首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Six actinomycetes were isolated from peanuts in Egypt. Of these, a Streptomyces strain (AS1) was found in in vitro assays to inhibit directly or via secondary metabolites both germination and growth of Aspergillus flavus. Tests of the AS1 cells for direct control of A. flavus populations or aflatoxin B1 (AFB1) production on stored peanuts was unsuccessful over 14-day storage periods. However, crude extracts of AS1 metabolites at 50 and 100 ppm completely inhibited spore germination of conidia of A. flavus in vitro over 48 h. Comparison of solvents for extracting the metabolites showed that the ethyl acetate extract was most effective. This gave greater than 85% inhibition of mycelial growth at these concentrations at different water availabilities (water activity; a w; 0.95, 0.92, and 0.89) and 25°C. Doses of 50, 200, and 500 ppm of AS1 metabolites significantly inhibited populations of A. flavus on stored peanuts at two water stress levels (0.90, 0.93 a w) at 25°C over 14-day storage periods. The amounts of AFB1 produced by A. flavus on peanuts stored at 0.90 a w were significantly decreased by AS1 metabolites for only 7 days. However, at 0.93 a w doses of 200 and 500 ppm significantly controlled AFB1 accumulation in peanuts for 14 days.  相似文献   

2.
Aims: This study was conducted to characterize the growth of and aflatoxin production by Aspergillus flavus on paddy and to develop kinetic models describing the growth rate as a function of water activity (aw) and temperature. Methods and Results: The growth of A. flavus on paddy and aflatoxin production were studied following a full factorial design with seven aw levels within the range of 0·82–0·99 and seven temperatures between 10 and 43°C. The growth of the fungi, expressed as colony diameter (mm), was measured daily, and the aflatoxins were analysed using HPLC with a fluorescence detector. The maximum colony growth rates of both isolates were estimated by fitting the primary model of Baranyi to growth data. Three potentially suitable secondary models, Rosso, polynomial and Davey, were assessed for their ability to describe the radial growth rate as a function of temperature and aw. Both strains failed to grow at the marginal temperatures (10 and 43°C), regardless of the aw studied, and at the aw level of 0·82, regardless of temperature. Despite that the predictions of all studied models showed good agreement with the observed growth rates, Davey model proved to be the best predictor of the experimental data. The cardinal parameters as estimated by Rosso model were comparable to those reported in previous studies. Toxins were detected in the range of 0·86–0·99 aw with optimal aw of 0·98 and optimal temperature in the range of 25–30°C. Conclusions: The influences of aw and temperature on the growth of A. flavus and aflatoxin production were successfully characterized, and the models developed were found to be capable of providing good, related estimates of the growth rates. Significance and Impact of the Study: The results of this study could be effectively implemented in minimizing the risk of aflatoxin contamination of the paddy at postharvest.  相似文献   

3.
《Fungal biology》2022,126(1):82-90
Maize grown in both North and South America are now predominantly genetically modified (GM) cultivars with some resistance to herbicide, pesticide, or both. There is little information on the relative colonisation and aflatoxin B1 (AFB1) production with maize meal-based nutritional matrices based on kernels of non-GM maize and isogenic GM-ones by strains of Aspergillus flavus. The objectives were to examine the effect of interacting conditions of temperature (25–35 °C) and water availability (0.99–0.90 water activity, aw) on (a) mycelial growth, (b) AFB1 production and (c) develop contour maps of optimum and marginal conditions of these parameters for four strains of A. flavus on three different non-GM and isogenic GM-maize based nutritional media. The growth of the four strains of A. flavus (three aflatoxigenic; one non-aflatoxigenic) was relatively similar in relation to the temperature × aw conditions examined on both non-GM and GM-based matrices. Optimum growth overall was at 30–35 °C and 0.99 aw for all four strains. Under water stress (0.90 aw) growth was optimum at 35 °C. Statistically: non-GM, GM cultivars, temperature and aw all significantly affected growth rates. For AFB1 production, all single and interacting factors were statistically significant except for non-GM × GM cultivar. In conclusion, colonisation of GM- and non-GM nutritional sources was similar for the different A. flavus strains examined. The contour maps will be very useful for understanding the ecological niches for both toxigenic and non-toxigenic strains in the context of the competitive exclusion of those producing aflatoxins.  相似文献   

