首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Chickpeas were grown with or without nitrate nitrogen feeding, or nodulated with Rhizobium leguminosarum. High [40°C day, 25°C night (HT)] and moderate [25°C day, 177°C night (LT)] temperature regimes were employed during growth. Growth rates, photosynthetic capacity and enzymes of carbon and nitrogen metabolism were monitored to assess the acclimatory capacity of the chickpea. Initial growth rates were stimulated by high temperatures, particularly in nitrate-fed and nodulated plants. Older HT plants had fewer laterals, smaller leaves, and fewer flowers were produced than in LT plants. There was some indication of an acclimation of photosynthesis to high temperatures and this was independent of nitrogen supply. Rubisco activity was increased by high growth temperatures. However, HT plants also had higher transpiration rates and lower water use efficiency than LT plants both in respective growth conditions and when compared in a common condition. High temperatures reduced shoot nitrate reductase activity but had little effect on root activity, which was the same if not greater than activity in LT roots. The amino acid, asparagine, was found at high concentrations in all treatments. Concentrations were maintained throughout growth in HT plants but declined with age in LT plants.  相似文献   

2.
Summary Small birch plants (Betula pendula Roth.) were grown in a climate chamber at different, exponentially increasing rates of nitrogen supply and at different photon flux densities. This resulted in treatments with relative growth rate equal to the relative rate of increase in nitrogen supply and with different equilibrium values of plant nitrogen concentration. Nitrogen productivity (rate of dry matter increase per plant nitrogen) was largely independent of nitrogen supply and was greater at higher photon flux density. Leaf weight ratio, average specific leaf area (and thus leaf area ratio) were all greater at better nitrogen supply and at lower values of photon flux density. The dependencies were such that the ratio of total projected leaf area to plant nitrogen at a given photon flux density was similar at all rates of nitrogen supply. The ratio was greater at lower values of photon flux density. At a given value of photon flux density, net assimilation rate and net photosynthetic rate per shoot area (measured at the growth climate) were only slightly greater at better rates of nitrogen supply. Values were greater at higher photon flux densities. Acclimation of the total leaf area to plant nitrogen ratio and of net assimilation rate was such that nitrogen productivity was largely saturated with respect to photon flux density at values greater than 230 mol m-2 s-1. At higher photon flux densities, any potential gain in nitrogen productivity associated with higher net assimilation rates was apparently offset by lower ratios of total leaf area to plant nitrogen.  相似文献   

3.
Coaldrake, P. D., Pearson, C. J. and Saffigna, P. G. 1987. Grainyield of Pennisetum americanum adjusts to nitrogen supply bychanging rates of grain filling and root uptake of nitrogen.–J.exp. Bot 38: 558–566. Pearl millet (Pennisetum americanum(L.)Leeke) was grown in containers at three constant rates of nitrogensupply or with the nitrogen supply increased from the lowestto the highest rate during panicle differentiation or at anthesis.We measured the rate and duration of nitrogen and dry weightgain by individual grains and nitrogen (15N) uptake by rootsand its distribution during grain filling. The total amountsof nitrogen and dry weight in all grain per plant at the lowestnitrogen supply were 8% and 14% respectively of plants growncontinuously at the highest rate of nitrogen. This was becauselow rates of nitrogen supply reduced grain number, mean grainweight and the nitrogen content of each individual grain. Theamino acid composition of the grain protein was affected onlyslightly by nitrogen treatments. Rates of grain growth were sensitive to nitrogen supply whereasthe duration of nitrogen movement to the grain was not. Nitrogenuptake by roots continued throughout grain filling; rates ofuptake per g root in plants given least nitrogen were one-halfthose of plants given the highest amount of nitrogen. A changefrom lowest to highest nitrogen supply at panicle differentiationincreased the uptake of nitrogen by roots and the rates of growthof individual grains, to the rates observed in plants whichhad been supplied continuously with the highest nitrogen. Whenthe change in supply was made at anthesis there was rapid movementof nitrogen into the plant but this was not translated intomore rapid grain growth. Key words: Nitrogen supply, Pennisetum americanum, grain yield, root uptake  相似文献   

