首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drought and salinity are two widespread environmental conditions leading to low water availability for plants. Low water availability is considered the main environmental factor limiting photosynthesis and, consequently, plant growth and yield worldwide. There has been a long-standing controversy as to whether drought and salt stresses mainly limit photosynthesis through diffusive resistances or by metabolic impairment. Reviewing in vitro and in vivo measurements, it is concluded that salt and drought stress predominantly affect diffusion of CO(2) in the leaves through a decrease of stomatal and mesophyll conductances, but not the biochemical capacity to assimilate CO(2), at mild to rather severe stress levels. The general failure of metabolism observed at more severe stress suggests the occurrence of secondary oxidative stresses, particularly under high-light conditions. Estimates of photosynthetic limitations based on the photosynthetic response to intercellular CO(2) may lead to artefactual conclusions, even if patchy stomatal closure and the relative increase of cuticular conductance are taken into account, as decreasing mesophyll conductance can cause the CO(2) concentration in chloroplasts of stressed leaves to be considerably lower than the intercellular CO(2) concentration. Measurements based on the photosynthetic response to chloroplast CO(2) often confirm that the photosynthetic capacity is preserved but photosynthesis is limited by diffusive resistances in drought and salt-stressed leaves.  相似文献   

2.
F. Yoshie  S. Kawano 《Oecologia》1986,71(1):6-11
Summary Seasonal changes in photosynthetic capacity, and photosynthetic responses to intercellular CO2 concentration and irradiance were investigated under laboratory conditions on intact leaves of Pachysandra terminalis. Photosynthetic capacity and stomatal conductance under saturating light intensity and constant water vapor pressure deficit showed almost the same seasonal trend. They increased from early June just after the expansion of leaves, reached the maximum in late-Septemer, and then decreased to winter. In over-wintering leaves they recovered and increased immediately after snow-melting, reached a first maximum in late April, and then decreased to early July in response to the reduction of light intensity on the forest floor. There-after, they increased from mid August, reached a second maximum in late September, and then decreased to winter. The parallel changes of photosynthesis and stomatal conductane indicate a more or less constant intercellular CO2 concentration throughout the year. The calculated values of relative stomatal limitation of photosynthesis were nearly constant throughout the year, irrespective of leaf age. The results indicate that the seasonal changes in light-saturated photosynthetic capacity are not due to a change of stomatal conductance, but to a change in the photosynthetic capacity of mesophyll. Indeed, carboxylation efficiency assessed by the inital slope of the Ci-photosynthesis curve changed in proportion to seasonal changes of the photosynthetic capacity in both current-year and over-wintered leaves. High photosynthetic capacity in current-year leaves as compared with one-year-old leaves was also due to the high photosynthetic capacity of mesophyll. Nevertheless, stomatal conductance changed in proportion to photosynthetic capacity, indicating that stomatal conductance is regulated by the mesophyll photosynthetic capacity such that the intercellular CO2 concentrations are maintained constant. The quantum yield also changed seasonally parallel with that in the photosynthetic capacity.Contribution No. 2893 from the Institute of Low Temperature Science  相似文献   

3.
F. Yoshie  S. Yoshida 《Oecologia》1987,72(2):202-206
Summary Seasonal changes in the photosynthetic characteristics of intact involucral leaves of Anemone raddeana were investigated under laboratory conditions. Net photosynthesis and constant water vapor pressure deficit showed almost the same seasonal trend. They increased rapidly from mid-April immediately after unfolding of the leaves and reached the maximum in late-April, before the maximum expansion of the leaves. They retained the maximum values until early-May and then decreased toward late-May with a progress of leaf senescence. The calculated values of intercellular CO2 concentration and relative stomatal limitation of photosynthesis showed no significant change throughout the season. The carboxylation efficiency as assessed by the initial slope of Ci-photosynthesis curve and the net photosynthesis under a high Ci regime varied seasonally in parallel with the change of the light-saturated photosynthesis. The results indicate that the seasonal changes in light-saturated net photosynthesis are not due to a change of stomatal conductance, but to a change in the photosynthetic capacity of mesophyll. Nevertheless, leaf conductance changed concomitantly with photosynthetic capacity, indicating that the seasonal change in stomatal conductance is modulated by the mesophyll photosynthetic capacity such that the intercellular CO2 concentrations is maintained constant. The shape of light-photosynthesis curve was similar to that of sun-leaf type. The quantum yield also changed simultaneously with the photosynthetic capacity throughout the season.Contribution No. 2965 from the Institute of Low Temperature Science  相似文献   

