首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I. Capesius  M. Bopp  W. Clauss 《Planta》1972,103(1):65-73
Summary In the seedlings of Sinapis alba, the lag-phase between the application of 5-FUDR and the beginning of the inhibition of elongation growth and the inhibition of DNA-synthesis has been studied. The elongation was retarded after 7 h, and then, depending on the concentration of the FUDR, was completely stopped. In the cotyledons the DNA-synthesis was strongly reduced after about 50 minutes, and in the hypocotyls a lag-phase of less than 30 minutes was observed. With the addition of thymidine the DNA-synthesis was immediately resumed, while the growth began with a lag-phase of 5–7 h. In every case the change in the DNA-synthesis preceded the change in the elongation growth. The inhibition of elongation growth could, therefore, be the consequence of inhibition of DNA-synthesis.  相似文献   

2.
Bertold Hock 《Planta》1969,85(4):340-350
Summary The isocitrate lyase activity (E.C. 4.1.3.1.) from watermelon cotyledons (Citrullus vulgaris Schrad.) is inhibited by white light (Fig. 5). To exclude artefacts during enzyme preparation the following experiments were performed (Table 1 and 2): 1. Mixing of raw extracts from cotyledons of light and dark grown seedlings. 2. Joint homogenization a) of cotyledons from light and dark grown seedlings, b) of purified isocitrate lyase together with cotyledons from light or dark grown seedlings. The total activity corresponded to an amount which was expected for the sum of the individual activities. The results justify the conclusion that the inhibition of the isocitrate lyase by light is real, and that the measured enzyme activities are close to the true enzyme concentrations in the plant tissue. — The relatively slow inhibition of the enzyme activity caused by light seems to be correlated with the formation of the photosynthetic apparatus.  相似文献   

3.
Dark-grown cucumber seedlings were exposed to intermittent light (2 min light and 98 min dark) and then cotyledons were incubated with 50 mM CaCl2 in the dark. Chlorophyll (Chl) a was selectively accumulated under intermittent light and Chl b was accumulated during the subsequent dark incubation with CaCl2. The change in chlorophyll-protein complexes during Chl b accumulation induced by CaCl2 in the dark was investigated by SDS-polyacrylamide gel electrophoresis. Chlorophyll-protein complex I and free chlorophyll were major chlorophyll-containing bands of the cotyledons intermittently illuminated 10 times. When these cotyledons were incubated with CaCl2 in the dark, the light-harvesting Chl complex was formed. When the number of intermittent illumination periods was extended to 55, small amounts of Chl b and light-harvesting Chl complex were recognized at the end of intermittent light treatment, and these two pigments were further increased during the subsequent incubation of the cotyledons with CaCl2 in the dark compared to water controls.  相似文献   

4.
Effects of camptothecin, a naturally occurring alkaloid, on seed germination varied from promotive to inhibitory, depending on the species used. It markedly inhibited seedling root growth but its inhibition of hypocotyl growth varied among species. Camptothecin inhibited GA3-induced dark germination of lettuce (Lactuca sativa L.) seeds and hypocotyl elongation of seedlings. In contrast to ABA, the camptothecin inhibition of GA3-induced germination could not be overcome by cytokinin. When seeds were germinated at 29C with a 0.5 h light treatment, little or no germination occurred in the camptothecin treatment, but addition of cytokinin overcame this inhibition.  相似文献   

5.
The growth changes of cotyledons, leaves, hypocotyls and roots due to photoperiodic induction in short day plantChenopodium rubrum were investigated in relation to flowering. Six-day old plants were induced by photoperiods with a different number of dark hours. We found that the degree of inhibition which occurred during induction in the growth of leaves, cotyledons and roots similarly as the stimulation of hypocotyl is proportional to the length of dark period. The photoperiods with 12, 16 and 20 dark hours bring about marked inhibition of growth and at the same time induce flowering in terminal and axillary meristems. The inhibitory effect of critical period for flowering,i.e. 8 dark hours, is not apparent in all criteria used and even the flower differentiation is retarded. The photoperiods of 4 and 6 dark hours did not affect growth and were ineffective in inducing flowering even if their number has been increased. The experiments with inductive photoperiod interrupted by light break have clearly shown that growth pattern characteristic for induced plants can be evoked in purely vegetative ones. Such statement did not exclude the possible importance of growth inhibition as a modifying factor of flower differentiation. We demonstrated that the early events of flower bud differentiation are accompanied by stimulation of leaf growth. The evaluation of growth and development of axillary buds at different nodes of insertion enabled us to quantify the photoperiodic effect and to detect the effects due to differences in dark period length not exceeding 2 hours.  相似文献   