4.
Spring barley ( Hordeum vulgare L. cv. Golf) was grown at different nitrate supply rates, controlled by using the relative addition rate technique, in order to elucidate the relationship between nitrate-N supply and root and shoot levels of abscisic acid (ABA). The plants were maintained as (1) standard cultures where nitrate was supplied at relative addition rates (RAs) of 0.03, 0.09 and 0.18 day−1, and (2) split-root cultures at RA 0.09 day−1 but with the nitrate distributed between the two root parts in ratios of 100:0, 80:20 and 60:40. Time-dependent changes in root and shoot concentrations of ABA (determined by radioimmunoassay using a monoclonal antibody) were observed in both standard and split-root cultures during 12 days of acclimation to the different nitrate regimes. However, the ABA responses were similar at all nitrate supply rates. Further experiments were performed with split-root cultures where the distribution of nitrate between the two root parts was reversed from 80:20 to 20:80 so that short-term effects to local perturbations of nitrate supply could be studied without altering whole-plant N absorption. Transient increases in ABA concentrations (maximum of 25 to 40% after 3 to 4 h) were observed in both subroot parts, as well as in xylem sap and shoot tissue. By pruning the root system it was demonstrated that the change in ABA had its origin in the subroot part receiving the increased nitrate supply (i.e. switched from 20 to 80% of the total nitrate supply). The data indicate that ABA responses are easily transmitted between different organs, including transmission from one set of seminal roots to another via the shoot. The data do not provide any indication that long-term nitrate supplies or general nitrogen status of barley plants affect, or are otherwise related to, the average tissue ABA concentrations of roots and shoots.  相似文献   

5.
The composition and concentrations of phenolic compounds were studied in the first true leaves, cotyledons, stems and roots of 2.5-week-old seedlings of mountain birch ( Betula pubescens ssp. czerepanovii ). The differences in secondary compounds among these plant parts were both qualitative and quantitative. In all parts, condensed tannins accounted for more than 50% of the phenolics. In the first true leaves and cotyledons, chlorogenic acid was the most abundant of the HPLC phenolics. The main components in stems were (+)-catechins and rhododendrins whereas in roots, the main components were ellagitannins. The seedlings were grown at three levels of nitrogen supply (very low-N, low-N, moderate-N), and the effect of nitrogen on concentrations of phenolic compounds was studied in all plant parts. The dry weight of all plant parts, except the roots, increased with increased nitrogen. In all parts, the concentration of condensed tannins was higher at lower levels of nitrogen than at moderate-N. The concentrations of total HPLC phenolics and also those of the compound groups of HPLC phenolics were, however, affected only in the first true leaves and roots. The concentrations in the first true leaves were generally higher in seedlings grown at very low-N and low-N than in seedlings grown at moderate-N. The concentrations in roots were highest at low-N. Not all compounds responded to nitrogen supply in the same manner. The changes in concentrations cannot be exclusively interpreted as changes in the accumulation of phenolic compounds, due to dilution caused by the increase in biomass in better nitrogen availability. There were differences in carbon allocation between condensed tannins and HPLC phenolics in seedlings grown at different nitrogen levels.  相似文献   

6.
植物对有机氮源的利用及其在自然生态系统中的意义   总被引:12,自引:1,他引:12  
崔晓阳 《生态学报》2007,27(8):3500-3512
近来大量实验研究表明,许多植物能够在不经矿化的情况下直接吸收、利用环境介质中的生物有机氮,尤其氨基酸类。而且,有些植物利用氨基酸的效率可以与矿质氮源(NH4 、NO3)相当或更高。自然界植物赖以生存的土壤生境中同时存在多种有机氮和矿质氮养分,这是导致植物(至少部分植物)进化产生利用各种不同氮源能力的环境驱动力。土壤中的游离氨基酸尽管含量不高,但其周转快、通量大,理论上可远大于植物的氮需求。尽管植物在与土壤微生物的有机氮源竞争中处于根本性劣势,但土壤中氨基酸的巨大潜在通量和植物相对于微生物的生命周期仍可使植物在长期竞争中获取数量可观的氮。基于植物根对氨基酸的吸收能力、土壤中游离氨基酸库的大小和通量、植物与土壤微生物对氨基酸氮源的竞争以及有关的原位实验结果,近来许多研究者都认为植物有机氮营养在多种生态系统中是重要或潜在重要的。尤其是在一些极地、高山、亚高山、北方针叶林或泰加林生态系统中,由于低温等因素限制有机氮矿化,土壤氨基酸浓度常超过矿质氮(NH4 、NO3-)浓度,氨基酸可能代表着植物的一个主要氮源。认识到现实生态系统中植物对有机氮源利用的重要性意味着传统的矿质营养观念的更新,这将在很大程度上改变人们对某些重要生态过程的理解,并导致对若干生态学中心问题的再认识。研究以森林生态系统为例,阐述了我国开展该领域研究的科学意义和基本框架。  相似文献   