4.
《Fungal biology》2020,124(1):1-7
Aspergillus flavus is the main xerophylic species colonising stored peanuts resulting in contamination with aflatoxins (AFs) and cyclopiazonic acid (CPA). This study evaluated the relationship between storage of shelled peanuts under interacting abiotic conditions on (a) temporal respiration (R) and cumulative CO2 production, (b) dry matter losses (DMLs) and (c) aflatoxin B1 (AFB1) and CPA accumulation. Both naturally contaminated peanuts and those inoculated with A. flavus were stored for 7-days under different water activities (aw; 0.77–0.95) and temperatures (20–35°C). There was an increase in the temporal CO2 production rates in wetter and warmer conditions, with the highest respiration at 0.95 aw + A. flavus inoculum at 30°C (2474 mg CO2kg−1h−1). The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Maximum mycotoxin contamination was always at 0.95 aw although optimal temperatures were 25-30°C for AFs and 30-35°C for CPA. These results showed a correlation between CO2 production and mycotoxin accumulation. They also provide valuable information for the creation of a database focused on the development of a post-harvest decision support system to determine the relative risks of contamination with these mycotoxins in stored shelled peanuts.  相似文献   

5.
Aflatoxins are carcinogenic, teratogenic and immunosuppressive secondary metabolites produced by Aspergillus flavus and Aspergillus parasiticus. Aflatoxin contamination of peanut is one of the most important constraints to peanut production worldwide. In order to develop an eco-friendly method of prevention of A. flavus infection and aflatoxin contamination in peanut, aqueous extracts obtained from leaves of 30 medicinal plants belonging to different families were evaluated for their ability to inhibit the growth of A. flavus in vitro. Among them the leaf extract of zimmu (Allium sativum L. × Allium cepa L.) was the only one that showed antifungal activity against A. flavus and recorded 73% inhibition of A. flavus growth. The antifungal activity of the zimmu extract was significantly decreased upon dialysis with a dialysis membrane having molecular cut off 12 kDa or autoclaving at 121°C for 20 min or boiling at 100°C for 10 min and recorded inhibition of 52, 16 and 21%, respectively. When A. flavus was grown in medium containing zimmu extract the production of aflatoxin B1 (AFB1) was completely inhibited even at a concentration of 0.5%. When AFB1 was incubated with zimmu extract a complete degradation of AFB1 was observed 5 days after incubation. When the roots of zimmu were incubated in water containing 70 ng of AFB1/ml, a reduction (by 58.5%) in AFB1 concentration was observed 5 days after incubation. A significant reduction in the population of A. flavus in the soil, kernel infection by A. flavus and aflatoxin contamination in kernels was observed when peanut was intercropped with zimmu. The population of the fungal antagonist, Trichoderma viride in the zimmu-intercropped field increased approximately twofold.  相似文献   

6.
Aim: To investigate the influence of reducing beef surface water activity (aw) on the survival of Salmonella Typhimurium DT104 during heating. Methods and Results: Beef discs were surface inoculated with S. Typhimurium DT104 and either untreated or dried to achieve surface aw values of 0·95, 0·85 and 0·70. The samples were vacuum packed, heat‐treated at 60°C and removed at predetermined times. The inactivation curves were influenced by aw and treatment time. Biphasic inactivation curves were observed for S. Typhimurium DT104 heat‐treated on beef samples with altered aw values, which were characterized by an initial decline in cell numbers at commencement of heating followed by a much slower rate of inactivation during the remaining treatment period. Point estimates of the heating time required to achieve a 1 log reduction on beef surfaces with aw of 0·99, 0·95, 0·85 and 0·70 were 0·5, 1·55, 11·25 and 17·79 min, respectively. Conclusions: A decrease in beef surface aw can substantially enhance the survival of S. Typhimurium DT104 after heating. Significance and Impact of the Study: Caution needs to be taken using dry air as a decontamination method as this may rapidly decrease product surface and pathogen aw values resulting in enhanced survival.  相似文献   

