首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are few longtime studies on the effects on aphids of being tended by ants. The aim of this study is to investigate how the presence of ants influences settling decisions by colonizing aphids and the post‐settlement growth and survival of aphid colonies. We conducted a field experiment using the facultative myrmecophile Aphis fabae and the ant Lasius niger. The experiment relied on natural aphid colonization of potted plants of scentless mayweed Tripleurospermum perforatum placed outdoors. Ants occurred naturally at the field site and had access to half of the pots and were prevented from accessing the remainder. The presence of winged, dispersing aphids, the growth and survival of establishing aphid colonies, and the presence of parasitoids were measured in relation to presence or absence of ants, over a period of five weeks. The presence of ants did not significantly influence the pattern of initial host plant colonization or the initial colony growth, but ant‐tended aphids were subject to higher parasitism by hymenopteran parasitoids. The net result over the experimental period was that the presence of ants decreased aphid colony productivity, measured as the number of winged summer migrants produced from the colonized host plants. This implies that aphids do not always benefit from the presence of ants, but under some conditions rather pay a cost in the form of reduced dispersal.  相似文献   

2.
Mutualisms contribute in fundamental ways to the origin, maintenance and organization of biological diversity. Introduced species commonly participate in mutualisms, but how this phenomenon affects patterns of interactions among native mutualists remains incompletely understood. Here we examine how networks of interactions among aphid‐tending ants, ant‐tended aphids, and aphid‐attacking parasitoid wasps differ between 12 spatially paired riparian study sites with and without the introduced Argentine ant Linepithema humile in southern California. To resolve challenges in species identification, we used DNA barcoding to identify aphids and screen for parasitoid wasps (developing inside their aphid hosts) from 170 aphid aggregations sampled on arroyo willow Salix lasiolepis. Compared to uninvaded sites, invaded sites supported significantly fewer species of aphid‐tending ants and ant‐tended aphids. At invaded sites, for example, we found only two species of ant‐tended aphids, which were exclusively tended by L. humile, whereas at uninvaded sites we found 20 unique ant–aphid interactions involving eight species of ant‐tended aphids and nine species of aphid‐tending ants. Ant–aphid linkage density was thus significantly lower at invaded sites compared to uninvaded sites. We detected aphid parasitoids in 14% (28/198) of all aphid aggregations. Although the level of parasitism did not differ between invaded and uninvaded sites, more species of wasps were detected within uninvaded sites compared to invaded sites. These results provide a striking example of how the assimilation of introduced species into multi‐species mutualisms can reduce interaction diversity with potential consequences for species persistence.  相似文献   

3.
Interaction between a predator and a parasitoid attacking ant-attended aphids was examined in a system on photinia plants, consisting of the aphid Aphis spiraecola, the two ants Lasius japonicus and Pristomyrmex pungens, the predatory ladybird beetle Scymnus posticalis, and the parasitoid wasp Lysiphlebus japonicus. The ladybird larvae are densely covered with waxy secretion and are never attacked by attending ants. The parasitoid females are often attacked by ants, but successfully oviposit by avoiding ants. The two ants differ in aggressiveness towards aphid enemies. Impacts of the predator larvae and attending ant species on the number of parasitoid adults emerging from mummies per aphid colony were assessed by manipulating the presence of the predator in introduced aphid colonies attended by either ant. The experiment showed a significant negative impact of the predator on emerging parasitoid numbers. This is due to consumption of healthy aphids by the predator and its predation on parasitized aphids containing the parasitoid larvae (intraguild predation). Additionally, attending ant species significantly affected emerging parasitoid numbers, with more parasitoids in P. pungens-attended colonies. This results from the lower extent of interference with parasitoid oviposition by the less aggressive P. pungens. Furthermore, the predator reduced emerging parasitoid numbers more when P. pungens attended aphids. This may be ascribed to larger numbers of the predator and the resulting higher levels of predation on unparasitized and parasitized aphids in P. pungens-attended colonies. In conclusion, a negative effect of the predator on the parasitoid occurs in ant-attended aphid colonies, and the intensity of the interaction is affected by ant species.  相似文献   