7.
Amino acid loss from the roots of 25-day-old, sterile and non-sterile sand-grown forage rape plants, was determined over periods of up to 3.5 hours. Amino acid accumulation in the root-zone of sterile plants was concentration-dependent giving a convex accumulation profile. Amino acid levels in the root zone of non-sterile plants rapidly attained steady state values. Microbial assimilation of amino acids within the root zone appeared to lower amino acid concentrations, resulting in an underestimation of rates of amino acid loss from roots. The concentrations of most amino acids were higher after selected amino acids were supplied to the root zone. The response to exogenous acids was dependent on the concentration and composition of the acids added. Addition of a mixture containing ASN, GLN and GABA, each at 0.25 mM resulted in a greater increase in individual and total acid levels compared with a mixture containing ALA, SER, GLY and THR at the same concentration. Apparently, amino acids supplied exogenously competed with acids lost from the plant, by providing an alternative nutrient source for root zone micro-organisms. Addition of glucose and citric acid had a similar effect to addition of ALA, SER, GLY and THR, but were less effective than ASN, GLN and GABA at all concentrations tested. The nitrogen-rich amino acids ASN and GLN, and the -amino acid, GABA, appeared to compete more effectively with plant-derived acids than did ALA, SER, GLY and THR, the most abundent constituents of the plant-derived acids, which had the highest calculated rates of microbial consumption. Therefore, although bacterial consumption showed a dependence on amino acid concentration, a degree of selectivity for nitrogen-rich acids and gaba was also apparent.  相似文献   

8.
Young plants of a rhizomatous grass Calamagrostis epigejos (L.) Roth were grown from seed in nutrient solutions containing nitrogen in concentrations 0.1, 1.0, and 10 mM. After six weeks of cultivation the plants were defoliated and changes in growth parameters and in content of storage compounds were measured in the course of regrowth under highly reduced nitrogen availability. Plants grown at higher nitrogen supply before defoliation had higher amount of all types of nitrogen storage compounds (nitrates, free amino acids, soluble proteins), which was beneficial for their regrowth rate, in spite of lower content of storage saccharides. Amino acids and soluble proteins from roots and stubble bases were the most important sources of storage compounds for regrowth of the shoot. Faster growth of plants with higher N content was mediated by greater leaf area expansion and greater number of leaves. In plants with lower contents of N compounds number of green leaves decreased after defoliation significantly and senescing leaves presumably served as N source for other growing organs. Results suggest that internal N reserves can support regrowth of plants after defoliation even under fluctuating external N availability. Faster regrowth of C. epigejos with more reserves was mediated mainly by changes in plant morphogenesis.  相似文献   