6.
Cell elongation and cell division in elongating lettuce hypocotyl sections   总被引:1,自引:1,他引:0  
The roles of cell division and cell elongation in the growth of sections excised from hypocotyls of lettuce (Lactuca sativa L. cv. Arctic) were investigated. Elongation of sections incubated in the light is inhibited compared to dark-grown sections and this inhibition is reversed by gibberellic acid (GA3). The elongation of both dark-grown and GA3-treated, light-grown sections can be enhanced by 10mM KCl. Under all conditions of incubation, elongation growth is greatest in the uppermost quarter of the hypocotyl section while the basal quarter does not elongate. In darkness the two apical segments of sections marked into four equal parts grow at the same rate, while in light, growth of the apical segment exceeds that of the second segment. Cell division in cortical or epidermal cells, as measured by mitotic index or cell number, is not affected by illumination conditions nor by GA3 or KCl treatments. Although -irradiation and FUDR pretreatment eliminate or cause a marked reduction in cell division in the excised hypocotyl, sections from seeds irradiated with -rays or incubated in 5-fluorodeoxyuridine elongate in response to GA3 and KCl treatment as do sections from non-pretreated controls. Therefore, since neither GA3 nor darkness affect celldivision activity and since treatments which eliminate or significantly reduce cell division do not affect growth, we conclude that the effect of GA3 and darkness in this material is to increase cell elongation.Abbreviations FUDR 5-fluorodeoxyuridine - GA(s) gibberellin(s) - GA3 gibberellic acid  相似文献   

7.
M. Lay-Yee  R. M. Sachs  M. S. Reid 《Planta》1987,171(1):104-109
Floral induction in seedlings of Pharbitis nil Choisy cv. Violet, with one cotyledon removed, was manipulated by applying various photoperiodic treatments to the remaining cotyledon. Populations of polyadenylated RNA from treated cotyledons were examined to identify messages specifically involved in floral induction. The RNA was translated in vitro using a wheat-germ system, and the resulting translation products were analysed by two-dimensional polyacrylamide gel electrophoresis. Substantial qualitative and quantitative differences were found between mRNA from cotyledons of seedlings kept in continuous light (non-induced) and of seedlings given a 16-h dark period (induced). In contrast, inhibition of flowering with a night-break resulted only in one detectable, quantitative difference in mRNA.Abbreviations CL continuous light - kDa kilodalton - NB 16 h darkness+10 min red-light break, 8 h into the dark period - poly(A)+ RNA polyadenylated RNA (isolated by binding to a cellulose oligodeoxythymidine affinity column) - SD short day (16 h dark) - SDP short-day plant - SDS sodium dodecyl sulfate  相似文献   

8.
The role of cotyledons in seedling establishment of the euhalophyte Suaeda physophora under non-saline and saline conditions (addition of 1 mM or 400 mM NaCl) was investigated. Survival and fresh and dry weights were greater for seedlings grown in the light (12-h light/12-h dark) than in the dark (24-h dark). The shading of cotyledons tended to decrease shoot height, shoot organic dry weight, number of leaves, and survival of seedlings regardless of NaCl treatment, but the effect of cotyledon shading was greater with 400 mM NaCl. Concentrations of Na+ were higher in cotyledons than in leaves, regardless of NaCl treatment. The K+/Na+ ratio was lower in cotyledons than in leaves for seedlings treated with 1 mM NaCl but not for seedlings treated with 400 mM NaCl. Addition of 400 mM NaCl decreased oxygen production in cotyledons but especially in leaves. These results are consistent with the hypothesis that, by generating oxygen via photosynthesis and by compartmentalizing Na+, cotyledons are crucial for the establishment of S. physophora seedlings in saline environments.  相似文献   