4.
The role of natural enemy guilds in Aphis glycines suppression   总被引:1,自引:0,他引:1  
Generalist natural enemy guilds are increasingly recognized as important sources of mortality for invasive agricultural pests. However, the net contribution of different species to pest suppression is conditioned by their biology and interspecific interactions. The soybean aphid, Aphis glycines (Hemiptera: Aphididae), is widely attacked by generalist predators, but the relative impacts of different natural enemy guilds remains poorly understood. Moreover, low levels of A. glycines parasitism suggest that resident parasitoids may be limited through intraguild predation. During 2004 and 2005, we conducted field experiments to test the impact of different guilds of natural enemies on A. glycines. We contrasted aphid abundance on field cages with ambient levels of small predators (primarily Orius insidiosus) and parasitoids (primarily Braconidae), sham cages and open controls exposed to large predators (primarily coccinellids), and cages excluding all natural enemies. We observed strong aphid suppression (86- to 36-fold reduction) in treatments exposed to coccinellids, but only minor reduction due to small predators and parasitoids, with aphids reaching rapidly economic injury levels when coccinellids were excluded. Three species of resident parasitoids were found attacking A. glycines at very low levels (<1% parasitism), with no evidence that intraguild predation by coccinellids attenuated parasitoid impacts. At the plant level, coccinellid impacts resulted in a trophic cascade that restored soybean biomass and yield, whereas small natural enemies provided only minor protection against yield loss. Our results indicate that within the assemblage of A. glycines natural enemies in Michigan, coccinellids are critical to maintain aphids below economic injury levels.  相似文献   

5.
The ecological success of social insects, including ants, is tightly connected with their ability to protect themselves and their food resources. In exchange for energy‐rich honeydew, ants protect myrmecophilous aphids from various natural enemies. Fungal infection can have disastrous consequences for both mutualist partners, wherein aphids can be disease vectors. Behavioural responses towards fungus‐infected aphids of ant species in nature have scarcely been studied. Here, we studied the behaviour of honeydew foragers of four ant species – Formica polyctena Foerster, Formica rufa L., Formica pratensis Retzius (Hymenoptera: Formicidae, Formicini), and Lasius niger (L.) (Formicidae, Lasiini) – towards Symydobius oblongus (von Heyden) aphids contaminated with the generalist fungal pathogen Beauveria bassiana (Balsamo‐Crivelli) Vuillemin in the field. Aphid milkers from Formica spp. quickly detected and removed infected aphids from the host plant (Betula pendula Roth., Betulaceae). Neither ant species, the degree of aphid‐milker specialization (medium or high), nor the number of honeydew foragers had significant effects on the behaviour of Formica milkers towards infected aphids. Unlike Formica ants, L. niger usually displayed non‐aggressive behaviour (tolerance, antennation, honeydew collection, grooming). By the immediate removal of infected insects, Formica ants seem to minimize the probability of infection of symbionts as well as themselves. Quarantining behaviour may play an important role in ant–aphid interactions as a preventive antifungal mechanism formed under parasite pressure and thus contributing to the ecological success of ants.  相似文献   

6.
Proportions of specialist and generalist primary parasitoids have been described by the resource breadth and the trade-off hypothesis. These alternative hypotheses predict either decreased or increased, respectively, parasitism rate of shared aphid species by specialist parasitoids. We tested both hypotheses and the confounding effects of landscape structure and agricultural intensification (AI) using extensive samplings of aphids and their parasitoids in Polish agricultural landscapes. Abundances, species composition of aphids, primary parasitoids, and parasitism rate of aphids by specialists and generalist parasitoids were analysed. Contrary to our expectations we found equally decreased parasitism rates by both types of primary parasitoids at higher aphid densities and thus proportion of specialists to generalists did not change with increasing host density. In line with the resource breadth hypothesis, specialist parasitoids had always lower abundances and parasitism rates than generalist parasitoids. Landscape diversity and agricultural intensification did not influence the host-parasitoid population dynamics. We speculate that these contrasting results could be caused by the additional density effects of secondary parasitoids. We conclude that simplistic two-trophic-level population models are not able to fully describe the complex dynamics of trophic networks. We also argue that agricultural intensification has lower effects on abundance and effectiveness of parasitoids than predicted by respective predator–prey models and empirical studies performed in controlled and artificial conditions.  相似文献   