9.
Nitrogen regulation of root branching   总被引:18,自引:0,他引:18  
BACKGROUND: Many plant species can modify their root architecture to enable them to forage for heterogeneously distributed nutrients in the soil. The foraging response normally involves increased proliferation of lateral roots within nutrient-rich soil patches, but much remains to be understood about the signalling mechanisms that enable roots to sense variations in the external concentrations of different mineral nutrients and to modify their patterns of growth and development accordingly. SCOPE: In this review we consider different aspects of the way in which the nitrogen supply can modify root branching, focusing on Arabidopsis thaliana. Our current understanding of the mechanism of nitrate stimulation of lateral root growth and the role of the ANR1 gene are summarized. In addition, evidence supporting the possible role of auxin in regulating the systemic inhibition of early lateral root development by high rates of nitrate supply is presented. Finally, we examine recent evidence that an amino acid, L-glutamate, can act as an external signal to elicit complex changes in root growth and development. CONCLUSIONS: It is clear that plants have evolved sophisticated pathways for sensing and responding to changes in different components of the external nitrogen supply as well as their own internal nitrogen status. We speculate on the possibility that the effects elicited by external L-glutamate represent a novel form of foraging response that could potentially enhance a plant's ability to compete with its neighbours and micro-organisms for localized sources of organic nitrogen.  相似文献   

10.
Drought-stressed flatpea (Lathyrus sylvestris L.) plants from8 to 22 weeks old were analysed for nitrogen, soluble proteinand free amino acids. An increase in nitrogen and free aminoacid concentrations and a decrease in soluble protein levelwere observed in roots of plants up to 16 weeks old. The cumulativeconcentration of free amino acids increased with drought stress.Tissue concentrations of 2, 4-diaminobutyric acid (1.6–2.6%of the dry weight) were highest in leaves. Levels increasedsteadily, nearly doubling, in leaves and stems between weeks10 and 16. Levels in drought-stressed leaves were, on average,11.9% higher than those of controls. Estimated concentrationsof a mixture of 4-aminobutyric acid and an unknown amino acidwere highest in stems, increased in this tissue with age andtended to increase in stems and leaves and decrease in rootsin response to water deficit. Levels of the mixture of homoserineand another unidentified amino acid were not influenced by ageor water status of the plants. Root concentrations of asparagine,arginine, glutamine, aspartate, and another prominent, unidentifiedamino acid increased with plant age and reached a peak at thetime of flowering (14 to 18 weeks). Only the concentration ofthe unknown compound was elevated following drought stress.Concentrations of valine, isoleucine, leucine, phenylalanine,and methionine also increased during this period and were elevatedin drought-stressed plants. Proline levels increased with plantage and drought stress, but proline accounted for only about10% of the total free amino acids in the drought-stressed plants. Key words: 2, 4-Diaminobutyric acid, drought, flatpea  相似文献   

11.
In this study we investigated effects of Zn supply on germination, growth, inorganic solutes (Zn, Ca, Fe, and Mg) partitioning and nodulation of Medicago sativa This plant was cultivated with and without Zn (2 mM). Treatments were plants without (control) and with Zn tolerant strain (S532), Zn intolerant strain (S112) and 2 mM urea nitrogen fertilisation. Results showed that M. sativa germinates at rates of 50% at 2 mM Zn. For plants given nitrogen fertilisation, Zn increased plant biomass production. When grown with symbionts, Zn supply had no effect on nodulation. Moreover, plants with S112 showed a decrease of shoot and roots biomasses. However, in symbiosis with S532, an increase of roots biomass was observed. Plants in symbiosis with S. meliloti accumulated more Zn in their roots than nitrogen fertilised plants. Zn supply results in an increase of Ca concentration in roots of fertilised nitrogen plants. However, under Zn supply, Fe concentration decreased in roots and increased in nodules of plants with S112. Zn supply showed contrasting effects on Mg concentrations for plants with nitrogen fertilisation (increase) and plants with S112 (decrease). The capacity of M. sativa to accumulate Zn in their nodulated roots encouraged its use in phytostabilisation processes.  相似文献   