4.
1. Provenances of Castanea sativa from populations adapted to different climatic areas of Turkey were grown in a field trial in Italy. Carbon isotope discrimination (Δ) in leaf dry matter and in leaf soluble sugar, were measured, along with photosynthesis, stomatal conductance and mesophyll conductance, to study the variability of primary productivity and its ecological significance in European Chestnut.
2. Genetic variations were found in RuBP carboxylase, chlorophyll, leaf soluble protein and leaf thickness.
3. Carbon isotope discrimination (Δ) in leaf dry matter was greater in drought-adapted than in wet-adapted provenances. A similar variation of Δ was observed in leaf soluble carbohydrates either under watered or drought conditions. Possible environmental effects of variables such as vapour pressure difference, on the relationship between transpiration efficiency and carbon isotope discrimination are discussed, on the basis of short-term and long-term results.
4. Generally low values of Δ encountered among provenances were explained not only by low values of intercellular CO2 partial pressure but also by consistently low values of mesophyll conductance leading to reduced chloroplastic CO2 partial pressure. A decrease in mesophyll conductance was induced by water shortage. Co-ordination was found between stomatal and mesophyll conductance, with the drought-adapted provenances showing much higher mesophyll conductance than the wet-adapted provenances. Variations in mesophyll conductance were related to differences in leaf protein content.
5. Possible ecophysiological adaptive mechanisms are discussed taking into account stomatal sensitivity, modulation of photosynthetic capacity and water-use efficiency under drought conditions.  相似文献   

5.
The responses of steady-state CO2 assimilation rate (A), transpiration rate (E), and stomatal conductance (gs) to changes in leaf-to-air vapour pressure difference (δW) on one hand and to increasing soil drought on the other hand were examined in 2-year-old seedlings of Pseudotsuga menziesii, Pseudotsuga macrocarpa and Cedrus atlantica. Analysing the data through A vs intercellular CO2 molar fraction (ci) graphs, we could determine stomatal and mesophyll contributions to changes in A as δW or soil drought were increased. Increasing soil drought affected gs and mesophyll photosynthesis independently, since clearly distinct predawn leaf water potential (ψp) regions appeared in which either stomatal or mesophyll effects prevailed for explaining the changes in A. The two Pseudotsuga species exhibited a large ψP range (between ca -0.8 and -1.5 to -1.9 MPa) in which only stomata were responsible for the decrease in A. A dramatic decline in mesophyll photosynthesis was noticed starting from values as high as -1.2 MPa ( C. atlantica ), -1.5 MPa ( P. macrocarpa ) and -1.9 MPa ( P. menziesii ). Increasing ΔW at high soil water content led to a sharp decline in A primarily due to an alteration of mesophyll photosynthesis. Stomatal conductance for CO2 diffusion was affected in a lesser extent and in close correlation with the changes in mesophyll photosynthesis, which could suggest the existence of a functional linkage between mesophyll photosynthesis and stomata. Surprisingly, the drought resistant P. macrocarpa exhibited the least conservative water use efficiency in response to the two types of drought. In this species drought adaptation seems to be mainly due to its high root growth and soil prospection ability.  相似文献   