7.
In studies of foraging behaviour in a multitrophic context, the fourth trophic level has generally been ignored. We used four aphid hyperparasitoid species: Dendrocerus carpenteri (Curtis) (Hymenoptera: Megaspilidae), Asaphes suspensus Walker (Hymenoptera: Pteromalidae), Alloxysta victrix (Westwood) (Hymenoptera: Alloxystidae) and Syrphophagus aphidivorus (Mayr) (Hymenoptera: Encyrtidae), to correlate their response to different cues with their ecological attributes such as host range and host stage. In addition, we compared our results with studies of primary parasitoids on the same plant–herbivore system. First, the olfactory response of females was tested in a Y‐tube olfactometer (single choice: plant, aphid, honeydew, parasitised aphid, aphid mummy, or virgin female parasitoid; dual choice: clean plant, plant with aphids, or plant–host complex). Second, their foraging behaviour was described on plants with different stimuli (honeydew, aphids, parasitised aphids, and aphid mummies). The results indicated that olfactory cues are probably not essential cues for hyperparasitoid females. In foraging behaviour on the plant, all species prolonged their total visit time and search time as compared to the control treatment (clean plant). Only A. victrix did not react to the honeydew. Oviposition in mummies prolonged the total visit time because of the long handling time, but the effect of this behaviour on search time could not be determined. No clear correlation between foraging behaviour and host stage or host range was found. In contrast to specialised primary aphid parasitoids that have strong fixed responses to specific kairomones and herbivore‐induced synomones, more generalist aphid hyperparasitoids seem to depend less on volatile olfactory stimuli, but show similarities with primary parasitoids in their use of contact cues while searching on a plant.  相似文献   

8.
In animals, inducible morphological defences against natural enemies mostly involve structures that are protective or make the individual invulnerable to future attack. In the majority of such examples, predators are the selecting agent while examples involving parasites are much less common. Aphids produce a winged dispersal morph under adverse conditions, such as crowding or poor plant quality. It has recently been demonstrated that pea aphids, Acyrthosiphon pisum, also produce winged offspring when exposed to predatory ladybirds, the first example of an enemy‐induced morphological change facilitating dispersal. We examined the response of A. pisum to another important natural enemy, the parasitoid Aphidius ervi, in two sets of experiments. In the first set of experiments, two aphid clones both produced the highest proportion of winged offspring when exposed as colonies on plants to parasitoid females. In all cases, aphids exposed to male parasitoids produced a higher mean proportion of winged offspring than controls, but not significantly so. Aphid disturbance by parasitoids was greatest in female treatments, much less in male treatments and least in controls, tending to match the pattern of winged offspring production. In a second set of experiments, directly parasitised aphids produced no greater proportion of winged offspring than unparasitised controls, thus being parasitised itself is not used by aphids for induction of the winged morph. The induction of wing development by parasitoids shows that host defences against parasites may also include an increased rate of dispersal away from infected habitats. While previous work has shown that parasitism suppresses wing development in parasitised individuals, our experiments are the first to demonstrate a more indirect influence of parasites on insect polyphenism. Because predators and parasites differ fundamentally in a variety of attributes, our finding suggests that the wing production in response to natural enemies is of general occurrence in A. pisum and, perhaps, in other aphids.  相似文献   

