. Radiostrontium and, to a lesser extent, Pu accumulated in bones. The present low intensity of fallout in Antarctic has a lower 238Pu/239+240Pu activity ratio than that expected for global fallout.  相似文献   

8.
Age-dependent accumulation of 137Cs in the muscles and bodies of the pike Esox lucius (aged two to seven years) inhabiting a section of the Yenisei River polluted with artificial radionuclides has been studied. The content of 137Cs in muscles varied from 0.5 to 7.0 Bq/kg of fresh weight. The maximum content of the radionuclide has been found in juveniles. The content of 137Cs in pike muscles and body decreased considerably with age. The high content of 137Cs in the muscles of juveniles is probably a consequence of their higher intensity of feeding as compared to older individuals, which is due to the intense growth of juveniles.  相似文献   

9.
137Cs speciation and distribution in the components of the biogeocenosis of the Yenisei River floodplain such as soils, rhizosphere, and plants were studied. The study was carried out near zones of influence by the Krasnoyarsk Mining and Chemical Combine (MCC). Variation in the specific activity of radionuclides with increasing distance from the pollution source and its ratio in the soil and rhizosphere and distribution in the plant body were studied. A variety of occurrence forms of 137Cs, including mobile ones, was revealed. The amount of 137Cs leached from plants during flooding was calculated from the results of laboratory experiments.  相似文献   

10.
Postoperative 131I treatment for differentiated thyroid cancer (DTC) can create a radiation hazard for nearby persons. The present prospective study aimed to investigate radiation dose rates in 131I-treated DTC patients to provide references for radiation protection. A total of 141 131I-treated DTC patients were enrolled, and grouped into a singular treatment (ST) group and a repeated treatment (RT) group. The radiation dose rate of 131I-treated patients was measured. The rate of achieving discharge compliance and restricted contact time were analyzed based on Chinese regulations. Multivariate logistic regression analysis was used to analyze the independent factors associated with the clearance of radioiodine. The rate of achieving discharge compliance (131I retention <?400 MBq) was 79.8 and 93.7% at day 2 (D2) for the ST and RT groups, respectively, and reached 100% at D7 and D4, respectively. The restricted contact time with 131I-treated patients at 0.5 m for medical staff, caregivers, family members, and the general public ranged from 4 to 7 days. Multivariate logistic regression analysis showed that the 24-h iodine uptake rate was the only significant factor associated with radioiodine clearance. For the radiation safety of 131I-treated DTC patients, the present results can provide radiometric data for radiation protection.  相似文献   

11.
After the Chernobyl accident a statistically significant increase in the number of children with thyroid tumours was observed. In this study 166 children with and 75 without thyroid tumours were analysed for micronucleus formation in peripheral blood lymphocytes using the cytochalasin B approach. The following factors did not significantly affect micronucleus formation: gender, age at the time of the first 131I treatment, tumour stage, tumour type, or metastases; a statistically significant increase in the number of micronuclei, however, was observed for the residents of Gomel compared to other locations, such as Brest, Grodno, and Minsk. The children with tumours received 131I treatment after surgical resection of the tumours. This gave us the opportunity to systematically follow the effect of 131I on micronucleus formation. A marked increase was observed 5 days after the 131I treatment followed by a decrease within a 4–7 months interval up to the next application, but the pre-treatment levels were not achieved. Up to 10 therapy cycles were followed each including an analysis of micronucleus formation before and 5 days after 131I application. The response of the children was characterised by clear individual differences and the increase/decrease pattern of micronucleus frequencies induced by iodine-131 was correlated with a decrease/increase pattern in the number of lymphocytes.  相似文献   

12.
This paper presents results of 131I thyroid activity measurements in 30 members of the nuclear medicine personnel of the Department of Endocrinology and Nuclear Medicine Holy Cross Cancer Centre in Kielce, Poland. A whole-body spectrometer equipped with two semiconductor gamma radiation detectors served as the basic research instrument. In ten out of 30 examined staff members, the determined 131I activity was found to be above the detection limit (DL = 5 Bq of 131I in the thyroid). The measured activities ranged from (5 ± 2) Bq to (217 ± 56) Bq. The highest activities in thyroids were detected for technical and cleaning personnel, whereas the lowest values were recorded for medical doctors. Having measured the activities, an attempt has been made to estimate the corresponding annual effective doses, which were found to range from 0.02 to 0.8 mSv. The highest annual equivalent doses have been found for thyroid, ranging from 0.4 to 15.4 mSv, detected for a cleaner and a technician, respectively. The maximum estimated effective dose corresponds to 32% of the annual background dose in Poland, and to circa 4% of the annual limit for the effective dose due to occupational exposure of 20 mSv per year, which is in compliance with the value recommended by the International Commission on Radiological Protection.  相似文献   