6.
In recent years, many studies have focused on the limiting role of mesophyll conductance (gm) to photosynthesis (An) under water stress, but no studies have examined the effect of drought on gm through the forest canopy. We investigated limitations to An on leaves at different heights in a mixed adult stand of sessile oak (Quercus petraea) and beech (Fagus sylvatica) trees during a moderately dry summer. Moderate drought decreased An of top and lowest beech canopy leaves much more than in leaves located in the mid canopy; whereas in oak, An of the lower canopy was decreased more than in sunlit leaves. The decrease of An was probably not due to leaf‐level biochemistry given that VCmax was generally unaffected by drought. The reduction in An was instead associated with reduction in stomatal and mesophyll conductances. Drought‐induced increases in stomatal limitations were largest in leaves from the top canopy, whereas drought‐induced increases in mesophyll limitations were largest in leaves from the lowest canopy. Sensitivity analysis highlighted the need to decompose the canopy into different leaf layers and to incorporate the limitation imposed by gm when assessing the impact of drought on the gas exchange of tree canopies.  相似文献   

7.
Seven methods, including measurements of photosynthesis (A) and stomatal conductance (g(s)), carbon isotope discrimination, ecosystem CO2 and water vapour exchange using eddy covariance and the use of a multilayer canopy model and ecosystem Keeling plots, were employed to derive estimates of intercellular CO2 concentration (Ci) across a range of spatial and temporal scales in a low productivity rain forest ecosystem dominated by the conifer Dacrydium cupressinum Lamb. in New Zealand. Estimates of shoot and canopy Ci across temporal scales ranging from minutes to years were remarkably similar (range of 274-294 micromol mol(-1)). The gradual increase in shoot Ci with depth in the canopy was more likely attributable to decreases in A resulting from lower irradiance (Q) than to increases in g, due to changes in air saturation deficit (D). The lack of marked vertical gradients in A and g(s) at saturating Q through the canopy and the low seasonal variability in environmental conditions contributed to the efficacy of scaling Ci. However, the canopy Ci estimate calculated from the carbon isotope composition of respired ecosystem CO2 (delta13CR; 236 micromol mol(-1)) was much lower than other estimates of canopy Ci. Partitioning delta13CR into four components (soil, roots, litter and foliage) indicated root respiration as the dominant (> 50%) contributor to delta13CR. Variable time lags and differences in isotopic composition during photosynthesis and respiration make the direct estimation of canopy Ci from delta 13CR problematic.  相似文献   

8.
Current-year shoots of Sitka spruce ( Picea sitchensis (Bong.) Carr.) were removed from the forest canopy. After steady-state rates of net photosynthesis were obtained in a leaf chamber, the shoots were excised in air and removed at different times to establish a relationship between net photosynthesis and xylem water potential. The experiment was repeated at five ambient carbon dioxide concentrations.
Net photosynthesis remained constant over a wide range of xylem water potential and increased linearly with ambient carbon dioxide concentration between 20 and 300 cm3 m−3. At low water potential net photosynthesis declined at each ambient carbon dioxide concentration and there was little difference in the potential (±0.05 MPa) at which zero photosynthesis was observed.
There was a small increase in the CO2 compensation concentration at low xylem water potentials, but calculated mesophyll conductance still declined at low water potential after correction for this change in compensation concentration. Mesophyll conductance reached zero within the same range of water potential as net photosynthesis. The results suggested that the non-stomatal contribution to the decline of photosynthesis was approximately 30% until almost complete stomatal closure occurred.  相似文献   

9.
We review the photosynthetic responses to drought in field-growngrapevines and other species. As in other plant species, therelationship between photosynthesis and leaf water potentialand/or relative water content in field-grown grapevines dependson conditions during plant growth and measurements. However,when light-saturated stomatal conductance was used as the referenceparameter to reflect drought intensity, a common response patternwas observed that was much less dependent on the species andconditions. Many photosynthetic parameters (e.g. electron transportrate, carboxylation efficiency, intrinsic water-use efficiency,respiration rate in the light, etc.) were also more stronglycorrelated with stomatal conductance than with water statusitself. Moreover, steady-state chlorophyll fluorescence alsoshowed a high dependency on stomatal conductance. This is discussedin terms of an integrated down-regulation of the whole photosyntheticprocess by CO2 availability in the mesophyll. A study with sixMediterranean shrubs revealed that, in spite of some markedinterspecific differences, all followed the same pattern ofdependence of photosynthetic processes on stomatal conductance,and this pattern was quite similar to that of grapevines. Furtheranalysis of the available literature suggests that the above-mentionedpattern is general for C3 plants. Even though the patterns describeddo not necessarily imply a cause and effect relationship, theycan help our understanding of the apparent contradictions concerningstomatal vs. non-stomatal limitations to photosynthesis underdrought. The significance of these findings for the improvementof water-use efficiency of crops is discussed.  相似文献   