9.
The influence of aphid size on the host quality assessment and progeny performance of aphidiine parasitoids was examined using the mealy plum aphid parasitoid, Aphidius transcaspicus Telenga (Hymenoptera: Braconidae) and the black bean aphid, Aphis fabae Scopoli (Homoptera: Aphididae), as a readily acceptable alternate host. Aphid size in relation to stage of development was manipulated by rearing synchronous aphid cohorts at either 15 or 30 °C. At 15 °C, 2nd instar aphids were approximately the same size as 4th instar aphids reared at 30 °C. Cohorts of 30 aphids from each instar, reared at each temperature, were exposed to parasitism by a single parasitoid female for a period of 5 h. Overall susceptibility to parasitism did not vary between aphid cohorts, but the parasitoid response to aphid size differed significantly between rearing temperatures for both progeny sex ratio (parent female assessment of host quality) and larval growth and development (host suitability for parasitoid development). For aphids reared at 15 °C, the proportion of female progeny and emerging adult size for the parasitoid increased linearly with aphid size at the time of attack, while development time remained constant. In contrast, for aphids reared at 30 °C, the proportion of female progeny, emerging adult size, and the development time of the parasitoid all declined with aphid size at the time of attack. The contrasting responses of the parasitoid to host size for aphids reared at the two temperatures suggest that host quality is only indirectly related to aphid size among aphidiine parasitoids. The possible effects of higher temperatures on nutritional stress, obligate endosymbionts, and future growth potential of the aphids are discussed as explanations for the variation in host quality for parasitoid development.  相似文献   

10.
1. The value of protective mutualisms provided by some facultative endosymbionts has been well demonstrated in the laboratory, yet only recently has their effectiveness in the field been studied. ‘Candidatus Hamiltonella defensa’ is known to defend aphids from parasitoid wasps in laboratory trials. However, the efficacy of this defence varies among parasitoids, suggesting that protection will vary spatially and temporally depending on parasitoid community composition. 2. This demonstrated specificity and a dearth of studies on Hamiltonella in the field prompted the authors to quantify parasitism rates of Hamiltonella‐infected and ‐uninfected Aphis craccivora Koch aphid colonies in a manipulative field study. 3. It was found that A. craccivora in central Kentucky alfalfa were parasitised by Lysiphlebus testaceipes (Cresson) and Aphelinus sp. Surprisingly, Hamiltonella infection did not lower successful parasitism by the naturally occurring parasitoid wasps. Whether Hamiltonella was effective against L. testaceipes was subsequently tested in a controlled laboratory assay, and no effect on parasitism rate was found. 4. This study emphasises the fact that defensive symbionts sometimes provide no tangible defensive benefits under field conditions, depending on parasitoid community composition. It is hypothesised that the protective mutualism may be beneficial in geographically localised areas. When the symbiosis is effective against a local parasitoid community, aphid clones may experience eruptive population growth and rapidly disperse across a large area, allowing spread to habitats with different parasitoid communities where the mutualism is an ineffective defence.  相似文献   

11.
We investigated whether aphid presence and abundance influence the survival of an endophagous pre-dispersal seed predator of the same host plant. We studied a terrestrial community module consisting of one plant (Laburnum anagyroides) and four insect species/groups (an aphid, Aphis cytisorum, a pre-dispersal seed predator bruchid, Bruchidius villosus, aphid-attending ant species, and parasitoids of the bruchid). Two complementary investigations were carried out in parallel: (a) a plant-aphid-ant complex was experimentally manipulated by excluding aphids, ants, or both for 5 years to assess their impacts on the seed predator’s survival and parasitism rate; and (b) different aphid infestation levels on randomly selected infructescences were correlated with plant traits, nutrient allocation pattern, and variables of seed predator’s survival, such as the number of eggs laid and adults emerged influenced by parasitoid activity, for 7 years. We found that ants did not affect bruchid oviposition negatively, but egg-parasitism was significantly decreased by their presence. Plant traits, such as the number of seeds and seed mass, as well as seed predator performance were negatively affected by heavy aphid infestation. Seed predator -infested seeds had no effect on the mass of remaining seeds in the pods. This study suggests that aphids were nevertheless promoting bruchid abundance and survival, depending on their infestation rate.  相似文献   