7.
Aims: To study the interaction between Bacillus spp. and contaminating Aspergillus flavus isolated strains from Thai fermented soybean in order to limit aflatoxin production. To study the detoxification of aflatoxin B1 (AFB1) and ochratoxin A (OTA) by Bacillus spp. in order to find an efficient strain to remove these toxins. Methods and Results: One A. flavus aflatoxin-producing strain and 23 isolates of Bacillus spp. were isolated from soybean and fresh Thua-nao collected from the north of Thailand. Inhibition studies of A. flavus and A. westerdijkiae NRRL 3174 (reference strain) growth by all isolates of Bacillus spp. were conducted by dual culture technique on agar plates. These isolates were also tested for AFB1 and OTA detoxification ability on both solid and liquid media. Most of the strains were able to detoxify aflatoxin but only some of them could detoxify OTA. Conclusions: One Bacillus strain was able to inhibit growth of both Aspergillus strains and to remove both mycotoxins (decrease of 74% of AFB1 and 92·5% of OTA). It was identified by ITS sequencing as Bacillus licheniformis. The OTA decrease was due to degradation in OTα. Another Bacillus strain inhibiting both Aspergillus growth and detoxifying 85% of AFB1 was identified as B. subtilis. AFB1 decrease has not been correlated to appearance of a degradation product. Significance and Impact of the Study: The possibility to reduce AFB1 level by a strain from the natural flora is of great interest for the control of the quality of fermented soybean. Moreover, the same strain could be a source of efficient enzyme for OTA degradation in other food or feeds.  相似文献   

8.
Abstract

The potential of three atoxigenic strains from different geographical origins in Africa were examined for in vitro and in situ competitiveness against two toxigenic strains of Aspergillus flavus and subsequent inhibition of aflatoxin B1 (AFB1) production under different environmental conditions. Temperature, water activity (a w) and substrate influenced the types of interaction between the three AFL? and two AFL+ strains. The competitiveness and AFB1 reduction ability of the three atoxigenic strains when interacting with the two toxigenic strains were evaluated by inoculation of 100, 25:75, 50:50, 75:25 and 100% ratios of mixed spore suspensions in vitro on malt extract and milled maize agars over 28 days and in situ on stored maize grain for 14 days, respectively at 0.99, 0.96 and 0.90 a w. For all the treatments, the effect of a w and inoculum ratio and their interaction was highly significant. Toxin inhibition was >80% in vitro at both 0.99 and 0.96 a w. In situ AFB1 reduction was influenced by the toxigenic strain assayed, a w and the inoculum ratio. Where control was achieved, it was more variable at 0.96 a w, while with more stringent water stress conditions (0.90 a w) the percentage inhibition was up to 77.2%. The study shows the importance of including environmental factors in screening and identifying effective atoxigenic strains for control of AFs (aflatoxins).  相似文献   

9.
Samples of Florunner peanuts were collected throughout a period of late-season drought stress with mean geocarposphere temperatures of 29 and 25 °C, and determinations of maturity, kernel water activity (aw), percent moisture, capacity for phytoalexin production, and aflatoxin contamination were made. Results showed an association between the loss of the capacity of kernels to produce phytoalexins and the appearance of aflatoxin contamination. Kernel aw appeared to be the most important factor controlling the capacity of kernels to produce phytoalexins. Mature peanuts possessed additional resistance to contamination that could not be attributed solely to phytoalexin production. Kernel moisture loss was accelerated in the 29 °C treatment compared to the 25 °C treatment, and data indicated that the higher soil temperature also favored growth and aflatoxin production by Aspergillus flavus in peanuts susceptible to contamination.Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.  相似文献   

10.
Important staple foods (peanuts, maize and rice) are susceptible to contamination by aflatoxin (AF)-producing fungi such as Aspergillus flavus. The objective of this study was to explore non-aflatoxin-producing (atoxigenic) A. flavus strains as biocontrol agents for the control of AFs. In the current study, a total of 724 A. flavus strains were isolated from different regions of China. Polyphasic approaches were utilized for species identification. Non-aflatoxin and non-cyclopiazonic acid (CPA)-producing strains were further screened for aflatoxin B1 (AFB1) biosynthesis pathway gene clusters using a PCR assay. Strains lacking an amplicon for the regulatory gene aflR were then analyzed for the presence of the other 28 biosynthetic genes. Only 229 (32%) of the A. flavus strains were found to be atoxigenic. Smaller (S) sclerotial phenotypes were dominant (51%) compared to large (L, 34%) and non-sclerotial (NS, 15%) phenotypes. Among the atoxigenic strains, 24 strains were PCR-negative for the fas-1 and aflJ genes. Sixteen (67%) atoxigenic A. flavus strains were PCRnegative for 10 or more of the biosynthetic genes. Altogether, 18 new PCR product patterns were observed, indicating great diversity in the AFB1 biosynthesis pathway. The current study demonstrates that many atoxigenic A. flavus strains can be isolated from different regions of China. In the future laboratory as well as field based studies are recommended to test these atoxigenic strains as biocontrol agents for aflatoxin contamination.  相似文献   