10.
Carbonyl sulfide (COS) is a tracer of ecosystem photosynthesis that can advance carbon cycle research from leaf to global scales; however, a range of newly reported caveats related to sink/source strength of various ecosystem components hinder its application. Using comprehensive eddy‐covariance and chamber measurements, we systematically measure ecosystem contributions from leaf, stem, soil, and litter and were able to close the ecosystem COS budget. The relative contributions of nonphotosynthetic components to the overall canopy‐scale flux are relatively small (~4% during peak activity season) and can be independently estimated based on their responses to temperature and humidity. Converting COS to photosynthetic CO2 fluxes based on the leaf relative uptake of COS/CO2, faces challenges due to observed daily and seasonal changes. Yet, this ratio converges around a constant value (~1.6), and the variations, dominated by light intensity, were found unimportant on a flux‐weighted daily time‐scale, indicating a mean ratio of daytime gross‐to‐net primary productivity of ~2 in our ecosystem. The seasonal changes in the leaf relative uptake ratio may indicate a reduction in mesophyll conductance in winter, and COS‐derived canopy conductance permitted canopy temperature estimate consistent with radiative skin temperature. These results support the feasibility of using COS as a powerful and much‐needed means of assessing ecosystem function and its response to change.  相似文献   

11.
The internal conductance to CO2 supply from substomatal cavitiesto sites of carboxylation poses a large limitation to photosynthesis.It is known that internal conductance is decreased by soil waterdeficits, but it is not known if it is affected by atmosphericwater deficits (i.e. leaf to air vapour pressure deficit, VPD).The aim of this paper was to examine the responses of internalconductance to atmospheric and soil water deficits in seedlingsof the evergreen perennial Eucalyptus regnans F. Muell and theherbaceous plants Solanum lycopersicum (formerly Lycopersiconesculentum) Mill. and Phaseolus vulgaris L. Internal conductancewas estimated with the variable J method from concurrent measurementsof gas exchange and fluorescence. In all three species steady-statestomatal conductance decreased by 30% as VPD increased from1 kPa to 2 kPa. In no species was internal conductance affectedby VPD despite large effects on stomatal conductance. In contrast,soil water deficits decreased stomatal conductance and internalconductance of all three species. Decreases in stomatal andinternal conductance under water deficit were proportional,but this proportionality differed among species, and thus therelationship between stomatal and internal conductance differedamong species. These findings indicate that soil water deficitsaffect internal conductance while atmospheric water deficitsdo not. The reasons for this distinction are unknown but areconsistent with soil and atmospheric water deficits having differingeffects on leaf physiology and/or root–shoot communication. Key words: Carbon dioxide, drought, internal conductance, mesophyll conductance, photosynthesis, stomatal conductance, transfer conductance, vapour pressure deficit, water deficit Received 11 October 2007; Revised 9 November 2007 Accepted 15 November 2007  相似文献   

12.
邢红爽  乌佳美  陈健  史作民 《生态学报》2023,43(12):5186-5199
随着全球气候变化的加剧,陆地生态系统中植物光合作用限制影响程度的增加已成为降低全球植被净初级生产力的主要因素。系统了解植物光合作用限制因素是科学评估植被生产力的重要前提,也是缓解植物光合作用限制,增加植物光合碳同化能力的先决条件。对植物光合作用限制因素进行了系统解析,分析了光合作用三种限制因素生化限制(Biochemical limitation,lb)、气孔限制(Stomatal limitation,ls)、叶肉限制(Mesophyll limitation,lm)的环境响应,重点讨论了叶肉限制及其影响机理,述评了光合作用限制定量分析方法及改善措施,最后以提高植被生产力为驱使目标,对未来植物光合作用限制因素研究提出以下内容:(1)基因工程技术与系统生物学数据相结合提高植被生产力;(2)气孔响应速度对植物光合作用的影响机制;(3)水通道蛋白(Aquaporin, AQPs)和碳酸酐酶(Carbonic anhydrase, CAs)感知环境信号变化的驱动基因。以期为未来气候变化背景下,深入认识和降低植物光合作用限制,提...  相似文献   