12.
In order to reduce parasite‐induced mortality, hosts may be involved in mutualistic interactions in which the partner contributes to resistance against the parasite. The pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), harbours secondary bacterial endosymbionts, some of which have been reported to confer resistance against aphid parasitoids. Although this resistance often results in death of the developing parasitoid larvae, some parasitoid individuals succeed in developing into adults. Whether these individuals suffer from fitness reduction compared to parasitoids developing in pea aphid clones without symbionts has not been tested so far. Using 30 pea aphid clones that differed in their endosymbiont complement, we studied the effects of these endosymbionts on aphid resistance against the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidiinae), host–parasitoid physiological interactions, and fitness of emerging adult parasitoids. The number of symbiont species in an aphid clone was positively correlated with a number of resistance measurements but there were also clear symbiont‐specific effects on the host–parasitoid interaction. As in previous studies, pea aphid clones infected with Hamiltonella defensa Moran et al. showed resistance against the parasitoid. In addition, pea aphid clones infected with Regiella insecticola Moran et al. and co‐infections of H. defensaSpiroplasma, R. insecticolaSpiroplasma, and R. insecticolaH. defensa showed reduced levels of parasitism and mummification. Parasitoids emerging from symbiont‐infected aphid clones often had a longer developmental time and reduced mass. The number of teratocytes was generally lower when parasitoids oviposited in aphid clones with a symbiont complement. Interestingly, unparasitized aphids infected with Serratia symbiotica Moran et al. and R. insecticola had a higher fecundity than unparasitized aphids of uninfected pea aphid clones. We conclude that in addition to conferring resistance, pea aphid symbionts also negatively affect parasitoids that successfully hatch from aphid mummies. Because of the link between aphid resistance and the number of teratocytes, the mechanism underlying resistance by symbiont infection may involve interference with teratocyte development.  相似文献   

13.
Adding floral resources to agro-ecosystems to improve biological control can enhance the survival, egg load, and parasitism rate of insect parasitoids. However, this may not always be the case because the herbivore may benefit from the added resource as much as, or more than the third-trophic level. In addition, the natural enemies of those in the third-trophic level may also derive improved fitness from the added resources. Both these processes will dampen trophic cascades, leading to less-effective biological control. In this study, the effect of adding different flowering plants on the longevity, egg load, aphid parasitism rates and hyperparasitism of Aphidius ervi Haliday (Hymenoptera: Braconidae) by its hyperparasitoid Dendrocerus aphidum Rondani (Hymenoptera: Megaspilidae) were investigated, using the pea aphid Acyrthosiphon pisum Harris (Homoptera: Aphididae) as the herbivore. Parasitoids exposed to buckwheat survived, on average, between four to five times as long as those in the control (water) and those in phacelia, alyssum and coriander treatments survived three to four times as long. Hyperparasitoids exposed to buckwheat survived five to six times as long as those in the control and three to five times longer with the other plants compared with the control. Almost all flower species significantly increased parasitoid and hyperparasitoid egg loads and the number of parasitised aphids and parasitised mummies compared with control. Understanding the factors influencing the dynamics of multitrophic interactions involving flowering plants, herbivores, parasitoids and hyperparasitoids is a fertile area for future research. One of the most challenging areas in contemporary ecology concerns the relative importance of different types of biodiversity mediating trophic interactions and thereby influencing the structure of communities and food webs. This paper begins to explore this using an experimental, laboratory-based approach.  相似文献   

14.
1. In solitary parasitoids, only one individual can complete development in a given host. Therefore, solitary parasitoids tend to prefer unparasitised hosts for oviposition, yet under high parasitoid densities, superparasitism is frequent and results in fierce competition for the host's limited resources. This may lead to selection for the best intra‐host competitors. 2. Increased intra‐host competitive ability may evolve under a high risk of superparasitism if this trait exhibits genetic variation, and if competitive differences among parasitoid genotypes are consistent across environments, e.g. different host genotypes. 3. These assumptions were addressed in the aphid parasitoid Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae) and its main host, the black bean aphid, Aphis fabae (Scopoli) (Hemiptera: Aphididae). Three parthenogenetic lines of L. fabarum were allowed to parasitise three aphid clones singly and in all pairwise combinations (superparasitism). The winning parasitoid in superparasitised aphids was determined by microsatellite analysis. 4. The proportions of singly parasitised aphids that were mummified were similar for the three parasitoid lines and did not differ significantly among host clones. 5. Under superparasitism, significant biases in favour of one parasitoid line were observed for some combinations, indicating that there is genetic variation for intra‐host competitive ability. However, the outcome of superparasitism was inconsistent across aphid clones and thus influenced significantly by the host clone in which parasitoids competed. 6. Overall, this study shows that the fitness of aphid parasitoids under superparasitism is determined by complex interactions with competitors as well as hosts, possibly hampering the evolution of improved intra‐host competitive ability.  相似文献   