12.
Our previous work indicated that salinity caused a shift in the predominant site of nitrate reduction and assimilation from the shoot to the root in tomato plants. In the present work we tested whether an enhanced supply of dissolved inorganic carbon (DIC, CO2+ HCO3) to the root solution could increase anaplerotic provision of carbon compounds for the increased nitrogen assimilation in the root of salinity-stressed Lycopersicon esculentum (L.) Mill. cv. F144. The seedlings were grown in hydroponic culture with 0 or 100mM NaCl and aeration of the root solution with either ambient or CO2-enriched air (5000 μmol mol?1). The salinity-treated plants accumulated more dry weight and higher total N when the roots were supplied with CO2-enriched aeration than when aerated with ambient air. Plants grown with salinity and enriched DIC also had higher rates of NO?3 uptake and translocated more NO?3 and reduced N in the xylem sap than did equivalent plants grown with ambient DIC. Incorporation of DIC was measured by supplying a 1 -h pulse of H14CO?3 to the roots followed by extraction with 80% ethanol. Enriched DIC increased root incorporation of DIC 10-fold in both salinized and non-salinized plants. In salinity-stressed plants, the products of dissolved inorganic 14C were preferentially diverted into amino acid synthesis to a greater extent than in non-salinized plants in which label was accumulated in organic acids. It was concluded that enriched DIC can increase the supply of N and anaplerotic carbon for amino acid synthesis in roots of salinized plants. Thus enriched DIC could relieve the limitation of carbon supply for ammonium assimilation and thus ameliorate the influence of salinity on NO?3 uptake and assimilation as well as on plant growth.  相似文献   

13.
Transfer of nodulated and non-nodulated plants grown in vermiculite to hydroponic culture without soil was used to study waterlogging and nitrogen transport in the xylem of soybean. Non-aeration, aeration or aeration with nitrogen gas were used to obtain different levels of oxygen in the culture solutions. Ureides, the principal form of nitrogen transport in nodulated plants, were considerably reduced in waterlogged plants or after transfer to water-culture, especially when not aerated or aerated with nitrogen gas. Aeration of the water-culture following a period of non-aeration allowed some recovery of ureides, as did the return of plants to drained vermiculite. Although smaller changes in the total amino acid fraction were observed for the different treatments, marked changes occurred in the composition depending on the treatment imposed. A high proportion of asparagine and low glutamine characterised non-nodulated plants grown on nitrate, or nodulated plants subsequently fed nitrate. A higher level of glutamine and lower level of asparagine characterised nodulated plants dependent on nitrogen fixation. High levels of aspartic acid characterised plants transferred to water-culture with aeration, especially in N-deficient solution, while alanine and serine were very prominent in non-aerated or hypoxic water-culture. These changes also occurred in non-nodulated plants and plants kept in vermiculite in a flooded condition. Some of the changes in transport were accompanied by similar changes in the free amino acid fraction of the roots. It is suggested that an alteration in asparagine metabolism may underlie the changes in amino acid transport in the xylem associated with waterlogging.  相似文献   

14.
以武夷肉桂为研究对象,研究不同施氮量对乌龙茶幼龄茶树生长和生理的影响。结果表明,幼龄茶树对氮肥的需求不强烈,其新梢生物量、根生物量和总生物量以及茶叶产量随施氮量的增加而下降。茶树新梢全氮、叶绿素、游离氨基酸、茶多酚和咖啡碱的含量随施氮量的增加而增加,而茶树碳氮比随着施氮量增加而下降;但施氮并没有影响茶树总碳含量。老叶叶绿素含量、根全氮和硝态氮含量、新梢总糖含量与施氮量呈二次曲线回归关系,适度施氮促进根对氮的吸收、老叶叶绿素合成和新梢总糖代谢,过度施氮则相反。新梢生物量与其硝态氮含量和游离氨基酸总量显著负相关;根生物量与根碳氮比和新梢咖啡碱含量显著负相关;茎叶生物量和总生物量与根含氮量显著正相关,但与新梢硝态氮和氨基酸含量显著负相关。过度施氮造成茶树生产力下降的主要原因是因为过度施氮极显著提高了茶树氨基酸代谢水平,使用于茶树生长的碳代谢产物(如总糖)减少,进而影响茶树的生长。  相似文献   