13.
A recent resurgence of interest in formal optimisation theory has begun to improve our understanding of how variations in stomatal conductance and photosynthetic capacity control the response of whole plant photosynthesis and growth to the environment. However, mesophyll conductance exhibits similar variation and has similar impact on photosynthesis as stomatal conductance; yet, the role of mesophyll conductance in the economics of photosynthetic resource use has not been thoroughly explored. In this article, we first briefly summarise the knowledge of how mesophyll conductance varies in relation to environmental factors that also affect stomatal conductance and photosynthetic capacity, and then we use a simple analytical approach to begin to explore how these important controls on photosynthesis should mutually co-vary in a plant canopy in the optimum. Our analysis predicts that when either stomatal or mesophyll conductance is limited by fundamental biophysical constraints in some areas of a canopy, e.g. reduced stomatal conductance in upper canopy leaves due to reduced water potential, the other of the two conductances should increase in those leaves, while photosynthetic capacity should decrease. Our analysis also predicts that if mesophyll conductance depends on nitrogen investment in one or more proteins, then nitrogen investment should shift away from Rubisco and towards mesophyll conductance if hydraulic or other constraints cause chloroplastic CO2 concentration to decline. Thorough exploration of these issues awaits better knowledge of whether and how mesophyll conductance is itself limited by nitrogen investment, and about how these determinants of photosynthetic CO2 supply and demand co-vary among leaves in real plant canopies.  相似文献   

14.
叶片气孔是植物进行水汽交换的通道, 影响着植物的蒸腾和光合作用。然而叶片气孔行为受环境条件和树种类型的影响, 不同树种冠层气孔导度对环境因子响应的差异性, 以及在生长季不同时期叶片气孔对冠层蒸腾的调节作用是否会发生改变, 仍不清楚。该研究目的是通过探究各环境因子对不同树种冠层气孔导度的相对贡献率以及叶片气孔对冠层蒸腾的调节作用, 为深入了解植物水分利用状况和山区森林经营提供参考依据。于2018年生长季以北京八达岭国家森林公园内的58年生油松(Pinus tabuliformis)和39年生元宝槭(Acer truncatum)为研究对象, 利用热扩散技术对其树干液流进行连续监测, 并同步监测环境因子。利用彭曼公式计算冠层气孔导度(Gs)。主要结果: (1)油松和元宝槭日间Gs在日、月时间尺度上存在明显差异。5-7月油松和元宝槭日动态Gs均随饱和水汽压差(VPD)和太阳辐射(GR)的增加呈上升趋势, 上升持续时间比8月和9月长; 在月尺度上, 随着VPDGR的降低和土壤湿度(VWC)的升高, Gs从5月到9月整体上升。(2)利用增强回归树法分析得到VWCVPDGs的贡献率最大, 其次是GR、气温和风速。VWCVPD对油松Gs的贡献率分别为66.4%和17.4%, 对元宝槭Gs的贡献率分别为54.8%和21.0%。(3)油松和元宝槭的dGs/dlnVPD值与参考冠层气孔导度之间的斜率均显著高于0.6, 气孔调节作用相对较强。综上所述, 气孔对环境因子的响应在树种以及生长季不同时期之间存在差异, 为防止水分过度散失, 两树种在不同土壤水分条件下均通过严格的气孔调节控制蒸腾量。  相似文献   