15.
Polymerase chain reaction (PCR)-based molecular markers have been developed to detect the presence of primary parasitoids in cereal aphids and used to estimate primary parasitism rates. However, the presence of secondary parasitoids (hyperparasitoids) may lead to underestimates of primary parasitism rates based on PCR markers. This is because even though they kill the primary parasitoid, it’s DNA can still be amplified, leading to an erroneous interpretation of a positive result. Another issue with secondary parasitoids is that adults are extremely difficult to identify using morphological characters. Therefore, we developed species-specific molecular markers to detect hyperparasitoids. A 16S ribosomal RNA mitochondrial gene fragment was amplified by PCR and sequenced from two secondary parasitoid species, Dendrocerus carpenteri (Curtis) (Hymenoptera: Megaspilidae) and Alloxysta xanthopsis (Ashmead) (Hymenoptera: Charipidae), four geographic isolates of the primary parasitoid, Lysiphlebus testaceipes (Cresson) (Hymenoptera: Braconidae), and six aphid species common to cereal crops. Species-specific PCR primers were designed for each insect on the basis of these 16S rRNA gene sequences. Amplification of template DNA, followed by agarose gel electrophoresis, successfully distinguished D. carpenteri and A. xanthopsis from all four isolates of L. testaceipes and all six cereal aphid species in this laboratory test.  相似文献   

16.
Many aphid species possess wingless (apterous) and winged (alate) stages, both of which can harbor parasitoids at various developmental stages. Alates can either be parasitized directly or can bear parasitoids eggs or larvae resulting from prior parasitism of alatoid nymphs. Winged aphids bearing parasitoid eggs or young larvae eventually still engage in long-distance flights, thereby facilitating parasitoid dispersal. This may have a number of important implications for biological control of aphids by parasitoids. In this study, we determined the effect of parasitism by Aphelinus varipes (Hymenoptera: Aphelinidae) on wing development and flight of the soybean aphid, Aphis glycines (Hemiptera: Aphididae). We also quantified the influence of aphid flight distance on subsequent A. varipes development. Parasitism by A. varipes was allowed at different A. glycines developmental stages (i.e., alatoid 3rd and 4th-instar nymphs, alates) and subsequent aphid flight was measured using a computer-monitored flight mill. Only 35% of aphids parasitized as L3 alatoid nymphs produced normal winged adults compared to 100% of L4 alatoids. Flight performance of aphids parasitized as 4th-instar alatoid nymphs 24 or 48 h prior to testing was similar to that of un-parasitized alates of identical age, but declined sharply for alates that had been parasitized as 4th-instar alatoid nymphs 72 and 96 h prior to testing. Flight performance of aphids parasitized as alate adults for 24 h was not significantly different from un-parasitized alates of comparable ages. Flight distance did not affect parasitoid larval or pupal development times, or the percent mummification of parasitized aphids. Our results have implications for natural biological control of A. glycines in Asia and classical biological control of the soybean aphid in North America.  相似文献   

17.
Some aphid species are attended by ants, which protect aphids against enemies, but ants sometimes prey on the aphids they are attending depending on the resource conditions. A previous study indicated that the ant Lasius niger preys less on the aphid individuals that experienced ant attendance than on those that did not. This observation leads to the hypothesis that ants transfer some substances to the aphids they attend and selectively prey on the aphids without the substances. In this study, we focus on cuticular hydrocarbons (CHCs), which are used by ants as nestmate recognition substances, and test whether ants discriminate the aphids on the basis of CHCs. We confirmed that the ant Lasius fuji preyed less on the aphids that were attended by their nestmates than those that were not attended. Glass dummies treated with CHCs from attended aphids were attacked less by ants than those treated with CHCs from non-attended aphids. The CHC profiles of ant attended aphids resembled those of the ants, suggesting that ants’ CHCs are transferred to the aphids’ body surface through ant attendance. These results support the hypothesis that ants “mark” their attended aphids with their CHCs and the CHCs reduce ant predation intensity.  相似文献   