11.
Aims: To prepare, purify and characterize an extracellular enzyme from Myxococcus fulvus ANSM068, designated as myxobacteria aflatoxin degradation enzyme (MADE), which possesses degradation activity against aflatoxin B1 (AFB1), G1 (AFG1) and M1 (AFM1) in solution. Methods and Results: The culture supernatant of strain M. fulvus demonstrated high degradation ability against AFB1 (71·89%), AFG1 (68·13%) and AFM1 (63·82%) after 48 h of incubation. An enzyme was purified from the supernatant of M. fulvus using ethanol precipitation and chromatography on DEAE‐Sepharose and Superdex 75. An overall 166‐fold purification of the enzyme with a recovery of 57% and a final specific activity of 569·44 × 103 U mg?1 was obtained using the present purification protocol. The apparent molecular mass of MADE was estimated to be 32 kDa by SDS‐PAGE. AFG1 and AFM1 were significantly degraded, by 96·96 and 95·80%, respectively, when treated with pure MADE (100 U ml?1) produced by strain ANSM068. MADE exhibited the largest amount of activity at 35°C and pH 6·0, with Mg2+ ions greatly promoting and Zn2+ strongly inhibiting MADE activity. Conclusions: An aflatoxin degradation enzyme from bacterial isolates can effectively remove aflatoxin B1, G1 and M1 in solution. Significance and Impact of the Study: The high activity and wide temperature and pH range of MADE for the degradation of aflatoxin have promising applications in control of mycotoxins during food and feed processing.  相似文献   

12.
Aims: To develop and validate a logistic regression model to predict the growth and ochratoxin A (OTA) production boundaries of two Aspergillus carbonarius isolates on a synthetic grape juice medium as a function of temperature and water activity (aw). Methods and Results: A full factorial design was followed between the factors considered. The aw levels assayed were 0·850, 0·880, 0·900, 0·920, 0·940, 0·960, 0·980 and the incubation temperatures were 10, 15, 20, 25, 30, 35 and 40°C. Growth and OTA production responses were evaluated for a period of 25 days. Regarding growth boundaries, the degree of agreement between predictions and observations was >99% concordant for both isolates. The erroneously predicted growth cases were 3·4–4·1% false‐positives and 0·7–1·4% false‐negatives. No growth was observed at 10°C and 40°C for all aw levels assayed, with the exception of 0·980 aw/40°C, where weak growth was observed. Similarly, OTA production was correctly predicted with a concordance rate >98% for the two isolates with 0·7–1·4% accounting for false‐positives and 2·0–2·7% false‐negatives. No OTA production was detected at 10°C or 40°C regardless of aw, and at 0·850 aw at all incubation temperatures. With respect to time, the OTA production boundary shifted to lower temperatures (15–20°C) as opposed to the growth boundary that shifted to higher temperature levels (25–30°C). Using two literature datasets for growth and OTA production of A. carbonarius on the same growth medium, the logistic model gave one false‐positive and three false‐negative predictions out of 68 growth cases and 13 false‐positive predictions out of 45 OTA production cases. Conclusions: The results of this study suggest that the logistic regression model can be successfully used to predict growth and OTA production interfaces for A. carbonarius in relation to temperature and aw. Significance and Impact of the Study: The proposed modelling approach helps the understanding of fungal‐food ecosystem relations and it could be employed in risk analysis implementation plans to predict the risk of contamination of grapes and grape products by A. carbonarius.  相似文献   

