首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
2.
Free proline content in Ragi (Eleusine coracana) leaves increased markedly (6 to 85 fold) as the degree of water stress, created by polyethylene gylcol treatment, was prolonged There was also a marginal increase in soluble proteins in the stressed leaves as compared to that in the controls. Water stress stimulated the activities of ornithine aminotransferase and pyrroline-5-carboxylate reductase, the enzymes of proline biosynthesis and markedly inhibited the enzymes involved in proline degradation viz., proline oxidase and pyrroline-5-carboxylate dehydrogenase. These results suggest that increase in free proline content of Ragi leaves could be due to enhanced activities of the enzymes synthesizing proline but more importantly due to severe inhibition of the enzymes degrading proline. These observations establish for the first time, the pathway of proline metabolism in plants by way of detection of the activities of all the enzymes involved and also highlight the role of these enzymes in proline accumulation during water stress.  相似文献   

3.
4.
5.
In an attempt to analyse the cause-effect relationship between anchorage-independent growth (a property which correlates best with in vivo tumorigenicity) and a set of other common transformation-related properties, the effect of retinoic acid (RA) treatment on six unrelated transformed cell lines (including DNA tumor virus, retrovirus, and spontaneously transformed cells) were studied. The data show that the changes in morphology and cellular orientation in culture, loss of cell surface fibronectin, disruption of actin microfilaments, increased hexose uptake, loss of density-dependent growth, and decreased binding of EGF, properties which are often associated with oncogenic transformation of cells, are dissociable from one another and from anchorage-independent growth. RA appears to interfere with anchorage-independent growth of all the retrovirus and spontaneously transformed cell lines (responsive cells) that we examined; however, such treatment failed to inhibit anchorage-independent growth in both of the DNA tumor virus-transformed cell lines (non-responsive cells) that we used in the present study. The presence of RA-binding proteins in both responsive and non-responsive cells suggests that the mechanism of RA action for the inhibition of anchorage-independent growth in transformed cells may be independent of the presence of such cytoplasmic proteins. Finally, the present study clearly indicates that the use of RA treatment, like partial transformation mutants of oncogenic viruses, can be a novel approach in analysing the general mechanism by which transformed cells grow without anchorage.  相似文献   

6.
Proline plays a significant role in plant resistance to abiotic stresses, and its level is determined by a combination of synthesis, catabolism and transport. The primary proteins involved are Δ1-pyrroline-5-carboxylate synthetase (P5CS), proline dehydrogenase (PDH) and proline transporter (ProT). To utilise proline metabolism to improve the stress resistance of Chrysanthemum × morifolium, we isolated two P5CS-homologous genes (ClP5CS1 and ClP5CS2), one PDH gene (ClPDH) and four ProT-homologous genes (ClProT1-4) (GenBANK accession numbers: KF743136–KF743142) from Chrysanthemum lavandulifolium, which is closely related to chrysanthemums and exhibits strong resistance to stresses. Expression analysis of these genes in different organs and under various stresses indicated that ClP5CSs showed substantial constitutive expression, while ClPDH was only strongly expressed in the capitulum and was inhibited under most stresses. The expression patterns of four ClProT genes presented characteristics of organ specificity and disparity under stresses. Above all, the expression of ClProT2 was restricted to above-ground organs, especially strong in the capitulum and could be obviously induced by various stress conditions. Promoters of ClPDH and ClProTs contained many cis-acting regulatory elements involved in stress responses and plant growth and development. High levels of free proline were found in flower buds, the capitulum under the non-stress condition and later periods of stress conditions except cold treatment. Interestingly, organ specificity and disparity also exist in the level of free proline under different stress conditions. Our study indicates that ClProTs play significant roles in proline accumulation and stress responses, and that ClProT2 could be used to genetically modify the stress resistance of chrysanthemums. In addition, proline metabolism might be closely related to plant flowering and floral development.  相似文献   

7.
8.
As an activator of adenylate cyclase, the neuropeptide Pituitary Adenylate Cyclase Activating Peptide (PACAP) impacts levels of cyclic AMP, a key second messenger available in brain cells. PACAP is involved in certain adult behaviors. To elucidate PACAP interactions, a compendium of microarrays representing mRNA expression in the adult mouse whole brain was pooled from the Phenogen database for analysis. A regulatory network was computed based on mutual information between gene pairs using gene expression data across the compendium. Clusters among genes directly linked to PACAP, and probable interactions between corresponding proteins were computed. Database “experts” affirmed some of the inferred relationships. The findings suggest ADCY7 is probably the adenylate cyclase isoform most relevant to PACAP's action. They also support intervening roles for kinases including GSK3B, PI 3-kinase, SGK3 and AMPK. Other high-confidence interactions are hypothesized for future testing. This new information has implications for certain behavioral and other disorders.  相似文献   

9.
The polysialic acid (PSA) production in Escherichia coli (E. coli) K1 was studied using three different cultivation strategies. A batch cultivation, a fed-batch cultivation at a constant specific growth rate of 0.25 h−1 and a fed-batch cultivation at a constant glucose concentration of 50 mg l−1 was performed. PSA formation kinetics under different cultivation strategies were analyzed based on the Monod growth model and the Luedeking-Piret equation. The results revealed that PSA formation in E. coli K1 was completely growth associated, the highest specific PSA formation rate (0.0489 g g−1 h−1) was obtained in the batch cultivation. However, comparing biomass and PSA yields on the glucose consumed, both fed-batch cultivations provided higher yields than that of the batch cultivation and acetate formation was prevented. Moreover, PSA yield on glucose was also correlated to the specific growth rate of the cells. The optimal specific growth rate for PSA production was 0.32 h−1 obtained in the fed-batch cultivation at a constant glucose concentration of 50 mg l−1, with highest conversion efficiency of 43 mg g−1.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号