15.
Soybean [Glycine max (L.) Merrill] plants that had been subjected to 15 d of nitrogen deprivation were resupplied for 10 d with 1.0 mol m-3 nitrogen provided as NO3-, NH4+, or NH4(+) + NO3- in flowing hydroponic culture. Plants in a fourth hydroponic system received 1.0 mol m-3 NO3- during both stress and resupply periods. Concentrations of soluble carbohydrates and organic acids in roots increased 210 and 370%, respectively, during stress. For the first day of resupply, however, specific uptake rates of nitrogen, determined by ion chromatography as depletion from solution, were lower for stressed than for non-stressed plants by 43% for NO3- resupply, by 32% for NH4(+) + NO3- resupply, and 86% for NH4+ resupply. When specific uptake of nitrogen for stressed plants recovered to rates for non-stressed plants at 6 to 8 d after nitrogen resupply, carbohydrates and organic acids in their roots had declined to concentrations lower than those of non-stressed plants. Recovery of nitrogen uptake capacity of roots thus does not appear to be regulated simply by the content of soluble carbon compounds within roots. Solution concentrations of NH4+ and NO3- were monitored at 62.5 min intervals during the first 3 d of resupply. Intermittent 'hourly' intervals of net influx and net efflux occurred. Rates of uptake during influx intervals were greater for the NH4(+)-resupplied than for the NO3(-)-resupplied plants. For NH4(+)-resupplied plants, however, the hourly intervals of efflux were more numerous than for NO3(-)-resupplied plants. It thus is possible that, instead of repressing NH4+ influx, increased accumulation of amino acids and NH4+ in NH4(+)-resupplied plants inhibited net uptake by stimulation of efflux on NH4+ absorbed in excess of availability of carbon skeletons for assimilation. Entry of NH4+ into root cytoplasm appeared to be less restricted than translocation of amino acids from the cytoplasm into the xylem.  相似文献   

16.
Barley, Brussels sprout, French bean, tomato, and sugar-beetplants grown in soil in pots and sprayed, usually daily, forseveral weeks, with nutrient solutions containing nitrogen,phosphorus, potassium, and a spreader, with precautions to preventthe spray solution falling on the soil, had higher nutrientcontents and dry weights than control plants sprayed with waterand spreader only. Increase in nutrient content occurred withhigh or low levels of nutrient supply to the roots and was approximatelyproportional to the concentration of spray and to the frequencyof spraying. The nitrogen content of sugar-beet plants was increased equallyby spraying with solutions supplying ammonium sulphate, calciumnitrate, or urea in equivalent concentrations. Nutrient uptake from solutions sprayed on leaves influenceduptake by the roots so that the additional amounts of nutrientcontained in sprayed plants may be greater or smaller than theamount absorbed from the spray by the leaves.  相似文献   

17.
Stitt  Mark  Feil  Regina 《Plant and Soil》1999,215(2):143-153
Accumulation of nitrate in the shoot of low-nitrate reductase tobacco transformants leads to an increase of the shoot:root ratio to higher values than in nitrogen-sufficient wild-type plants, even though the transformants are severely deficient in organic nitrogen. In the present paper, wild-type plants and low- nitrate reductase transformants were grown on vertical agar plates to investigate whether this inhibition of root growth by internal nitrate (i) can be reversed by adding sugars to the roots and (ii) is due to slower growth of the main roots or to a decreased number of lateral roots. When grown with a low nitrate supply, the transformants resembled wild-type plants with respect to amino acid and protein levels, shoot-root allocation, lateral root frequency, and rates of growth. When the transformants were grown with a high nitrate supply in the absence of sucrose they grew more slowly and had lower levels of amino acids and protein than wild-type plants, but accumulated more nitrate and developed a high shoot:root ratio. Root length was not affected, but the number of lateral roots per plant decreased. The slower root growth was accompanied by an increase of the concentration of sugars in the roots. Addition of 2% sucrose to the medium partially reversed the high shoot:root ratio in the transformants, but did not increase the frequency of lateral roots. It is concluded that nitrate accumulation in the plant leads to decreased root growth via (i) changes in carbon allocation leading to decreased allocation of sugars to root growth, and (ii) a decrease in the number of lateral roots and a shift in the sensitivity with which root growth responds to the sugar supply. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Uptake capacity of organic nitrogen was studied in solution experiments on eight grasses and two forbs growing in acid soils with relatively high nitrogen mineralisation in southern Sweden. Uptake of a mixture of amino acids (alanine, glutamine, glycine), that varied between 1.6 and 6.3 μmol g(-1) dw root h(-1), could not be explained by soil data from the species' field distributions (pH, total carbon and nitrogen, potential net mineralisation of ammonium and nitrate). The ratio between organic and inorganic nitrogen (methylamine) uptake was <0.05 for the forbs, higher for the grasses with a maximum of 1.42 for Deschampsia flexuosa. The ratio was negatively correlated with measures related to soil acidity (Ellenberg's R-value, soil nitrate and total carbon) but not, as hypothesised, with the total amount of mineralised nitrogen. The total demand on nitrogen by all components of the ecosystem would probably have described the extent to which competition among and between plants and microbes induced nitrogen limitation. In a methodological study two grasses were exposed to pH 3.8, 4.5 and 6.0 and to 50, 100 and 250 μmol l(-1) of three amino acids. Uptake was also compared between intact plants and excised roots. The treatment response varied considerably between the species which stresses the importance of studying intact plants at field-relevant pH and concentrations.  相似文献   