9.
Both dark and red light germination of lettuce seeds (cv. “Maikönig”) as well as their root and hypocotol elongation were inhibited when the seeds were sown in petri dishes together with a few seeds of Heracleum laciniatum Horn. This inhibition was not significantly counteracted by the presence of gibberellic acid (GA3) or/and 6-benzylaminopurine (BA). However, a large proportion of the lettuce seeds germinated abnormally (only cotyledons emerged) when treated with BA in the presence of Heracleum seeds. GA3 had alone no significant effect on abnormal germination, but it counteracted the effect of BA to some extent. The inhibitory effect of Heracleum seeds gradually disappeared during a moist incubation period of one to seven days in darkness at 25°C. When lettuce seeds were pre-incubated together with Heracleum seeds for one to five days the remaining, non-germinated lettuce seeds had lost their ability for subsequent germination in darkness in distilled water. This induced dark dormancy was to a great extent broken by red light, but not by GA3 or/and BA. H. laciniatum seeds inhibited the germination of Salix pentandra seeds and to some extent also the germination of radish but had no effect on the germination of spruce.  相似文献   

10.
1. Experiments with the seeds of Grand Rapids lettuce showedthat the germination induced by gibberellic acid or by red lightis strongly accelerated by kinetin, although the latter itselfcan promote the germination in the dark only slightly. The reversiblelight reactions of the phytochrome system interact with kinetintreatment just as effectively as with water-imbibed controls.The site of primary action of red light is not altered by kinetintreatment. Kinetin does not modify the water uptake of the seedsfor at least 8 hours. 2. Kinetin was found to inhibit the growth of the hypocotyland root of the seed, but to promote very markedly the expansionof the cotyledons. This effect was observed not only with cotyledonsin intact seeds but also with isolated cotyledons. The expansionof kinetin-treated cotyledons is further promoted by red light,but not by far-red, as is also the case with germination itself. 3. A number of purine derivatives which have been reported topromote germination also cause expansion of isolated cotyledons. 4. Gibberellic acid promotes both hypocotyl elongation and cotyledonexpansion in the dark, but this effect does not interact withthe phytochrome system. The site of action of gibberellic acidprobably lies in the axis. 5. It is concluded, therefore, that the site of kinetin actionis in the cotyledons, whose expansion helps to break the seed-coatwhen light or gibberellin has contributed the primary stimulus. 1 Present address: Johnson Foundation for Medical Physics, Universityof Pennsylvania, Philadelphia, Pa. (Received January 16, 1963; )  相似文献   

11.
Inter-organ control of greening in etiolated cucumber (Cucumis sativus L. cv. Aonagajibae) cotyledons was investigated. Four- or six-day-old excised or intact etiolated cucumber cotyledons were illuminated under aerobic conditions. Excised cotyledons without hypocotyl hooks produced chlorophyll without a prolonged lag phase and the rate of chlorophyll formation was not depressed if they were illuminated immediately after excision. If the excised cotyledons were incubated in the dark before illumination, chlorophyll accumulation at the end of 6 h of continuous illumination was remarkably lowered as the dark period lengthened, especially in 6-day-old cotyledons. The rapid loss of chlorophyll-forming capacity of excised cotyledons during dark preincubation suggests a stimulatory effect of hypocotyls on the greening in cotyledons. The treatment of excised cotyledons with bleeding sap in the dark for 18 h resulted in the promotion of chlorophyll formation during subsequent continuous illumination. Partial fractionation of bleeding sap with organic solvents and paper chromatography indicates that the active substances showed the same behavior as cytokinins. These facts add weight to the hypothesis that cytokinins from roots flow into cotyledons and stimulate greening.  相似文献   