13.
刘亚妹  丛丽娜  陈明 《微生物学通报》2023,50(10):4533-4543
【背景】丁酸梭菌是专性厌氧的新一代芽孢益生菌,耐热、耐酸、抗逆性强,极具应用价值和开发前景。【目的】优化丁酸梭菌发酵培养基并初步研究其发酵液对黄曲霉菌的抑制作用和降解黄曲霉毒素B1 (aflatoxin B1, AFB1)的能力。【方法】利用响应面法对发酵培养基进行优化,采用牛津杯法对丁酸梭菌发酵液抑制黄曲霉菌生长进行研究,并通过酶联免疫法测定发酵液对AFB1的降解能力。【结果】优化后的发酵培养基为:葡萄糖18.1g/L,大豆蛋白胨29.7g/L,磷酸氢二钾3.8 g/L,氯化钠2.0 g/L,乙酸钠4.0 g/L,结晶硫酸镁1.2 g/L,L-半胱氨酸盐酸盐0.3 g/L。优化后的丁酸梭菌生物量由8.99×108个/mL提高至2.28×109个/mL,是优化前的2.54倍。丁酸梭菌发酵液对致病真菌黄曲霉菌的抑菌效果十分显著,其上清液经浓缩后对AFB1降解72h的降解率达到68.65%,初步分析表明上清液中对AFB1  相似文献   

14.
15.
Factors determining the microflora of stored barley grain   总被引:3,自引:0,他引:3  
Colonisation of barley grain has been studied during storage at different water contents and with and without restriction of the air supply to simulate conditions in unsealed silos. Grain stored with a water activity >0·9 aw (20% water content) heated spontaneously when aeration was unrestricted, the maximum temperature attained increasing with aw to 58 °C at 1·0 aw (39% water content). The presence of many unripe grains increased the tendency to heat at a given mean water content. Although heating was prevented by sheeting to restrict the air supply, it could occur subsequently when the sheeting was removed. Both heating and restriction of the air supply were associated with increased carbon dioxide (to >25%) and decreased oxygen concentrations (to <5%). Germination of grain after 6·9 months storage was correlated with aw; germination levels approaching 100% were retained only at about 0·7 aw (13·5% water content). Colonisation by Aspergillus species was correlated with aw and temperature and similar correlations with Penicillium species were also found, with P. verrucosum var. cyclopium abundant at 0·85-0·90 aw (17·20% water content) and P. piceum, P. funiculosum and P. capsulatum at 0·90-0·95 aw (20–25% water content). In sealed containers P. roquefortii occurred at 1·00 aw (39% water content) and P. hordei at 0·90-0·92 aw (20–22% water content). Spores of fungi and actinomycetes formed during spontaneous heating of grain survived 6 months sealed storage although Absidia corymbifera and Micropolyspora faeni may have declined in numbers. Fungicides applied to the ripening grain had only limited effect on the colonisation of the grain during storage.  相似文献   

16.
Colonization of barley grain by Aspergillus flavus and formation of aflatoxin B1 in the presence of Penicillium verrucosum, Fusarium sporotrichioides, and Hyphopichia burtonii were studied over a three-week period in all combinations of 20 or 30 °C and 0.97, 0.95 or 0.90 aw. Grain colonization was assessed initially by observing hyphal extension on the grain surface, using scanning electron microscopy, and then from the proportion of seeds infected and numbers of colony forming units (cfu) formed. Aflatoxin b1 concentrations were determined by enzyme linked immunosorbent assay using a monoclonal antibody. These studies showed that interaction between A. flavus and other fungi in paired culture had different effects on both colonization and aflatoxin formation depending on the species involved and environmental conditions. Germination of A. flavus spores was unaffected by the presence of other species on the grain surface. Subsequently, three principal patterns of A. flavus colonization of barley grain were observed through the incubation period in the presence of other fungal species: (a) colonization unaffected by the presence of other species; (b) colonization initially slower in the presence of other species but later differing little from pure cultures; and (c) colonization adversely affected by the presence of other species. Five main patterns of aflatoxin B1 production were observed relative to pure culture but with no consistent relationship with species, aw, temperature or incubation period; (a) little changed; (b) increased slowly; (c) decreased; (d) enhanced; and (e, f) increased initially but later decreased to (e) the same level as in pure culture or (f) to less than in pure culture. Generally, production of aflatoxin B1 by A. flavus was less than in pure culture but sometimes was changed only slightly by the presence of P. verrucosum, F. sporotrichioides or H. burtonii or was temporarily enhanced.  相似文献   