13.
In head computed tomography, radiation upon the eye lens (as an organ with high radiosensitivity) may cause lenticular opacity and cataracts. Therefore, quantitative dose assessment due to exposure of the eye lens and surrounding tissue is a matter of concern. For this purpose, an accurate eye model with realistic geometry and shape, in which different eye substructures are considered, is needed. To calculate the absorbed radiation dose of visual organs during head computed tomography scans, in this study, an existing sophisticated eye model was inserted at the related location in the head of the reference adult male phantom recommended by the International Commission on Radiological Protection (ICRP). Then absorbed doses and distributions of energy deposition in different parts of this eye model were calculated and compared with those based on a previous simple eye model. All calculations were done using the Monte Carlo code MCNP4C for tube voltages of 80, 100, 120 and 140 kVp. In spite of the similarity of total dose to the eye lens for both eye models, the dose delivered to the sensitive zone, which plays an important role in the induction of cataracts, was on average 3% higher for the sophisticated model as compared to the simple model. By increasing the tube voltage, differences between the total dose to the eye lens between the two phantoms decrease to 1%. Due to this level of agreement, use of the sophisticated eye model for patient dosimetry is not necessary. However, it still helps for an estimation of doses received by different eye substructures separately.  相似文献   

14.
The mysterious death of Mr. Alexander Litvinenko who was most possibly poisoned by Polonium-210 (210Po) in November 2006 in London attracted the attention of the public to the kinetics, dosimetry and the risk of this high radiotoxic isotope in the human body. In the present paper, the urinary excretion of seven persons who were possibly exposed to traces of 210Po was monitored. The values measured in the GSF Radioanalytical Laboratory are in the range of natural background concentration. To assess the effective dose received by those persons, the time-dependence of the organ equivalent dose and the effective dose after acute ingestion and inhalation of 210Po were calculated using the biokinetic model for polonium (Po) recommended by the International Commission on Radiological Protection (ICRP) and the one recently published by Leggett and Eckerman (L&E). The daily urinary excretion to effective dose conversion factors for ingestion and inhalation were evaluated based on the ICRP and L&E models for members of the public. The ingestion (inhalation) effective dose per unit intake integrated over one day is 1.7 × 10−8 (1.4 × 10−7) Sv Bq−1, 2.0 × 10−7 (9.6 × 10−7) Sv Bq−1 over 10 days, 5.2 × 10−7 (2.0 × 10−6) Sv Bq−1 over 30 days and 1.0 × 10−6 (3.0 × 10−6) Sv Bq−1 over 100 days. The daily urinary excretions after acute ingestion (inhalation) of 1 Bq of 210Po are 1.1 × 10−3 (1.0 × 10−4) on day 1, 2.0 × 10−3 (1.9 × 10−4) on day 10, 1.3 × 10−3 (1.7 × 10−4) on day 30 and 3.6 × 10−4 (8.3 × 10−5) Bq d−1 on day 100, respectively. The resulting committed effective doses range from 2.1 × 10−3 to 1.7 × 10−2 mSv by an assumption of ingestion and from 5.5 × 10−2 to 4.5 × 10−1 mSv by inhalation. For the case of Mr. Litvinenko, the mean organ absorbed dose as a function of time was calculated using both the above stated models. The red bone marrow, the kidneys and the liver were considered as the critical organs. Assuming a value of lethal absorbed dose of 5 Gy to the bone marrow, 6 Gy to the kidneys and 8 Gy to the liver, the amount of 210Po which Mr. Litvinenko might have ingested is therefore estimated to range from 27 to 1,408 MBq, i.e 0.2–8.5 μg, depending on the modality of intake and on different assumptions about blood absorption.  相似文献   

15.
This paper presents results of 131I air activity measurements performed within nuclear medical hospitals as a tool for internal dose assessment. The study was conducted at a place of preparation and administration of 131I (“hot room”) and at a nurse station. 131I activity measurements were performed for 5 and 4 consecutive working days, at the “hot room” and nurse station, respectively. Iodine from the air was collected by a mobile HVS-30 aerosol sampler combined with a gas sampler. Both the gaseous and aerosol fractions were measurement. The activities in the gaseous fraction ranged from (28?±?1 Bq m?3) to (492?±?4) Bq m?3. At both sampling sites, the activity of the gaseous iodine fraction trapped on activated charcoal was significantly higher than that of the aerosol fraction captured on Petrianov filter cloth. Based on these results, an attempt has been made to estimate annual inhalation effective doses, which were found to range from 0.47 mSv (nurse female) to 1.3 mSv (technician male). The highest annual inhalation equivalent doses have been found for thyroid as 32, 27, 13, and 11 mSv, respectively, for technician male, technical female, nurse male, and nurse female. The method presented here allows to fill the gaps in internal doses measurements. Moreover, because method has been successful used for many years in radioactive contamination monitoring of air in cases of serious nuclear accidents, it should also be used in nuclear medicine.  相似文献   