12.
13.
A. M. Steiner 《Planta》1968,82(3):223-234
Summary Short term changes in the soluble sugar, starch, and cell-wall carbohydrate content of the mustard seedling have been studied in the different organs during phytochrome induced photomorphogenesis in continuous far-red. The program was: imbibition of seeds 36 hrs dark far-red irradiation. Kinetics have been followed up to 12 hrs after the onset of irradiation.There are no substantial changes in carbohydrate content in the cotyledons and the radicle. In the cotyledons in far-red after a lag-phase of 3 hrs, there is a decrease in oligosaccharide content, and after a lag-phase of 6 hrs, an increase in cell-wall synthesis. The reducing sugar and starch content is not altered upon irradiation. In the radicle immediately after the onset of far-red, there is a temporary rise in the reducing sugar and cell-wall carbohydrate content. However, 6 hrs later the values in far-red again parallel those of the dark control.The important phytochrome dependent changes take place in the hypocotyl. In far-red after a lag-phase of 3 hrs the glucose accumulation is markedly retarded, the sucrose and starch content no longer increased, and the fructose content even decreases below the 3 hrs value. The glucose: fructose ratio, which is constant in dark, is shifted in favour of glucose. The lag-phase of phytochrome controlled hypocotyl elongation is about 1 hr, the lag-phase of the inhibition of cell-wall carbohydrate synthesis is in about the same order of magnitude.There seems to be neither any immediate connection between sugar content and cell-wall carbohydrate synthesis, as shown by the difference in lag-phases, nor does there seem to be any direct relationship between hypocotyl inhibition and overall synthesis of cell-wall material. The relative inhibition of cell-wall synthesis is less than one third of that of hypocotyl elongation (Figs. 5,6). Apparently phytochrome controls hypocotyl elongation by influencing the cell-wall structure.In spite of the fact that fat degradation is higher in far-red than in dark and respiration higher in dark than in far-red (Friederich, 1968), 6 hrs after the onset of far-red the increase of total carbohydrate content declines compared with that in dark. This finding leads to the conclusion that the efficiency of the fat-carbohydrate-transformation is higher in dark than in far-red.  相似文献   

14.
15.
Different methods (physiological, electrophysiological and biochemical) were used in order to show, during a 24 h period, a change in sensitivity of Bidens pilosus seedlings to the pricking of one of the cotyledons. The sensitivity is maximum in the morning and in the evening; it decreases during the light period (day) and the dark period (night). The minimum of the sensitivity occurs in the middle of the day and 3 to 4 h after the beginning of the night.  相似文献   

16.
Northern blot analysis revealed that a single 4.2 kb phytochrome mRNA species was detectable in cotyledons excised from five-day-old etiolated cucumber seedlings. Intact etiolated five-day-old cucumber seedlings were given a red light or benzyladenine treatment, and cotyledons were harvested at various times following treatment. The abundance of phytochrome mRNA in the cotyledons was quantitated using 32P-labeled RNA probes and slot blot analysis. By 2 h after irradiation the phytochrome mRNA level was reduced to 40% of the initial abundance and reaccumulation began by 3 h after irradiation. Reaccumulation of phytochrome mRNA to the time-zero dark control level was achieved by 10 h after treatment. A decrease in phytochrome mRNA abundance was evident by 2 h after benzyladenine treatment, and a maximal reduction to 45% of the time-zero dark control was attained by 4 h after treatment. No recovery of the phytochrome mRNA level was evident by 8 h after benzyladenine treatment. The abundance of actin mRNA was unaffected by benzyladenine treatment.  相似文献   

17.
The coarse of growth and cell division in synchronized cultures of Chlorella pyrenoidosa was studied after the addition of metabolic inhibitors at differing times during the cell cycle (14 h light - 10 h darkness with nitrate as nitrogen source. 12 h light: 12 h darkness with urea as nitrogen source). Dinitrophenol (DNP) added to a final concentration of 0.3 mM at any time in the synchronization cycle, the compound remaining in the suspension from the time of addition to the end of the dark period, inhibited spore formation completely. Growth measured as increase in cell volume was less sensitive to the action of the inhibitor. Chloramphenicol (CAP) added dining the 0–5 h interval to a final concentration of 0.1 mM resulted in 80 per cent inhibition of cell division. Similar treatment started at successive times thereafter resulted in a gradual decrease of the inhibition. Treatment at the 14th hour and during the dark period did not affect the sporulation. Similar experiments with 0.9 mM puromycin added at various times during the illumination period gave almost complete inhibition of cell division, while the growth was reduced by only 25 per cent. para-Fluorophenylalanine (p-FPhe) at 3.3 × 10?2 mM stopped cell division nearly completely irrespective of addition time in the light period. Addition during the dark period also prevented an increase in the number of tree cells. In this case about half of the cells produced spores which were not released. It is concluded that DNP inhibits all stages of preparation for cell division, as well as the division process itself. With CAP a genuine transition point of preparation for cell division was observed, although its interpretation as related to protein synthesis is somewhat uncertain. With puromycin and p-FPhe no transitions were observed.  相似文献   