17.
Invasion of crops with Aspergillus flavus may result in contamination of food and feed with carcinogenic mycotoxins such as aflatoxins (AF) and cyclopiazonic acid (CPA). In the present study, distribution and toxigenicity of Aspergillus flavus and A. parasiticus in soils of five peanut fields located in Guilan province, Northern Iran was investigated. From a total of 30 soil samples, 53 strains were isolated which all of them were finally identified as A. flavus by a combination of colony morphology, microscopic criteria and mycotoxin profiles. Chromatographic analysis of fungal cultures on yeast extract sucrose broth by tip culture method showed that 45 of the 53 A. flavus isolates (84.9 %) were able to produce either CPA or AFB1, while eight of the isolates (15.1 %) were non-toxigenic. The amounts of CPA and AFB1 produced by the isolates were reported in the range of 18.2–403.8 μg/g and 53.3–7446.3 μg/g fungal dry weights, respectively. Chemotype classification of A. flavus isolates based on the ability for producing mycotoxins and sclerotia showed that 43.4 % were producers of CPA, AFB1 and sclerotia (group I), 13.2 % of CPA and AFB1 (group II), 9.4 % of AFB1 and sclerotia (group III), 13.2 % of AFB1 (group IV), 5.7 % of CPA and sclerotia (group V) and 15.1 % were non-toxigenic with no sclerotia (group VI). No strain was found as producer of only CPA or sclerotia. These results indicate different populations of mycotoxigenic A. flavus strains enable to produce hazardous amounts of AFB1 and CPA are present in peanuts field soils which can be quite important regard to their potential to contaminate peanuts as a main crop consumed in human and animal nutrition.  相似文献   

18.
Aflatoxins produced by the fungus Aspergillus flavus are potent carcinogens and account for large monetary losses worldwide in peanuts, maize, and cottonseed. Biological control in which a nontoxigenic strain of A. flavus is applied to crops at high concentrations effectively reduces aflatoxins through competition with native aflatoxigenic populations. In this study, eight nontoxigenic strains of A. flavus belonging to different vegetative compatibility groups and differing in deletion patterns within the aflatoxin gene cluster were evaluated for their ability to reduce aflatoxin B1 when paired with eight aflatoxigenic strains on individual peanut seeds. Inoculation of wounded viable peanut seeds with conidia demonstrated that nontoxigenic strains differed in their ability to reduce aflatoxin B1. Reductions in aflatoxin B1 often exceeded expected reductions based on a 50:50 mixture of the two A. flavus strains, although one nontoxigenic strain significantly increased aflatoxin B1 when paired with an aflatoxigenic strain. Therefore, nontoxigenicity alone is insufficient for selecting a biocontrol agent and it is also necessary to test the effectiveness of a nontoxigenic strain against a variety of aflatoxigenic strains.  相似文献   

19.
20.
Aflatoxins (AFTs), secondary metabolites of the biodeteriogens Aspergillus flavus and A. parasiticus, include aflatoxin B1 (AFB1), which is hepatocarcinogenic, can cause cellular and tissue damage and because its chemical composition is similar to that of certain steroids, may exhibit some pathological activities similar to those of steroids. The latter can suppress feed consumption by acting upon the central nervous system. Here, is reported the results of an investigation designed to assess whether this biodeteriogen could alter either feed consumption or plasma glucose levels. Male Sprague-Dawley rats maintained for two weeks upon laboratory rat chow were subjected to either intracerebroventricular (ICV) or intravenous (IV) injections of both AFB1 and estradiol. Both non-injected and carrier-injected (0·9% NaCl) animals served as controls. Following fasting for 21 h, the rats were provided with a weighed amount of feed and both feed consumption and plasma glucose levels quantified during the 22nd, 23rd and 24th hour. Both ICV injections of 10 and 100 ng AFB1 and IV injections of 1 and 10 μg AFB1 kg−1 significantly (p < 0·01) suppressed daily feed intake, but did not affect plasma glucose levels. This supports the hypothesis that AFB1 suppresses feed intake probably through action upon the central nervous system. If true, this action as well as the toxic and carcinogenic aspects, further support the need for the prevention and/or removal of the mycotoxin from food and feed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号