16.
Activity concentrations of the selected radionuclides 40K, 226Ra and 232Th were measured in surface soil samples collected from 38 cities in the southwest region of Nigeria by means of gamma spectroscopy with a high-purity germanium detector. Measured activity concentration values of 40K varied from 34.9 ± 4.4 to 1,358.6 ± 28.5 Bq kg−1 (given on a dry mass (DM) basis) with a mean value of 286.5 ± 308.5 Bq kg−1; that of 226Ra varied from 9.3 ± 3.7 to 198.1 ± 13.8 Bq kg−1 with a mean value of 54.5 Bq kg−1 and a standard deviation of 38.7 Bq kg−1, while that of 232Th varied from 5.4 ± 1.1 to 502.0 ± 16.5 Bq kg−1 with a mean value of 91.1 Bq kg−1 and standard deviation of 100.9 Bq kg−1. The mean activity concentration values obtained for 226Ra and 232Th are greater than the world average values reported by the United Nations Scientific Committee on Effects of Atomic Radiation for areas of normal background radiation. Radiological indices were estimated for the radiation/health hazards of the natural radioactivity of all soil samples. Estimated absorbed dose rates in air varied from 12.42 ± 2.25 to 451.33 ± 19.06 nGy h−1, annual outdoor effective dose rates from 0.015 ± 0.003 to 0.554 ± 0.023 mSv year−1, internal hazard index from 0.10 ± 0.03 to 3.02 ± 0.16, external hazard index from 0.07 ± 0.01 to 2.60 ± 0.11, representative level index from 0.19 ± 0.03 to 6.84 ± 0.29, activity index from 0.09 ± 0.02 to 3.42 ± 0.15, and radium equivalent activity from 26.95 ± 5.04 to 963.15 ± 41.87 Bq kg−1. Only the mean value of the representative level index exceeds the limit for areas of normal background radiation. All other indices show mean values that are lower than the recommended limits.  相似文献   

17.
To date, there is scant information on in vivo induction of chromosomal damage by heavy ions found in space (i.e. 56Fe ions). For radiation-induced response to be useful for risk assessment, it must be established in in vivo systems especially in cells that are known to be at risk for health problems associated with radiation exposure (such as hematopoietic cells, the known target tissue for radiation-induced leukemia). In this study, the whole genome multicolor fluorescence in situ hybridization (mFISH) technique was used to examine the in vivo induction of chromosomal damage in hematopoietic tissues, i.e. bone marrow cells. These cells were collected from CBA/CaJ mice at day 7 following whole-body exposure to different doses of 1 GeV/amu 56Fe ions (0, 0.1, 0.5 and 1.0 Gy) or 137Cs γ rays as the reference radiation (0, 0.5, 1.0 and 3.0 Gy, at the dose rate of 0.72 Gy/min using a GammaCell40). These radiation doses were the average total-body doses. For each radiation type, there were four mice per dose. Several types of aberrations in bone marrow cells collected from mice exposed to either type of radiation were found. These were exchanges and breaks (both chromatid- and chromosome-types). Chromosomal exchanges included translocations (Robertsonian or centric fusion, reciprocal and incomplete types), and dicentrics. No evidence of a non-random involvement of specific chromosomes in any type of aberrations observed in mice exposed to 56Fe ions or 137Cs γ rays was found. At the radiation dose range used in our in vivo study, the majority of exchanges were simple. Complex exchanges were detected in bone marrow cells collected from mice exposed to 1 Gy of 56Fe ions or 3 Gy of 137Cs γ rays only, but their frequencies were low. Overall, our in vivo data indicate that the frequency of complex chromosome exchanges was not significantly different between bone marrow cells collected from mice exposed to 56Fe ions or 137Cs γ rays. Each type of radiation induced significant dose-dependent increases (ANOVA, P < 0.01) in the frequencies of chromosomal damage, including the numbers of abnormal cells. Based upon the linear-terms of dose-response curves, 56Fe ions were 1.6 (all types of exchanges), 4.3 (abnormal cells) and 4.2 (breaks, both chromatid- and chromosome-types) times more effective than 137Cs γ rays in inducing chromosomal damage.  相似文献   