15.
Eddy covariance and sapflow data from three Mediterranean ecosystems were analysed via top‐down approaches in conjunction with a mechanistic ecosystem gas‐exchange model to test current assumptions about drought effects on ecosystem respiration and canopy CO2/H2O exchange. The three sites include two nearly monospecific Quercus ilex L. forests – one on karstic limestone (Puéchabon), the other on fluvial sand with access to ground water (Castelporziano) – and a typical mixed macchia on limestone (Arca di Noè). Estimates of ecosystem respiration were derived from light response curves of net ecosystem CO2 exchange. Subsequently, values of ecosystem gross carbon uptake were computed from eddy covariance CO2 fluxes and estimates of ecosystem respiration as a function of soil temperature and moisture. Bulk canopy conductance was calculated by inversion of the Penman‐Monteith equation. In a top‐down analysis, it was shown that all three sites exhibit similar behaviour in terms of their overall response to drought. In contrast to common assumptions, at all sites ecosystem respiration revealed a decreasing temperature sensitivity ( Q 10) in response to drought. Soil temperature and soil water content explained 70–80% of the seasonal variability of ecosystem respiration. During the drought, light‐saturated ecosystem gross carbon uptake and day‐time averaged canopy conductance declined by up to 90%. These changes were closely related to soil water content. Ecosystem water‐use efficiency of gross carbon uptake decreased during the drought, regardless whether evapotranspiration from eddy covariance or transpiration from sapflow had been used for the calculation. We evidence that this clearly contrasts current models of canopy function which predict increasing ecosystem water‐use efficiency (WUE) during the drought. Four potential explanations to those results were identified (patchy stomatal closure, changes in physiological capacities of photosynthesis, decreases in mesophyll conductance for CO2, and photoinhibition), which will be tested in a forthcoming paper. It is suggested to incorporate the new findings into current biogeochemical models after further testing as this will improve estimates of climate change effects on (semi)arid ecosystems' carbon balances.  相似文献   

16.
Tropical cloud forests are considered humid ecosystems with frequent cloud cover down to the ground surface. However, seasonal variation in precipitation may induce short-term water stress. For canopy leaves, this water stress may also be a consequence of large atmospheric vapor pressure deficits. The objective of this work was to study five canopy cloud forest species to determine if there are restrictions to leaf gas exchange as a consequence of seasonality in precipitation and to daily water deficit due to air evaporative demand mainly during maximum incoming radiation hours. Seasonal daily courses of microclimatic variables (air temperature, relative humidity, photosynthetic photon flux density) and plant responses (leaf water potential, stomatal conductance, CO2 assimilation rates, leaf nitrogen concentration) were measured at 2400 m asl in Monterrey, an intermontane valley of the Venezuelan Andes. A gradient in terms of responses to water stress conditions was observed between the species, with Clusia multiflora (a 46% reduction in stomatal conductance between seasons) as the most affected and Miconia resimoides (increased stomatal conductance) responding more favorably to slight water stress conditions. If we consider the limitations of water stress and/or light conditions on CO2 assimilation we may arrange the species into those in which water stress conditions have a greater impact on leaf carbon gain, those where light conditions are determinant and one in which both water stress and light conditions may affect leaf carbon assimilation.  相似文献   

17.
Plants grown at high vapor pressure deficit (VPD) usually present decreased photosynthesis, but stomatal and mesophyll limitation to photosynthesis remain poorly quantified. To better understand the regulation of high VPD on photosynthesis and plant growth in tomatoes, we investigated the limitation of stomatal conductance and mesophyll conductance to photosynthesis and relative importance of stomatal morphology and function in stomatal conductance. Both the net photosynthesis rate and total biomass were significantly limited by high VPD. Meanwhile, stomatal conductance and mesophyll conductance were decreased under high VPD. The stomatal conductance limitation was responsible for 60% of the total photosynthetic limitation. Moreover, a reduction in stomatal density and stomatal size occurred under high VPD, which was significantly correlated with the down-regulation of stomatal conductance. The stomatal morphology contributed to more than half the change in stomatal conductance. Nevertheless, stomatal movement was also an important factor in regulating stomatal conductance. The decrease of hydraulic conductance and transpiration rate with no significant difference in relative water content, leaf water potential, and/or osmotic potential suggested passive hydraulic regulation in the feedforward responses of stomata to high VPD.  相似文献   