19.
Amino acid transport in plants is mediated by at least two large families of plasma membrane transporters. Arabidopsis thaliana, a nonmycorrhizal species, is able to grow on media containing amino acids as the sole nitrogen source. Arabidopsis amino acid permease (AAP) subfamily genes are preferentially expressed in the vascular tissue, suggesting roles in long-distance transport between organs. We show that the broad-specificity, high-affinity amino acid transporter LYSINE HISTIDINE TRANSPORTER1 (LHT1), an AAP homolog, is expressed in both the rhizodermis and mesophyll of Arabidopsis. Seedlings deficient in LHT1 cannot use Glu or Asp as sole nitrogen sources because of the severe inhibition of amino acid uptake from the medium, and uptake of amino acids into mesophyll protoplasts is inhibited. Interestingly, lht1 mutants, which show growth defects on fertilized soil, can be rescued when LHT1 is reexpressed in green tissue. These findings are consistent with two major LHT1 functions: uptake in roots and supply of leaf mesophyll with xylem-derived amino acids. The capacity for amino acid uptake, and thus nitrogen use efficiency under limited inorganic N supply, is increased severalfold by LHT1 overexpression. These results suggest that LHT1 overexpression may improve the N efficiency of plant growth under limiting nitrogen, and the mutant analyses may enhance our understanding of N cycling in plants.  相似文献   

20.
氮肥处理对氮素高效吸收水稻根系性状及氮肥利用率的影响   总被引:12,自引:0,他引:12  
2011—2012年在土培条件下,以氮素吸收效率差异较大的15个常规籼稻为供试材料,研究氮肥运筹对不同氮效率品种根系性状、成熟期吸氮量及氮肥利用率的影响,分析影响氮高效水稻氮素吸收的主要根系性状。结果表明:(1)各氮肥处理下,成熟期吸氮量均表现为氮高效品种氮中效品种氮低效品种。适量增施氮肥及基肥+促花肥处理有利于氮高效品种吸氮量的增加,氮素吸收受品种、氮肥处理的显著影响。(2)在施氮量处理下,氮高效品种单株不定根数、单株根干重、单株不定根总长大或较大,单株根活力在常氮(N2)、高氮(N3)处理下有一定的优势;在施氮时期处理下,氮高效品种单株不定根数、单株不定根总长、单株根干重、单株根系总吸收面积、单株根系活跃吸收面积、抽穗期冠根比多数处理有优势;增施氮肥有利于促进氮高效品种单株不定根总长和单株根活力的提高,适量施氮有利于单株不定根数、单株根干重增加,前期施氮可促进不定根的发生和伸长,后期施氮有利于不定根的充实和根系生理性状的提高。此外,增施氮肥可提高各类品种冠根比;(3)在常氮、高氮处理下,氮高效品种氮肥利用率大于氮中效、氮低效品种。(4)提高单株不定根数、单株不定根总长、单株根活力及抽穗期冠根比有利于各类品种吸氮量的提高,增加根干重对氮高效品种吸氮量的提高也有显著的促进作用。结合相关分析与通径分析结果,抽穗期冠根比及单株不定根数、单株根活力、单株不定根总长、单株根干重是影响氮高效品种吸氮能力的主要根系性状。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号