18.
The aim of the present study was to review the available models developed for calculating red bone marrow dose in radioiodine therapy using clinical data. The study includes 18 patients (12 females and six males) with metastatic differentiated thyroid cancer. Radioiodine tracer of 73?±?16 MBq 131I was orally administered, followed by blood sampling (2 ml) and whole-body scans (WBSs) done at several time points (2, 6, 24, 48, 72, and ≥?96 h). Red bone marrow dose was estimated using the OLINDA/EXM 1.0, IDAC-Dose 2.1, and EANM models, the models developed by Shen and co-workers, Keizer and co-workers and Siegel and co-workers, and Traino and co-workers, as well as the single measurement model (SMM). The results were then compared to the standard reference model Revised Sgouros Model (RSM) reported by Wessels and co-workers. The mean dose deviations of the Traino, Siegel, Shen, Keizer, OLINDA/EXM, EANM, SMM, and IDAC-Dose 2.1 models from the RSM were ??17%, ??24%, 6%, ??29%, ??15%, 40%, 48%, and ??8%, respectively. The statistical analysis demonstrated no significant difference between the results obtained with the RSM and with those obtained with the Shen, Traino, OLINDA/EXM, and IDAC-Dose 2.1 models (t test; pvalue > 0.05). However, a significant difference was found between RSM doses and those obtained with the EANM, SMM, and Keizer models (t test; pvalue < 0.05). The correlation between red marrow dose from the SMM and EANM models was modest (R2?=?0.65), while the crossfire dose calculated with the OLINDA/EXM and IDAC-Dose 2.1 models were in good agreement with each other and with the reference model. The findings obtained indicate that most of the dosimetry models can be used for a reliable dosimetry, and the calculated total body doses can be considered as a reliable non-invasive option for a conservative activity planning. In addition, the excellent performance of the IDAC-Dose 2.1 model will be of particular importance for a practical and accurate dosimetry, with the advantages of allowing for the use of realistic advanced phantoms and updated dose fractions, and of providing information about the blood dose contribution to the red bone marrow.  相似文献   

19.
The main target of this work is to examine blood clearance and external exposure for 177Lu-DOTATATE compared with new emerging 177Lu-PSMA therapy. Blood clearance and radiation exposure of 31 patients treated with 5.5?±?1.1 GBq 177Lu-DOTATATE were compared to those of 23 patients treated with 7.4 GBq 177Lu-PSMA. Dose rates were measured at several distances and time points up to 120 h after treatment. Blood samples were collected conjunctively after infusion. Caregiver’s cumulative dose was measured by means of an OSL (optically stimulated luminescence) dosimeter for 4–5 days and medical staff’s dose was also estimated using electronic personal dosimeters. Finger dose was determined via ring TLD (Thermoluminescence Dosimeter) for radiopharmacists and nurses. Dose rates due to 177Lu-DOTATATE at a distance of 1 m, 4 h and 6 h after infusion, were 3.0?±?2.8 and 2?±?1.9 µSv/(h GBq), respectively, while those due to 177Lu-PSMA were 3.1?±?0.8 and 2.2?±?0.9 µSv/(h GBq). Total effective dose of 17 caregivers was 100–200 µSv for 177Lu-DOTATATE therapy. Mean effective doses to nurses and radiopharmacists were 5 and 4 µSv per patient, respectively, while those for physicists and physicians were 2 µSv per patient. For 177Lu-DOTATATE, effective half-life in blood and early elimination phase were 0.31?±?0.13 and 4.5?±?1 h, while they were found as 0.4?±?0.1 and 5?±?1 h, respectively, for 177Lu-PSMA. The first micturition time following 177Lu-DOTATATE infusion was noted after 36?±?14 min, while the second and third voiding times were after 74?±?9 and 128?±?41 min, respectively. It is concluded that blood clearance and radiation exposure for 177Lu-DOTATATE are very similar to those for 177Lu-PSMA, and both treatment modalities are reasonably reliable for outpatient treatment, since the mean dose rate [2.1 µSv/(h GBq)] decreased below the dose rate that allows release of the patient from the hospital (20 µSv/h) after 6 h at 1 m distance.  相似文献   

20.
Great deal of work has been devoted to determine doses from alpha particles emitted by 222Rn and 220Rn progeny. In contrast, contribution of beta particles to total dose has been neglected by most of the authors. The present work describes a study of the detriment of 222Rn and 220Rn progeny to the human lung due to beta particles. The dose conversion factor (DCF) was introduced to relate effective dose and exposure to radon progeny; it is defined as effective dose per unit exposure to inhaled radon or thoron progeny. Doses and DCFs were determined for beta radiation in sensitive layers of bronchi (BB) and bronchioles (bb), taking into account inhaled 222Rn and 220Rn progeny deposited in mucus and cilia layer. The nuclei columnar secretory and short basal cells were considered to be sensitive target layers. For dose calculation, electron-absorbed fractions (AFs) in the sensitive layers of the BB and bb regions were used. Activities in the fast and slow mucus of the BB and bb regions were obtained using the LUNGDOSE software developed earlier. Calculated DCFs due to beta radiation were 0.21 mSv/WLM for 222Rn and 0.06 mSv/WLM for 220Rn progeny. In addition, the influence of Jacobi room parameters on DCFs was investigated, and it was shown that DCFs vary with these parameters by up to 50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号