18.
叶肉细胞导度研究进展   总被引:1,自引:0,他引:1  
史作民  冯秋红  程瑞梅  刘世荣 《生态学报》2010,30(17):4792-4803
叶肉细胞导度指叶片叶肉细胞内部的CO2扩散能力,在植物生理生态及全球气候变化和陆地生态系统相互关系的研究中具有重要作用。系统介绍了叶肉细胞导度的发现、发展过程及其研究进展、几种目前国际上常用的叶肉细胞导度测度方法的原理、计算过程;强调了叶肉细胞导度作为光合作用扩散过程一部分的重要意义,明确了叶肉细胞导度的定义及分布范围。并探讨了不同方法的优缺点及注意事项。总结分析了叶肉细胞导度对不同环境因子(温度、水分及环境中CO2和O3浓度等)的响应,从不同角度对叶肉细胞导度的生态学意义进行了简单的概括。对叶肉细胞导度的未来研究进行了展望。  相似文献   

19.
A unique approach was used to evaluate stomatal and nonstomatal constraints to photosynthesis in 19 naturally occurring, deciduous tree species on xeric, mesic and wetmesic sites in central Pennsylvania, USA, during relatively wet (1990) and dry (1991) growing seasons. All species exhibited significantly decreased stomatal conductance to CO2 (gc) in 1991 compared to 1990. The mesic species had drought related decreases in photosynthesis (A) attributed primarily to increased absolute stomatal limitation to A (Lg), whereas in the wet-mesic species, the absolute mesophyll limitation (Lm) was at least as important as Lg in limiting A during drought. The xeric species maintained relatively high A during drought despite decreased gc. In the xeric and mesic species, Lm decreased and Lg increased during drought due to stomatal closure. From xeric to mesic to wet-mesic, the relative stomatal limitation (Ig) generally decreased faster, and relative mesophyll limitations to A increased faster, with increasing gc suggesting greater photosynthetic capacity (i.e. greater potential maximum A) with increasing drought tolerance rank of species. Few species exhibited a significant drought-related decrease in photosynthetic capacity. The results of this landscape-based study indicate that the interaction of stomatal and nonstomatal limitations of A vary in a manner consistent with species' drought tolerance and site conditions, and that nonstomatal constraints to A in field plants during a moderate, season-long drought were generally not as severe as reported in controlled studies.  相似文献   

20.
The response of adaxial and abaxial stomatal conductance in Rumex obtusifolius to growth at elevated atmospheric concentrations of CO2 (250 μmol mol?1 above ambient) was investigated over two growing seasons. The conductance of both the adaxial and abaxial leaf surfaces was found to be reduced by elevated concentrations of CO2. Elevated CO2 caused a much greater reduction in conductance for the adaxial surface than for the abaxial surface. The absence of effects upon stomatal density indicated that the reductions were probably the result of changes in stomatal aperture. Partitioning of gas exchange between the leaf surfaces revealed that increased concentrations of CO2 caused increased rates of photosynthesis only via the abaxial surface. Additionally, leaf thickness was found to increase during growth at elevated concentrations of CO2. The tendency for these amphistomatous leaves to develop a distribution of conductance approaching that of hypostomatous leaves clearly reduced their maximum photosynthetic potential. This conclusion was supported by measurements of stomatal limitation, which showed greater values for the adaxial surfaces, and greater values at elevated CO2. This reduction in photosynthesis may in part be caused by higher diffusive limitations imposed because of increased leaf thickness. In an uncoupled canopy, asymmetrical stomatal responses of the kind identified here may appreciably reduce transpiration. Species which show symmetrical responses are less likely to show reduced transpirational rates, and a redistribution of water loss between species may occur. The implications of asymmetrical stomatal responses for photosynthesis and canopy transpiration are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号