18.
The nucleic acid (NA) fractions were analyzed in cotyledons and apical buds ofChenopodium rubrum plants by means of acrylamide electrophoresis at the end of the dark period of a different number of photoperiodic cycles or after transfer of the plants to light for 4 h subsequent to the termination of the dark period. The plants were labelled with32P three hours prior to sampling. The uptake of32P into the cotyledons was higher in light than in darkness in all cases, however, it was not in correlation with32P incorporation into the NA fractions. After one dark period lasting 8 or 16 h NA synthesis in light did not increase in comparison with darkness. After two or more photoperiodic cycles NA synthesis was higher in light than in darkness irrespective of whether the dark period lasted 8 or 16 h. NA synthesis was distinctly highest after two inductive cycles lasting 16 h. In buds NA synthesis was slightly shifted in favour of ribosomal RNA as compared with cotyledons. In the cotyledons the increase in light was mainly duo to a raise of rRNA synthesis whereas in the buds synthesis of sRNA and DNA increased, as well.  相似文献   

19.
Summary Seedlings of Sinapis alba were grown under standard conditions. In the hypocotyls and cotyledons DNA synthesis still takes place 36 h after sowing. This synthesis decreases in the following 24 h, but an incorporation of 3H-thymidine was found 108 h after sowing.Autoradiographic studies demonstrate the incorporation of 3H-thymidine into cell nuclei. While some nuclei are homogeneously labelled, in other nuclei the radioactivity appears preferentially or exclusively in the chromocenters.A transfer into the dark of plants previously grown in light (for 24 h or 48 h) does not result in an increase of DNA-synthesis again.  相似文献   

20.
The effects of UVB on the kinetics of stem elongation of wild type (WT) and photomorphogenic mutants of tomato were studied by using linear voltage transducers connected to a computer. Twenty-one or twenty-six-day-old plants, grown in 12 h white light (150 μmol m−2 s−1 PAR)/12 h dark cycles, were first transferred to 200 μmol m−2 s−1 monochromatic yellow light for 12 h, then irradiated with 0.1 or 4.5 μmol m−2 s−1 UVB for 12 h and finally kept in darkness for another 24 h. The measurements of the kinetics of stem elongation started after 4 h under yellow light. Significant differences in stem growth during the irradiation with yellow light, as well as during the dark period, were found between the genotypes. In darkness, the magnitude of stem growth followed the order: tri > AC = fri > MMau > hp1. Two factors determined the large differences of growth in darkness: 1) the different stem elongation rate (SER) and 2) the different duration of the growing phase among the genotypes. In darkness the stem growth of au and hp1 mutants lasted for about 18 h, whereas it continued for the whole experimental period (36 h) in the other genotypes. UVB irradiation substantially reduced elongation growth of all genotypes (4.5 μmol m−2 s−1 being more effective than 0.1 μmol m−2 s−1). Both fluence rates of UVB induced a detectable reduction of SER already after 15 min of irradiation. Red light inhibited, while far red light promoted stem growth of all the genotypes tested. fri (phyA null), tri (phyB1 null), hp1 (exhibiting exaggerated phytochrome responses) mutants and WT tomato showed similar levels of UVB–induced inhibition of growth, while the aurea mutant showed the largest growth inhibition during the 12 h of irradiation. These results indicate that phytochrome is not directly involved in UVB control of stem elongation. The results of dichromatic irradiations UVB + red or UVB + far red indicate the presence of distinct and additive action of UVB photoreceptor and of the phytochrome system in the photoregulation of stem growth. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号