18.
Parasitic organisms rely on the resources of their hosts to obtain nutrients essential for growth and reproduction. Insect parasitoids constitute an extreme condition since they develop in a single host from which they typically consume all available resources. As a result, the host is killed following parasitism. However, a few intriguing cases of host survival have been reported wherein hosts resume foraging and may even reproduce following parasitoid emergence. Yet, the ultimate and proximate mechanisms responsible for host recovery remain unresolved. We tested the impact of host nutrition on host fate and parasitoid fitness, using the association between Dinocampus coccinellae and the spotted lady beetle Coleomegilla maculata. Under laboratory conditions, we fed parasitized ladybirds on different aphid diets, with or without pollen. In the field, we followed the fate of parasitized ladybirds during seasonal variations in pollen and aphid abundance. We found that ladybirds fed on aphids or a combination of aphids and pollen recovered more frequently from parasitism (from 65 to 81%) than those eating only pollen (48%). Field data suggest that the fate of parasitized ladybirds is also related to food availability. On the other hand, when hosts fed on a combination of aphids and pollen, consequences for parasitoid fitness were often ‘all‐or‐nothing’: parasitoid emergence rate was the lowest of all host nutrition regimes (~50%), but parasitoids that did emerge were larger than individuals emerging from other host nutrition regimes. Laboratory and field results concur to show that host nutritional status during parasitoid development significantly influences both host fate and parasitoid fitness.  相似文献   

19.
Insects harbour a wild diversity of symbionts that can spread and persist within populations by providing benefits to their host. The pea aphid Acyrthosiphon pisum maintains a facultative symbiosis with the bacterium Hamiltonella defensa, which provides enhanced resistance against the aphid parasitoid Aphidius ervi. Although the mechanisms associated with this symbiotic‐mediated protection have been investigated thoroughly, little is known about its evolutionary effects on parasitoid populations. We used an experimental evolution procedure in which parasitoids were exposed either to highly resistant aphids harbouring the symbiont or to low innate resistant hosts free of H. defensa. Parasitoids exposed to H. defensa gained virulence over time, reaching the same parasitism rate as those exposed to low aphid innate resistance only. A fitness reduction was associated with this adaptation as the size of parasitoids exposed to H. defensa decreased through generations. This study highlighted the considerable role of symbionts in host–parasite co‐evolutionary dynamics.  相似文献   

20.
Honeydew is a sugar-rich resource excreted by many hemipteran species and is a key food source for other insect species such as ants and parasitoid wasps. Here, we evaluated the nutritional value of 14 honeydews excreted by 13 aphid species for the generalist aphid parasitoid Lysiphlebus testaceipes to test a series of hypotheses concerning variation in the nutritional value of honeydew. There was a positive correlation between the body sugar content of honeydew-fed parasitoids and their longevity. This information is valuable for biological control researchers because it demonstrates that the nutritional state of honeydew-fed parasitoids in the wild can indicate their fitness, independently of the honeydew source they have fed on.Although the carbohydrate content and longevity of L. testaceipes differed greatly among the different honeydews, we did not find a significant effect of aphid or host plant phylogeny on these traits. This result suggests that honeydew is evolutionarily labile and may be particularly subject to ecological selection pressures. This becomes apparent when considering host aphid suitability: Schizaphis graminum, one of the most suitable and commonly used hosts of L. testaceipes, produced honeydew of the poorest quality for the parasitoid whereas Uroleucon sonchi, one of the few aphids tested that cannot be parasitized by L. testaceipes, excreted the honeydew with the highest nutritional value. These data are consistent with the hypothesis that hemipterans are subject to selection pressure to minimize honeydew quality for the parasitoids that attack them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号